
Secrecy Despite Compromise:
Types, Cryptography, and the Pi-Calculus

Andrew D. Gordon1 and Alan Jeffrey2?

1 Microsoft Research
2 DePaul University and Bell Labs, Lucent Technologies

Abstract. A realistic threat model for cryptographic protocols or for language-
based security should include a dynamically growing population of principals (or
security levels), some of which may be compromised, that is, come under the con-
trol of the adversary. We explore such a threat model within a pi-calculus. A new
process construct records the ordering between security levels, including the pos-
sibility of compromise. Another expresses the expectation of conditional secrecy
of a message—that a particular message is unknown to the adversary unless par-
ticular levels are compromised. Our main technical contribution is the first system
of secrecy types for a process calculus to support multiple, dynamically-generated
security levels, together with the controlled compromise or downgrading of se-
curity levels. A series of examples illustrates the effectiveness of the type system
in proving secrecy of messages, including dynamically-generated messages. It
also demonstrates the improvement over prior work obtained by including a se-
curity ordering in the type system. Perhaps surprisingly, the soundness proof for
our type system for symbolic cryptography is via a simple translation into a core
typed pi-calculus, with no need to take symbolic cryptography as primitive.

1 Introduction

Ever since the Internet entered popular culture it has had associations of insecurity.
The Morris worm of 1989 broke the news by attacking vulnerable computers on the
network and exploiting them to attack others. At least since then, compromised hosts
and untrustworthy users have been a perpetual presence on the Internet, and, perhaps
worse, inside many institutional intranets. Hence, like all effective risk management,
good computer security does not focus simply on prevention, but also on management
and containment.

There is by now a substantial literature on language-based techniques to prevent dis-
closure of secrets [21]. This paper contributes new language constructs to help manage
and contain the impact of partial compromise on a system: we generalize the attacker
model from a completely untrusted outsider to include attacks mounted by compro-
mised insiders. We use the pi-calculus [17], a theory of concurrency that already sup-
ports reasoning about multiple, dynamically generated identities, and security based on
abstract channels or symbolic cryptography [1,4]. We formalize the new idea ofcon-
ditional secrecy, that a message is secret unless particular principals are compromised.

? This material is based upon work supported by the National Science Foundation under Grant
No. 0208549.

We describe a type system that checks conditional secrecy, and hence may help assess
the containment of compromise within a system.

Specifying Compromise and Conditional SecrecyWe model systems as collections of
processes, that interact by exchanging messages on named channels. Most of the exam-
ples in the paper rely on channel abstractions for security, but our methods also handle
protocols that rely on cryptography. The opponent is an implicit process that runs along-
side the processes making up the system under attack, and may interact with it using
channels (or keys) in its possession. We say a message ispublic if it may come into the
possession of the opponent (possibly after a series of interactions).

We base our model of partially compromised systems on asecurity orderingbe-
tween abstractsecurity levels. Secrecy levels model individual (or groups of) princi-
pals, hosts, sessions, and other identifiers. For instance, the level of the opponent is the
distinguished lowest security level⊥.

The process constructL1≤ L2, called astatement, declares that levelL1 is less than
levelL2. Hence, any process defines a security ordering between levels; it is given by the
set of active statements occurring in the process, closed under a set of inference rules in-
cluding reflexivity and transitivity. (Statements are akin to the use of process constructs
to describe the occurrence of events [6,14] or to populate a database of facts [10].) We
say a levelL is compromisedwhenL≤⊥. Compromise may arise indirectly: ifL1≤ L2

and subsequentlyL2 is compromised, then so too isL1, by transitivity. SoL1 ≤ L2 can
be read “L1 is at risk fromL2” as well as “L1 is less secure thanL2.”

Compromise may be contained or non-catastrophic in the sense that despite the
compromise of one part of a system, another part may reliably keep messages secret.
For example, key establishment protocols often have the property that Aand Bcan keep
their session key secret even though a session key established between Band a compro-
mised partyC has become public. However, as soon as either Aor B is compromised,
their session key may become public.

The process constructsecretM amongstL, called anexpectation of conditional
secrecy, declares the invariant “M is secret unlessL is compromised”. For example, the
processsecretS amongst(A,B) asserts that Sis secret unless the composite security
level (A,B) has been compromised, which occurs if either Aor B has been compro-
mised. This definition of conditional secrecy via a syntactic process construct is new
and may be of interest independently of our type system. By embedding falsifiable ex-
pectations within processes, we can express the conditional secrecy of freshly generated
messages, unlike previous definitions [2]. Our trace-based notion of secrecy concerns
direct flows to an active attacker; we do not address indirect flows or noninterference.

Checking Conditional Secrecy by TypingOur main technical contribution is the first
system of secrecy types for a process calculus that supports multiple, dynamically-
generated security levels, together with compromise or downgrading of security levels.
Abadi’s original system [1] of secrecy types for cryptographic protocols, and its descen-
dants, are limited to two security levels, and therefore cannot conveniently model the
dynamic creation and compromise of security levels, or the possibility of attack from
compromised insiders. Our treatment of asymmetric communication channels builds on
our recent work on types for authentication properties [13].

2

Our main technical result, Theorem2, is that no expectation of conditional secrecy
is ever falsified when a well-typed process interacts with any opponent process.

We anticipate applications of this work both in the design of security-typed lan-
guages and in the verification of cryptographic protocols. Security types with multiple
security levels are common in the literature on information flow in programming lan-
guages, but ours is apparently the first use in the analysis of cryptographic protocols.

Section2 describes our core pi-calculus. Section3 exhibits a series of example
protocols that make use of secure channels. Theorem2 can be applied to show these
protocols preserve the secrecy of dynamically generated data. Previous type systems
yield unconditional secrecy guarantees, and therefore cannot handle the dynamic de-
classification of data in these protocols. Section4 presents our type system formally.
Section5 outlines the extension of our results to a pi-calculus with symbolic cryptog-
raphy. Section6 discusses related work, and Section7 concludes.

A companion technical report [15] includes further explanations and examples, an
extension of the core calculus and type system to cover symbolic cryptography, and
proofs. Notably, the soundness of the extended type system follows via a straightfor-
ward translation into our core pi-calculus. We represent ciphertexts as processes, much
like the encoding [17] of other data structures in the pi-calculus. Although such a rep-
resentation of ciphertexts is well known to admit false attacks in general, it is adequate
in our typed setting.

2 A Pi Calculus with Expectations of Conditional Secrecy

Our core calculus is an asynchronous form of Odersky’s polarized pi-calculus [19] ex-
tended with secrecy expectations and security levels.

Computation is based on communication of messages between processes on named
channels. The calculus is polarized in the sense that there are separate capabilities to
send and receive on each channel. The send capabilityk! confers the right to send (but
not receive) on a channelk. Conversely, the receive capabilityk? confers the right to
receive (but not send) onk. The asymmetry of these capabilities is analogous to the
asymmetry between public encryption and private decryption keys, and allows us to
write programs with the flavour of cryptographic protocols in a small calculus.

Messages are values communicated over channels between processes. As well as
send and receive capabilities, messages include names, pairs, tagged messages, and the
distinguished security levels> and⊥.

Processes include the standard pi-calculus constructs plus operations to access pairs
and tagged unions. To track direct flows of messages, each output is tagged with its
security level; for instance, an output by the opponent may be tagged⊥. The only new
process constructs are statementsM ≤ N and expectationssecretM amongstL.

Names, Messages, Processes:

a, . . . ,n,v, . . . ,z names and variables
L,M,N ::= message, security level

x name, variable
M? capability to input onM

3

M! capability to output onM
(M,N) message pair
inl M left injection
inr M right injection
> highest security
⊥ lowest security

C ::= M ≤ N clause: levelM less secure than levelN
~M,~N ::= M1, . . . ,Mm sequence of messages (m≥ 0)
T,U type: defined in Section4
P,Q,R ::= process

out M N :: L asynchronous output at levelL
inp M(x:T);P input (scope ofx is P)
newx:T;P name generation (scope ofx is P)
repeatP replication
P |Q parallel composition
stop inactivity
split M is (x≤ y:T,z:U);P pair splitting (scope ofx,y is U , P, of z justP)
match M is (x≤ N:T,z:U);P pair matching (scope ofx is U , P, of z just P)
caseM is inl (x:T) P is inr (y:U) Q union case (scope ofx is P, of y is Q)
C statement of clauseC
secretM amongstL expectation of conditional secrecy

We writeP→Q to meanP may reduce toQ, andP≡Q to meanP andQ are structurally
equivalent. The mostly standard definitions of these relations are in AppendixB. The
only nonstandard reductions are forsplit and the first-component-matching operation
match, which bind an extra variable. (We motivate the use of this variable in Section3).

split (M,N) is (x≤ y:T,z:U);P→ P{x←M}{y←M}{z←N}
match (M,N) is (x≤M,z:U);P→ P{x←M}{z←N}

Any messageM can be seen as asecurity level. Levels are ordered, with bottom element
⊥, top element>, and meet given by(M,N). We writeSfor a set of clauses of the form
M ≤ N, and writeS`M ≤ N whenM ≤ N is derivable from hypothesesS.

Set of Clauses:

S::= {C1, . . . ,Cn} set of clauses

{C1, . . . ,Cn}
4= C1 | · · · |Cn | stop when considered as a process

Preorder on Security Levels:S`M ≤ N

C∈ S⇒ S`C (Order Id)
S`M ≤M (Order Refl)
S` L≤M∧S`M ≤ N⇒ S` L≤ N (Order Trans)
S` ⊥ ≤M (Order Bot-L)
S`M ≤> (Order Top-R)
S` (M,N)≤M (Order Meet-L-1)
S` (M,N)≤ N (Order Meet-L-2)
S` L≤M∧S` L≤ N⇒ S` L≤ (M,N) (Order Meet-R)

4

Since processes contain ordering statements, we can deriveP ` M ≤ N wheneverP
contains statementsS, andS`M ≤ N.

Security Order Induced by a Process:P`M ≤ N

Let P`M ≤ N if and only if P≡ new~x:~T;(S|Q) andS`M ≤ N andfn(M,N)∩{~x}= ∅.

An expectationsecretM amongstN in a process is justified if every output ofM is
at a levelL such thatN ≤ L. That is, the secretM may flow up, not down. We sayP
is safe for conditional secrecyto mean no unjustified expectation exists in any process
reachable fromP. The “robust” extension of this definition means the process is safe
when composed with any opponent process, much as in earlier work [12].

Safety:

A processP is safe for conditional secrecyif and only if
wheneverP→∗ new~x:~T;(secretM amongstN | out !x M :: L |Q), we haveQ` N≤ L.

Opponent Processes and Robust Safety:

A processO is Un-typedif and only if every type occurring inO is Un.
Write erase(P) for theUn-typed process given by replacing all types inP by Un.
A processO is secret-free if any only if there are nosecretexpectations inO.
A processO{~x} with fn(O{~x}) = {~x} is anopponentif and only if it is Un-typed andsecret-free.
A processP is robustly safe for conditional secrecy despite~L if and only if

P |O{~L} is safe for secrecy for all opponentsO{~x}.

3 Examples of Secrecy Despite Compromise

The examples in this section illustrate some protocols and their secrecy properties, and
also informally introduce some aspects of our type system. We use mostly standard
abbreviations for common message and process idioms, such as arbitrary-length tuples.
These are much the same as in previous work [13], and are given in AppendixA.3.

A Basic ExampleConsider a world with just the two security levels> and⊥. The
following processes, at level>, communicate along a shared channel k. (We use the
keywordprocessto declare non-recursive process abbreviations.)

processSender(k:Ch(Secret{>})) =
news:Secret{>}; out k!(s) :: >| secrets amongst> .

processReceiver(k:Ch(Secret{>})) =
inp k?(s:Secret{>}); secrets amongst> .

The parallel composition Sender(k)| Receiver(k)is robustly safe despite∅ but not, for
example, despite either{k!} (because the attacker can send public data to falsify the
receiver’s expectation) or{k?} (because the attacker can obtain the secret sto falsify
the sender’s expectation).

5

Our type system can verify the robust safety property of this system based on its
type annotations. Messages of typeSecret{L} are secrets at levelL. Messages of type
Ch T are channels for exchanging messages of typeT. Later on, we use types ?Ch T
and !Ch T for the input and output capabilities on channels ofT messages.

An Example of Secrecy Despite Host CompromiseTo establish secrecy properties (for
example, that Aand Bshare a secret) in the presence of a compromised insider (for
example C, who also shares a secret with B) requires more security levels than just
> and⊥. For example, consider the following variant on an example of Abadi and
Blanchet [3] (rewritten to include the identities of the principals).

processSender(a:Un, b:Un, cA:Type2(a,b), cB:Type1(b)) =
newk:Secret{a,b}; secretk amongst(a,b);
news:Secret{a,b}; secrets amongst(a,b);
out cB (a, k, cA!) :: a|
inp cA? (match k, cAB:!Type3(a,b)); // pattern-matching syntax
out cAB (s) :: a.

processReceiver(b:Un, cB:Type1(b)) =
inp cB? (a≤a′:Un, k:Secret{a,b}, cA:!Type2(a,b)); // pattern-matching syntax
newcAB:Type3(a,b);
out cA (k, cAB!) :: b |
inp cAB? (z:Secret{a,b}); stop.

Here, sender Asends to receiver Ba tuple (A,k,cA!), along a trusted output channel cB,
whose matching input channel is known only to B. She then waits to receive a message
of the form (k,cAB), whose first component matches the freshly generated name k,
along the channel cA?, which must have come from B, as only Aand Bknow k. Hence,
A knows that cABis a trusted channel to B, and so it is safe to send salong cAB.

Receiver Bruns the matching half of the protocol, but gets much weaker guarantees,
as the output channel cBis public, and so anyone (including an attacker) can send
messages along it. When Breceives (A,k,cA?), he knows that it claims to be from A,
and binds a′ to A’s security level. However, he does not know who the message really
came from: it could be A, or it could be an attacker masquerading as A. All B knows is
that there is some security level a≤a′ indicating who really sent the message.

When a process such as Receiverreceives an input such as (A,k,cA!), it binds two
variables a≤a′ reflecting the actual and claimed security level of the message. This
is reflected in the dependent type(πx≤ y : T,U), which binds two variables inU . The
variablex is bound to the actual security level, and the variabley is bound to the claimed
security level. At run-time, the binding forx is unknown, so it is restricted to only being
used in types, not in messages. In examples, we often elidex when it is unused.

Processes have two ways of accessing a pair: they may use thesplit construct to
extract the components of the pair, or they may use thematch construct to match the
first element of the pair against a constant. For example, the Senderprocess above con-
tains the inputinp ca?(match k, cAB:!Type3(a,b)), which requires the first component
to match the known name k, or else fails, and (implicitly) usessplit to bind the second
component to cAB. (We are using pattern-matching abbreviations to avoid introducing

6

large numbers of temporary variables, as discussed in AppendixA.3.) These two forms
of access to tuples are not new, and have formed the basis of our previous work on type-
checking cryptographic protocols [12,13]. What is new is that these forms of access are
reflected in the types. We tag fields with a markerπ, which is eithersplit or match, to
indicate how they are used.

The types for this example are:

type Type3(a,b) =Ch (Secret{a,b})
type Type2(a,b) =Ch (match k:Secret{a,b}, split cAB:!Type3(a,b))
type Type1(b) =Ch (split a≤a′:Un, split k:Secret{a,b}, split cA:!Type2(a,b))

Given the environment:

A:Un, CA:Type2(A,B), B:Un, CB:Type1(B), C:Un, CC:Type2(C,B)

we can typecheck:

repeatSender(A,B,CA,CB!)| repeatReceiver(B,CB)|
repeatSender(C,B,CC,CB!)| C≤⊥

Hence, soundness of the type system (Theorem2) implies the system is robustly safe
for secrecy despite{A,B,C,CA!,CB!,CC}. The statement C≤⊥ represents the com-
promise of C. Thus, A and B are guaranteed to preserve their secrecy, even though
compromised Cshares a secret CCwith B.

An Example of Secrecy Despite Session CompromiseFinally, we consider an adaption
of the previous protocol to allow for declassification of secrets. Declassification may
be deliberate, or it may model the consequences of an exploitable software defect. We
regard the session identifier kas a new security level, that may be compromised inde-
pendently of Aand B. We modify the example by allowing the sender to declassify the
secret after receiving a message on channel d.

processSender(a:Un, b:Un, cA:Type2(a,b), cB:Type1(b), d:Un) =
newk:Secret{a,b}; secretk amongst(a,b);
news:Secret{a,b,k}; secrets amongst(a,b,k);
out cB (a, k, cA!) :: a|
inp cA? (match k, cAB:!Type3(a,b));
out cAB (s) :: a|
inp d?(); k≤⊥ ; out d!(s) :: a

Here, the sender declassifies sby the statement k≤⊥ . Since kis mentioned in the
security level of s, this statement allows sto be published on public channel d. The rest
of the system remains unchanged and the types are now:

type Type3(a,b,k) =Ch (Secret{a,b,k})
type Type2(a,b) =Ch (match k:Secret{a,b}, split cAB:!Type3(a,b,k))
type Type1(b) =Ch (split a≤a′:Un, split k:Secret{a,b}, split cA:!Type2(a,b))

Theorem2now gives us not only that Aand Bcan maintain secrecy despite compromise
of C, but also that it is possible to compromise one session k, and hence declassify the
matching secret s, without violating secrecy of the other sessions.

7

4 A Type System for Checking Conditional Secrecy

A basic idea in our type system is to identify classes of public and tainted types [13].
Intuitively, messages of public type can flow to the opponent, while messages of tainted
type may flow from the opponent. More formally, ifUn is the type of all messages
known to the opponent and<: is the subtype relation, a typeT is public just when
T <: Un, and a typeT is taintedjust whenUn <: T.

Both classes depend on the security ordering. Just as the attacker encroaches on
the compromised parts of a system over time, types may become public or tainted over
time. We reflect this dependency syntactically by decorating types with symbolic kinds.
A kind K is a pair{?M, !N} of security levels. A message of a type decorated{?M, !N}
can be assumed to flow from a source at levelM (or higher), and is allowed to flow to a
target at levelN (or higher). IfM ≤ ⊥ the type is tainted; ifN ≤ ⊥ the type is public.
We often write shorthand such as{A,?B, !C} for the kind{?(A,B), !(A,C)}.

Kinds:

K ::= {?M, !N} tainted ifM ≤⊥, public if N≤⊥

Write {L1, . . . ,Ll ,?M1, . . . ,?Mm, !N1, . . . , !Nn}
for {?(L1, . . . ,Ll ,M1, . . . ,Mm), !(L1, . . . ,Ll ,N1, . . . ,Nn)}.

Our language of types consists of standard constructs for channels with optional read-
only and write-only attributes, sum types, andOk types [11]. The only non-standard
types are the dependent pairs(πx≤ y : T,U), discussed previously in Section3.

Types:

ν ::= ? | ! input-only (?) or output-only (!) attribute
π ::= split |match split-only or match-only attribute
T,U ::= type

Ch K T channel forT messages
νCh K T input or output capability on channel forT messages
(πx≤ y:T,U) split-only or match-only dependent pair (scope ofx,y is U)
T +U tagged sum type
Ok S proof of security ordering

Our judgments are defined with respect to anenvironment, a list of all names in scope,
paired with their types. A generative type is one that can be freshly generated.

Environments:

E ::= ∅ | E,x:T environment: list of name typings
dom(∅) = ∅ dom(E,x:T) = dom(E)∪{x}
clauses(∅) = ∅ clauses(E,x:T) = clauses(E)∪{C1, . . . ,Cn | T is Ok{C1, . . . ,Cn}}

Generative Types and Environments:

Let a type begenerativeif and only if it is a channel typeCh K T.
Let an environmentE begenerativeif and only if E(x) is generative for eachx∈ dom(E).

8

Judgments of the Type System:

E ` � good environment
E ` Public(T) public type:T data may flow to the opponent
E ` Tainted(T) tainted type:T data may flow from the opponent
E ` T <: T ′ subtype
E `M : T good message of typeT
E ` P good process

Next, we present the rules defining these judgments. We rely on several abbreviations.

Abbreviations:

Write E,S for the environmentE,x : Ok Swherex is fresh.
Write E `M for E ` � andfn(M)⊆ dom(E).
Write E `M ≤ N for E ` (M,N) andclauses(E) `M ≤ N.
Write E ` S for E `M ≤ N for every(M ≤ N) ∈ S.
Write E `M↔ N for E `M ≤ N andE ` N≤M.
Write E ` T <:> U for E ` T <: U andE `U <: T.

The following standard rules state that in a good environment, each declared name must
be fresh, and each name occurring in a type must be declared previously.

Good Environment:

(Env∅)

∅ ` �

(Envx)
E ` � x /∈ dom(E) fn(T)⊆ dom(E)

E,x:T ` �

The judgmentsE ` Public(T) andE ` Tainted(T) formalize the classes of public and
tainted types. The rules follow the pattern of previous work [13]. The most interesting
rules are those for determining when a dependent pair(πx≤ y:T,U) is tainted. If data
of this type has been received from the opponent, then we know that the real security
level of the term is⊥, and so when we checkU for taintedness, we first replacex
by ⊥. In the case whenπ is match, we can be even more liberal, and add into the
environment extra clauses generated by tainting the typeT: for example(match x≤
y:Secret{a},Secret{a}) is tainted, because we add the clausea≤⊥ to the environment
before checking taintedness of the typeSecret{a}.

Extracting a Set of Clauses from a Tainted Type:

taint(Ch{?M, !N} T) 4= {M ≤⊥,N≤⊥}
taint(νCh {?M, !N} T) 4= {M ≤⊥}
taint(πx≤ y:T,U) 4= taint(T +U) 4= taint(Ok S) 4= ∅

Public and Tainted Types:

(Public I/O)
E `M↔⊥ E ` N↔⊥
E ` Public(T) E ` Tainted(T)

E ` Public(Ch {?M, !N} T)

(Tainted I/O)
E `M↔⊥ E ` N↔⊥
E ` Public(T) E ` Tainted(T)

E ` Tainted(Ch {?M, !N} T)

9

(Public I)
E `M E ` N↔⊥ E ` Public(T)

E ` Public(?Ch {?M, !N} T)

(Tainted I)
E `M↔⊥ E ` N E ` Tainted(T)

E ` Tainted(?Ch {?M, !N} T)

(Public O)
E `M E ` N↔⊥ E ` Tainted(T)

E ` Public(!Ch {?M, !N} T)

(Tainted O)
E `M↔⊥ E ` N E ` Public(T)

E ` Tainted(!Ch {?M, !N} T)

(Public Split)
E ` Public(T)
E,x:T,y:T,x≤ y` Public(U)

E ` Public((split x≤ y:T,U))

(Tainted Split)
E ` Tainted(T)
E,y:T ` Tainted(U{x←⊥})

E ` Tainted((split x≤ y:T,U))

(Public Match)
E ` Public(T)
E,x:T,y:T,x≤ y` Public(U)

E ` Public((match x≤ y:T,U))

(Tainted Match)
E,taint(T) ` Tainted(T)
E,y:T,taint(T) ` Tainted(U{x←⊥})

E ` Tainted((match x≤ y:T,U))

(Tainted Sum)
E ` Tainted(T) E ` Tainted(U)

E ` Tainted(T +U)

(Public Sum)
E ` Public(T) E ` Public(U)

E ` Public(T +U)

(Public Order)
E ` � fn(S)⊆ dom(E)

E ` Public(Ok S)

(Tainted Order)
E ` � E `Mi ↔⊥ E ` Ni ∀i ∈ 1..n

E ` Tainted(Ok {M1 ≤ N1, . . . ,Mn ≤ Nn})

The rules for subtyping are mostly taken from [13]. The main exception is the rule for
(matchx≤ y:T,U), which requires an extra condition to ensure that subtyping preserves
thetaint function used in the definition ofE ` Tainted(T).

Subtyping:

(Sub Public/Tainted)
E ` Public(T) E ` Tainted(U)

E ` T <: U

(Sub I/O)
E `M↔M′ E ` N↔ N′ E ` T <:> T ′

E ` Ch {?M, !N} T <: Ch {?M′, !N′} T ′

(Sub I)
E `M′ ≤M E ` N≤ N′ E ` T <: T ′

E `?Ch {?M, !N} T <: ?Ch {?M′, !N′} T ′

(Sub O)
E `M′ ≤M E ` N≤ N′ E ` T ′ <: T

E `!Ch {?M, !N} T <: !Ch {?M′, !N′} T ′

(Sub Split)
E ` T <: T ′

E,x:T,y:T,x≤ y`U <: U ′

E ` (split x≤ y:T,U) <: (split x≤ y:T ′,U ′)

(Sub Match)
E ` T <: T ′ E,taint(T ′) ` taint(T)
E,x:T,y:T,x≤ y`U <: U ′

E ` (match x≤ y:T,U) <: (match x≤ y:T ′,U ′)

(Sub Sum)
E ` T <: T ′ E `U <: U ′

E ` T +U <: T ′+U ′

(Sub Hierarchy)
E ` � E,S` S′

E `Ok S<: Ok S′

10

To illustrate the judgments defined so far, we derive the typesUn andSecretK, used
already in examples. (Our examples rely also on standard abbreviations, such as tuple
types encoded using pair types. Full details are in AppendixA.3.)

Abbreviations for Un and SecretK:

Un
4= Ch {⊥} (Ok {}) generative type of messages known to opponent

SecretK
4= ?Ch K Un type of secrets at kindK

Given these derived types, the four typesSecret{?M, !N} whereM,N ∈ {>,⊥} have
the following properties, assuming that⊥<>. Moreover, the subtype ordering induces
a diamond lattice, with Anyat the top, and Emptyat the bottom. The Emptytype is
uninhabited, and the remaining inhabited types are exactly those of Abadi [1].

The Four Types Secret{?M, !N} with M,N ∈ {>,⊥}:

Any
4= Secret{?⊥, !>} tainted, not public

Pub
4= Secret{?⊥, !⊥} tainted, public

Sec
4= Secret{?>, !>} not tainted, not public

Empty
4= Secret{?>, !⊥} not tainted, public

Next, here are the type assignment rules for messages.

Good Message:

(Msg Subsum)
E `M : T E ` T <: T ′

E `M : T ′

(Msg x)
E ` � (x:T) ∈ E

E ` x : T

(Msg I)
E ` L : Ch {?M, !N} T

E ` L?:?Ch {M} T

(Msg O)
E ` L : Ch {?M, !N} T

E ` L! :!Ch {N} T

(Msg Pair)
E `M : T E ` N : U{x←M}{y←M}

E ` (M,N) : (πx≤ y:T,U)

(Msg⊥)
E ` �

E ` ⊥ : Un

(Msg Inl)
E `M : T fn(U)⊆ dom(E)

E ` inl M : T +U

(Msg Inr)
E ` N : U fn(T)⊆ dom(E)

E ` inr N : T +U

(Msg Ok)
E ` � E ` S

E ` > : Ok S

The type rules for processes are standard, with two exceptions. The rule for output
performs an extra check on the security level of the output, to ensure that the data
can be published at that level: the assumptionE,L ≤ ⊥ ` Public(T) can be read “if
the levelL were compromised, the typeT would be public”. The rule for composition
typechecks each component in an environment extended with any top-level statement
M ≤ N occurring in the other component.

Extracting Environments from Processes:

env(P |Q) = env(P),env(Q)
env(repeatP) = env(P)
env(M ≤ N) = x:Ok {M ≤ N} for freshx

11

env(newx:T;P) = y:T,env(P{x←y}) for freshy
env(P) = ∅ otherwise

Good Process:

(Proc Output)
E,L≤⊥ ` Public(T)
E `M :!Ch K T E ` N : T

E ` out M N :: L

(Proc Input)
E `M :?Ch K T E,x:T ` P

E ` inp M(x:T);P

(Proc Res)
E,x:T ` P T generative

E ` newx:T;P

(Proc Repl)
E ` P

E ` repeatP

(Proc Par Mutual)
E,env(Q) ` P E,env(P) `Q

E ` P |Q

(Proc Stop)
E ` �

E ` stop

(Proc Split)
x 6∈ fn(erase(P))
E `M : (split x≤ y:T,U)
E,x:T,y:T,x≤ y,z:U ` P

E ` split M is (x≤ y:T,z:U);P

(Proc Match)
x 6∈ fn(erase(P))
E `M : (match x≤ y:T,U) E ` N : T
E,x:T,x≤ N,z:U{x←N} ` P

E `match M is (x≤ N,z:U{y←N});P

(Proc Case)
E `M : T +U E,x:T ` P E,y:U `Q

E ` caseM is inl (x:T) P is inr (y:U) Q

(Proc Clause)
E `M E ` N

E `M ≤ N

(Proc Secret Cap)
E `M : νCh {?L} T

E ` secretM amongstL

We can now state the main result of the paper, that the type system is sound with respect
to robust safety. (Proofs are in AppendixC.)

Theorem 1 (Safety).If E `P and E is generative then P is safe for conditional secrecy.

Theorem 2 (Robust Safety). If E ` P, E is generative, and È ~M : Un then P is
robustly safe for conditional secrecy despite~M.

5 An Extended Calculus with Symbolic Cryptography (Outline)

To express cryptographic protocols, we can add symbolic encryption and decryption
operations to our core calculus to obtain a form of the spi-calculus [5]. We can easily ex-
tend our type system to accommodate these operations, much as in previous work [13];
for example, encryption and decryption keys are treated analogously to the output and
input capabilities in our core calculus. Somewhat surprisingly, we can prove sound-
ness of the extended type system by a straightforward translation into the core calculus.
Keys are translated to channels, encryption keys to output channels, decryption keys to
input channels, and ciphertexts to the constant⊥. The translation is not fully abstract,
but preserves typings and reflects safety, which suffices to establish that well-typed spi-
calculus processes are robustly safe. (AppendixD has full details of the extended cal-
culus, type system, and the translation.) As an example of using the extended calculus,
consider Lowe’s variant of the Needham–Schroeder public key protocol:

12

Message 1. A→B: {|msg1(A,sA)|}kB
Message 2. B→A: {|msg2(B,sA,sB)|}kA
Message 3. A→B: {|msg3(sB)|}kB

In AppendixA.2 we show that this protocol robustly preserves conditional secrecy of
sA and sBamongst{A,B}, in the presence of compromised insiders. The proof is based
on the type for a key for use by principal p:

type NS(p) =Key(msg1(split a≤a′:Un, split sa:Secret{a,p})
|msg2(match b:Un, match sa:Secret{p,b}, split sb:Secret{p,b})
|msg3(match sb:Secret{?⊥ ,!p})).

Abadi and Blanchet [3] consider the same protocol, under similar assumptions of com-
promise, but rely on two separate typing derivations to prove the secrecy of sAand sB.

6 Related Work

Abadi [1] proposes the use of security types for establishing secrecy properties in cryp-
tographic protocols expressed in the spi-calculus [5]. Abadi takes a fixed, binary view of
security, where the world is divided into system and attacker, and a secret is something
the attacker does not have. We are the first to generalize his work to multiple security
levels and to allow the boundary between system and attacker to shift as levels are cre-
ated and compromised. Another generalization of Abadi’s work is the type system of
Bugliesi, Focardi, and Maffei [8], which checks security properties in the presence of a
fixed set of compromised hosts, but assumes this set is known during typechecking.

Abadi’s type system establishes an equationally-defined secrecy property of Abadi
and Gordon [5], that prevents some indirect flows as well as direct flows. Our ex-
pectations of conditional secrecy generalize the notion of explicit flow introduced by
Abadi [2], and since used in several papers on process calculi [6,9].

The decentralized label model (DLM) of Myers and Liskov [18] is the basis of the
Jif language in which security types track ownership and possible compromise of data.
DLM policies govern which principals can downgrade data—the system of the present
paper does not address this question. A “declassify” expression converts the level of a
whole expression, but it does not alter the security ordering. Since they convert high data
into low data, programs using declassification typically falsify noninterference proper-
ties; there have been several proposals of modified noninterference properties to handle
declassification [22].

Pottier and Simonet’s Flow Caml [23], has global, static declarations of flows, but
no local or dynamic declarations.

Two recent papers consider dynamic additions to the security ordering. Boudol and
Matos [7] introduce block-structured declarations of orderings, in which edges may
temporarily be added to the security ordering. They present a type and effect system
that establishes a form of noninterference. They do not consider dynamic creation of
security levels and they do not associate levels with code. Tse and Zdancewic [24]
consider dynamic creation and communication of principal identities, and propose a
delegation operation that allows temporary modification of the lattice of security levels.

13

We mention a couple of the many studies of security orderings within process cal-
culi. Hennessy and Riely [20] study mobile agents migrating between locations, that
may or may not be compromised. By a combination of static and dynamic checks they
prevent type violations at uncompromised sites. Hoshina, Sumii, and Yonezawa [16]
introduce a security order between protection domains in a process calculus. They use a
type system with dependent types to prevent access violations. To the best of our knowl-
edge, the present paper is the first to consider runtime compromise of security levels in
the setting of a process calculus.

Finally, many of the techniques for the Dolev-Yao model other than type systems
deal with host compromise and insider attacks; type systems such as ours do require
some human effort to construct type annotations, but given these annotations admit
automatic, efficient protocol checking.

7 Conclusion

This paper introduces a mutable security ordering into a process calculus, in order to
model a dynamically growing population of principals, some of which may become
compromised. We advocate the placement of conditional secrecy annotations in pro-
cesses to express containment of compromise; that particular messages are kept secret,
unless particular principals are compromised. We describe a type system for checking
that no opponent can interact with the system to falsify these annotations. As well as
proving a soundness theorem for the type system, we assess our proposal by exhibit-
ing a series of typed examples, showing an improvement over prior work. Our system
verifies versions of all the examples considered by Abadi and Blanchet [3] (modified to
include multiple principals, and multiple simultaneous runs of the protocols).

We end by discussing three criticisms. First, our present system tracks only secrecy
properties. We expect it is possible to combine our system with prior constructs express-
ing authentication and authorization properties [10,14]. Second, our type system allows
any process to augment any part of the security ordering. This is acceptable in short
programs modelling cryptographic protocols, but for larger programs there should be
an enforceable policy governing additions to the security ordering. Prior work on poli-
cies for declassification may be applicable. Third, our type-based verification method
requires the programmer to supply type annotations. A type inference algorithm would
lessen this burden, although the lack of principal types would make such an algorithm
non-trivial. A complementary approach may be to adapt logic programming interpre-
tations of the pi-calculus [4] to obtain a logic-based method for checking conditional
secrecy. We leave these directions for future work.

AcknowledgementsWe thank Ǵerard Boudol, Ana Matos, Andrei Sabelfeld, and Dave
Sands for sending us previews of their CSFW’05 papers [7,22]. Thanks also to Tony
Hoare and the anonymous reviewers for useful comments.

14

References

1. M. Abadi. Secrecy by typing in security protocols.J. ACM, 46(5):749–786, Sept. 1999.
2. M. Abadi. Security protocols and their properties. InFoundations of Secure Computation,

pages 39–60. IOS Press, Amsterdam, 2000.
3. M. Abadi and B. Blanchet. Secrecy types for asymmetric communication.Theoretical

Comput. Sci., 298(3):387–415, 2003.
4. M. Abadi and B. Blanchet. Analyzing Security Protocols with Secrecy Types and Logic

Programs.Journal of the ACM, 52(1):102–146, 2005.
5. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.

Information and Computation, 148:1–70, 1999.
6. B. Blanchet. From secrecy to authenticity in security protocols. In9th International Static

Analysis Symposium (SAS’02), volume 2477 ofLNCS, pages 242–259. Springer, 2002.
7. G. Boudol and A. Matos. On declassification and the non-disclosure policy. In18th IEEE

Computer Security Foundations Workshop. IEEE Computer Society Press, 2005. To appear.
8. M. Bugliesi, R. Focardi, and M. Maffei. Authenticity by tagging and typing. InFormal

Methods in Security Engineering (FMSE’04), pages 1–12, 2004.
9. L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation.Information and

Computation, 196(2):127–155, 2005.
10. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization policies. In

European Symposium on Programming (ESOP’05), LNCS, pages 141–156. Springer, 2005.
11. A. D. Gordon and A. Jeffrey. Typing one-to-one and one-to-many correspondences in secu-

rity protocols. InSoftware Security—Theories and Systems, volume 2609 ofLNCS, pages
270–282. Springer, 2002.

12. A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols.Journal of
Computer Security, 11(4):451–521, 2003.

13. A. D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic protocols.
Journal of Computer Security, 12(3/4):435–484, 2003.

14. A. D. Gordon and A. Jeffrey. Typing correspondence assertions for communication proto-
cols. Theoretical Computer Science, 300:379–409, 2003.

15. A. D. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and the
pi-calculus. Technical Report MSR–TR–2005–76, Microsoft Research, 2005.

16. D. Hoshina, E. Sumii, and A. Yonezawa. A typed process calculus for fine-grained resource
access control in distributed computation. In4th International Symposium on Theoretical
Aspects of Computer Software (TACS 2001), volume 2215 ofLNCS, pages 64–81. Springer,
2001.

17. R. Milner. Communicating and Mobile Systems: theπ-Calculus. CUP, 1999.
18. A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model.ACM

Transactions on Software Engineering and Methodology, 9(4):410–442, 2000.
19. M. Odersky. Polarized name passing. InFoundations of Software Technology and Theoretical

Computer Science, volume 1026 ofLNCS, pages 324–335. Springer, 1995.
20. J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile agents. In26th

ACM Symposium on Principles of Programming Languages, pages 93–104, 1999.
21. A. Sabelfeld and A. C. Myers. Language-based information-flow security.IEEE Journal on

Selected Areas in Communications, 21(1):5–19, 2003.
22. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In18th IEEE

Computer Security Foundations Workshop. IEEE Computer Society Press, 2005. To appear.
23. V. Simonet. The Flow Caml system: documentation and user’s manual. Technical Report

0282, INRIA, 2003.
24. S. Tse and S. Zdancewic. Run-time principals in information-flow type systems. InIEEE

Computer Society Symposium on Research in Security and Privacy, 2004.

15

Appendix

In the hope it may be of benefit to the referees, this Appendix elaborates on the main
part of the submission, with additional examples, definitions, and proofs.

A Additional Examples

A.1 Asymmetric Multiplexing Example

This example illustrates the use of sublevels to handle a dynamically growing set of
principals. It also illustrates the need forasymmetric kindsduring typechecking, that is,
kinds{?M, !N} whereM 6= N.

In this protocol, requests are sent on a single server channel, with a fresh identifier.
Responses are then returned on the client’s receiver channel, which the server looks up
in a database.

Message 1: A→B on cB (A,req,msgid)
Message 2: B→A on cBA (msgid,res)

All clients share a single channel to the server, but that the server has a dedicated chan-
nel back to each client. As a result, the server gets very weak guarantees. It knows that
the message has come from some client, not which client.

processSender(a:Un, b:Un, cb:!T1(b), cab:?T2(a,b), Client≤a, Server≤b) =
newmyid : Secret{a,b};
new req :Secret{a,b};
secretmyid amongst(a,b);
secretreqamongst(a,b);
out cb (a,req,myid)::a;
inp cab (match myid,res:Secret{a,b});
secretresamongst(a,b).

processReceiver(b:Un, cb:?T1(b), db:?DB(b), Server≤b) =
inp cb (a≤a′:Un,req:Secret{?a,a′,b},msgid:Secret{?a,a′,b},Client≤a);
secretreqamongst(Client,b);
secretmsgidamongst(Client,b);
new res :Secret{a′,b};
secretresamongst(a′,b);
inp db (match a′,ca′b:!T2(a′,b));
out ca′b (msgid,res)::b.

Alongside the honest agents, we add an exploitable agent, who will receive a message
off the network which causes them to compromise themselves and then publish their
secrets:

processExploit(c:Un, b:Un, cb:!T1(b), ccb:?T2(c,b), net:Un, Client≤c, Server≤b) =
inp net? (); c≤⊥ ; out net! (c,cb,ccb)::c.

16

The entire system consists of an honest client A, together with an exploitable client C,
and an honest server B:

Client ≤A | Server≤B | Client ≤C |
repeat outdb! (A,cAB!)::B | repeat outdb! (C,cCB!)::B|
repeatSender(A,B,cB!,cAB?)| repeatSender(C,B,cB!,cCB?)|
repeatReceiver(B,cB?,db?)| Exploit(C,B,cB!,cCB?,net)

This typechecks in the environmentE given by:

A:Un, B:Un, C:Un, Client:Un, Server:Un, net:Un,
cB : T1(B), cAB : T2(A,B), cCB : T2(C,B), db:DB(B)

where we have types:

type T1(b) =Ch(split a≤a′:Un, split req:Secret{?a,a′,b},
split msgid:Secret{?a,a′,b′}, Client≤a).

type T2(a,b) =Ch(match msgid:Secret{?Client,a,b}, split res:Secret{a,b}).
type DB(b) = Ch(match p:Un, split cpB:!T2(p,B)).

We would like to verify that this system is robustly safe for conditional secrecy despite
{A,B,C,Client,Server,net}, which follows from Theorem2.

A.2 Typing Lowe’s Variant of the Needham–Schroeder Protocol

The following example uses the encoding of cryptography into our polarized pi-calculus,
as described in AppendixD. Lowe’s form of the Needham–Schroeder protocol with se-
crecy assertions can be programmed in the spi-calculus as:

processSender(a:Un, ka:DNS(a), b:Un, kb:ENS(b), net:Un) =
newsa:Secret{a,b}; secretsaamongst(a,b);
out net{|msg1(a,sa)|}kb :: a;
inp net{|msg2(match b,match sa,sb:Secret{a,b})|}ka−1;
secretsbamongst(a,b);
out net{|msg3(sb)|}kb :: a.

processReceiver(b:Un, kb:DNS(b), db:?DB, net:Un) =
inp net{|msg1(a≤a′:Un,sa:Secret{a,b})|}kb−1;
inp db(match a′,ka′:ENS(a′));
newsb:Secret{a′,b};
secretsbamongst(a′,b);
out {|msg2(b,sa,sb)|}ka′ :: b;
inp net{|msg3(match sb)|}kb−1;
stop.

As in the previous example, we model an exploitable agent as a process:

processExploit(c:Un, kc:DNS(c), net:Un) =
inp net? (); c≤⊥ ; out net! (c,kc)::c.

17

An example system, including a compromised host Cwhose private key has been pub-
lished, and a trusted database channel dbassociating public keys to principals, is:

repeat outdb!(A, Enc kA)::A |
repeat outdb!(B, Enc kB)::B |
repeat outdb!(C,Enc kC)::C |
repeatSender(A,DeckA, B, Enc kB, net)|
repeatSender(C,DeckC, B, Enc kB, net)|
repeatReceiver(B,DeckB, db?, net)|
Exploit(C,DeckC, net)

This can be typechecked in the environmentE defined:

A:Un, B:Un, C:Un, kA:NS(A), kB:NS(B), kC:NS(C), db:DB, net:Un

using the type:

type NS(p) =Key
(msg1(split a≤a′:Un, split sa:Secret{a,p})
|msg2(match b:Un, match sa:Secret{p,b}, split sb:Secret{p,b})
|msg3(match sb:Secret{?⊥ ,!p})
).

type DB = Ch(match p:Un, split kp:ENS(p)).

We would like to verify that this system is robustly safe for conditional secrecy despite
{A,B,C,db?,net}. To do this, we verify:

E ` Public(Un) E, p : Un ` Public(ENS(p)) E ` Public(?DB)

and the result follows from Theorem2. Note that in this analysis, A knows that sA is
kept secret between A and B, but B does not: this is because we have not included nonce
types in this language. We expect that the nonce types featured in [13] could be added
with little difficulty, and that this would solve this problem.

A.3 Abbreviations Used In Examples

We shall now show that the abbreviations we used in our examples can be defined in
our type system. We made use of types for dependent tuples and tagged unions.

Syntax Sugar for Use in Types:

T,U ::= type
. . . as in Section4
(F1, . . . ,Fm,M1 ≤ N1, . . . ,Mn ≤ Nn) dependent tuple
(`1(T1) | · · · | `n(Tn)) tagged union
Ch T channel with implicit kind
νCh T read-only or write-only channel with implicit kind

F ::= field
πx≤ y:T explicit lower bound
πy≤ T implicit lower bound

18

We allowed the construction of messages of tuple or tagged union type:

Syntax Sugar for Use in Messages:

L,M,N ::= message
... as in Section2
(M1, . . . ,Mn) tuple
`i(M) tagged union

In processes, we can make use of pattern-matching:

Syntax Sugar for Use in Processes:

O,P,Q,R ::= process
... as in Section2
out M N :: L;P output with residual
M ≤ N;P statement with residual
secretM amongstN;P expectation with residual
bind M is X;P pattern match
inp M(X);P pattern matching input
let x:T = M;P let binding
newx:νCh {M} T;P name generation of read-only or write-only channels

whereX ranges over a grammar of patterns:

Patterns:

X,Y,Z ::= patterns
x:T,X variable with implicit lower bound
x≤ y:T,X variable with explicit lower bound
match M:T,X match with implicit lower bound
match x≤M:T,X match with explicit lower bound
M1 ≤ N1, . . . ,Mn ≤ Nn set of clauses
`i(X) tagged union
{X}M symmetric ciphertext
{|X|}M−1 asymmetric ciphertext

We will now give definitions for each of these extensions, beginning with types.

Abbreviations for Types:

(π1x1 ≤ y1:T1,π2x2 ≤ y2:T2, ...,πmxm≤ ym:Tm,M1 ≤ N1, . . . ,Mn ≤ Nn)
4=

(π1x1 ≤ y1:T1,(π2x2 ≤ y2:T2, . . . ,(πmxm≤ ym:Tm,Ok{M1 ≤ N1, . . . ,Mn ≤ Nn}) . . .))
(`1(T1) | · · · | `n(Tn))

4= (T1 +(T2 +(· · ·(Tn−1 +Tn) . . .)))
Ch T

4= Ch {⊥} T

νCh T
4= νCh {⊥} T

When a lower bound is left implicit, we just bind it to a fresh variable.

Abbreviations for Fields:

πy:T
4= πx≤ y:T for freshx

19

The translations of messages are straightforward.

Abbreviations for Messages:

(M1, . . . ,Mn)
4= (M1,(. . .(Mn,>) . . .))

`i(M) 4= in i,n (M)
in1,1 (M) 4= M

in1,n+1 (M) 4= inl M

in i+1,n+1 (M) 4= inr in i,n (M)

We write out x (M);P as a simple shorthand forout x M | P, and similarly for the
other operators with residuals. Pattern-matching expands out to the primitive process
destructors:

Abbreviations for Processes::

out M N :: L;P
4= (out M N :: L) | P

M ≤ N;P
4= (M ≤ N) | P

secretM amongstN;P
4= (secretM amongstN) | P

bind M is (y:T,X);P 4= split M is (x≤ y:T,z);bind z is X;P for freshx andz

bind M is (x≤ y:T,X);P 4= split M is (x≤ y:T,z);bind z is X;P for freshz

bind M is (match N:T,X);P 4= match M is (x≤ N:T,z);bind z is X;P for freshx andz

bind M is (match x≤ N:T,X);P 4= match M is (x≤ N:T,z);bind z is X;P for freshz

bind M is (~M ≤ ~N);P 4= let x:Ok{~M ≤ ~N}= M;P for freshx

bind M is (`i(X));P 4= bind M is (in i,n (X));P
bind M is (in1,1 (X));P 4= bind M is X;P

bind M is (in1,n+1 (X));P 4= caseM is inl (x) bind x is X;P is inr (x) stop for freshx

bind M is (in i+1,n+1 (X));P 4= caseM is inl (x) stop is inr (x) bind x is (in i,n (X));P for freshx

bind M is {X}N;P
4= decrypt M is {x}N;bind x is X;P for freshx

bind M is {|X|}N−1;P
4= decrypt M is {|x|}N−1;bind x is X;P for freshx

inp M(X);P 4= inp M(x);bind x is X;P for freshx

let y:T = M;P
4= match (M,M) is (M,x≤ y:T);P for freshx

newy:νCh {M} T;P
4= newx:Ch {M} T; let y = νx;P for freshx

Thus we have demonstrated that our core language is powerful enough to describe the
examples in this paper.

B Operational Semantics

Structural Equivalence of Processes:P≡Q

P≡ P (Struct Refl)
Q≡ P⇒ P≡Q (Struct Symm)
P≡Q,Q≡ R⇒ P≡ R (Struct Trans)

P≡ P′⇒ newx:T;P≡ newx:T;P′ (Struct Res)
P≡ P′⇒ P | R≡ P′ | R (Struct Par)

20

P≡ P′⇒ repeatP≡ repeatP′ (Struct Repl)

P | stop≡ P (Struct Par Zero)
P |Q≡Q | P (Struct Par Comm)
(P |Q) | R≡ P | (Q | R) (Struct Par Assoc)

repeatP≡ P | repeatP (Struct Repl Unfold)
repeat repeatP≡ repeatP (Struct Repl Repl)
repeat (P |Q)≡ repeatP | repeatQ (Struct Repl Par)
repeatstop≡ stop (Struct Repl Zero)

newx:T;(P |Q)≡ P | newx:T;Q (Struct Res Par) (forx /∈ fn(P))
newx1:T1;newx2:T2;P≡ (Struct Res Res)

newx2:T2;newx1:T1;P (for x1 6= x2,x1 /∈ fn(T2),x2 /∈ fn(T1))

Reduction: P→ P′

P→ P′⇒ P |Q→ P′ |Q (Red Par)
P→ P′⇒ newx:T;P→ newx:T;P′ (Red Res)
P≡Q,Q→Q′,Q′ ≡ P′⇒ P→ P′ (Red Struct)

out !x M :: L | inp ?x(y:T);P→ P{y←M} (Red Comm)
split (M,N) is (x≤ y:T,z:U);P→ P{x←M}{y←M}{z←N} (Red Split)
match (M,N) is (x≤M,z:U);P→ P{x←M}{z←N} (Red Match)
caseinl M is inl (x:T) P is inr (y:U) Q→ P{x←M} (Red Inl)
caseinr N is inl (x:T) P is inr (y:U) Q→Q{y←N} (Red Inr)

C Properties of the Type System

Canonical types:

Let T becanonicalif and only if it is generative or of the formOkS.
Let E becanonicalif and only if E(x) is canonical for eachx∈ dom(E).

Lemma 1 (Order Weakening). If S`M ≤ N then S∪S′ `M ≤ N.

Proof An induction on the proof ofS`M ≤ N. 2

Lemma 2 (Order Cut). If S` S′ and S,S′ ` S′′ then S̀ S′′.

Proof An induction on the proof ofS,S′ ` S′′, making use of1. 2

Lemma 3 (Order Substitutivity). If S`M≤N then S{L←x} `M{L←x}≤N{L←x}.

Proof An induction on the proof ofS`M ≤ N. 2

Lemma 4 (Order Elimination). If S∪{N≤⊥} `M ≤⊥ then S̀ M ≤ N.

21

Proof Show that:

if S∪{N≤⊥} `M ≤ L andS` (L,L′)≤ N thenS` (M,L′)≤ N

by induction on the proof ofS∪{N≤⊥} `M ≤ L. The result follows by takingL =⊥
andL′ =>. 2

Lemma 5 (Weakening).If E,F ` J and E,x:T,F ` � then E,x:T,F ` J .

Proof An induction on the proof ofE,F ` J . 2

Lemma 6 (Bound Weakening).If E,x:T ′,F ` J and E` T <: T ′ then E,x:T,F ` J .

Proof An induction on the proof ofE,x:T ′,F ` J , making use of2. 2

Lemma 7 (Taint Cut). If E ` Tainted(T) and E, taint(T) ` J then E` J .

Proof A case analysis onT. 2

Lemma 8 (Ignore Tainted). If E ` Tainted(T) and E` Tainted(T ′) then:

(1) E,x:T,F ` � implies E,x:T ′,F ` �.
(2) E,x:T,F `M ≤ N implies E,x:T ′,F `M ≤ N.
(3) E,x:T,F ` Public(U) implies E,x:T ′,F ` Public(U).
(4) E,x:T,F ` Tainted(U) implies E,x:T ′,F ` Tainted(U).
(5) E,x:T,F `U <: U ′ implies E,x:T ′,F `U <: U ′.

Proof We prove the statements by simultaneous induction on the proof of the left
hand judgement. The most interesting case is whenT = Ok{Mi ≤ Ni | i ∈ 1..n} and
we are trying to showE,x:T,F `M ≤ N impliesE,x:T ′,F `M ≤ N. By definition of
E `M ≤ N, we haveclauses(E,x:T,F) `M ≤ N, so by definition ofclauses(x:T) we
haveclauses(E)∪{Mi ≤ Ni | i ∈ 1..n}∪ clauses(F) `M ≤ N. By (Tainted Order), we
have thatclauses(E) `Mi ≤ ⊥ for everyi ∈ 1..n, and we proceed by induction on the
proof of clauses(E)∪{Mi ≤ Ni | i ∈ 1..n}∪ clauses(F) `M ≤ N. The only interesting
case is(Order Id), where(M ≤ N) ∈ clauses(E)∪{Mi ≤ Ni | i ∈ 1..n}∪ clauses(F) `
M ≤ N, so either(M ≤ N) ∈ clauses(E)∪ clauses(F), and so by(Order Id)we have
clauses(E)∪ clauses(F) ` M ≤ N, or (M ≤ N) ∈ {Mi ≤ Ni | i ∈ 1..n}, in which case
clauses(E) `M ≤⊥ and hence by Lemma1 and transitivity,clauses(E)∪clauses(F) `
M ≤ N. In either case, we haveclauses(E)∪ clauses(F) `M ≤ N and so by Lemma5,
E,x:T ′,F `M ≤ N. 2

Lemma 9 (Public-Down, Tainted-Up).

(1) If E ` T ′ <: T and E` Public(T) then E` Public(T ′).
(2) If E ` T <: T ′ and E` Tainted(T) then E` Public(T ′).

Proof We show both part simultaneously by induction onT.

(1) If E ` T ′ <: T was proved using(Sub Public/Tainted), then the result is immediate.
Otherwise, we proceed by case analysis onT:

22

– If T = Ch{?M, !N} U , then sinceE ` Public(T), we must have used the rule
(Public I/O), in which caseE ` M ≤ ⊥, E ` N ≤ ⊥, E ` Public(U) andE `
Tainted(U). Since we have already covered the case whereE ` T ′ <: T was
proved using(Sub Public/Tainted), the only remaining possibility is that the
rule(Sub I/O)was used, in which caseT ′ = Ch{?M′, !N′}U ′, and we haveE `
M↔M′, E `N↔N′ andE `U <:> U ′. By transitivity, we haveE `M′ ≤⊥
andE `N′≤⊥, and by induction we haveE `Public(U ′) andE `Tainted(U ′).
Hence, by(Public I/O), we haveE ` Public(T ′) as required.

– The other cases are all very similar, except for the case whenT = (πx≤ y:U,V)
in which case we must have used(Public Split)or (Public Match), and soE `
Public(U) andE,x:U,y:U,x≤ y ` Public(V). Since we have already covered
the case whereE ` T ′ <: T was proved using(Sub Public/Tainted), the only
remaining possibility is that(Sub Match)or (Sub Split)was used, in which
caseT ′ = (πx≤ y:U ′,V ′), E ` U ′ <: U andE ` V ′ <: V. By Lemma6, we
haveE,x:U ′,y:U ′,x≤ y`Public(V), and so we can proceed by induction to get
E ` Public(U ′) andE,x:U ′,y:U ′,x≤ y ` Public(V ′), and so by(Public Split)
or (Public Match), we haveE ` Public(T ′) as required.

(2) Almost all the cases are symmetric, except whenT = (πx≤ y:U,V) because we
cannot use Lemma6 at a crucial point. Fortunately, we can use Lemma8 instead,
and so the proof goes through. 2

Lemma 10 (Subtyping Reflexivity). If E ` � andfn(T)⊆ dom(E) then E` T <: T.

Proof First note that iffn(M)⊆ dom(E) thenE `M ≤M, and soE `M↔M. Also
note that iffn(S)⊆ dom(E) thenE,S` S. The result then follows by induction onT. 2

Lemma 11 (Subtyping Transitivity). If E ` T <: T ′ and E` T ′ <: T ′′ then E` T <:
T ′′.

Proof We show by induction onT that if E ` T <: T ′ <: T ′′ thenE ` T <: T ′′ and
that ifE `T ′′<: T ′<: T thenE `T ′′<: T: we shall show the former case, as the latter is
symmetric. If eitherE `T <: T ′ orE `T ′<: T ′′ was proved using(Sub Public/Tainted),
then we use Lemma9. Otherwise, we proceed by case analysis onT, we shall show the
case whenT = Ch{?M, !N}U : the others are similar. Since we have already covered the
case whereE ` T <: T ′ andE ` T ′ <: T ′′ were proved using(Sub Public/Tainted), the
only remaining possibility is that(Sub I/O)was used for both judgements, in which case
T ′ = Ch{?M′, !N′} U ′ andT ′ = Ch{?M′′, !N′′} U ′, and we haveE `M↔M′↔M′′,
E ` N↔ N′↔ N′′ andE `U <:> U ′ <:> U ′′. By transitivity, we haveE `M↔M′′

andE ` N↔ N′′, and by induction we haveE `U <:> U ′′, so we use(Sub I/O)to get
E ` T <: T ′′ as required. 2

Lemma 12 (Substitutivity). If E,x:T,F ` J and E`M : T then E,F{M←x} ` J {M←x}.

Proof An induction on the proof ofE,x:T,F ` J . 2

Proposition 1 (Inversion).

(1) If E ` L : νCh {?M′, !N′} T then either:

23

(a) L is of the formνM, where E`M : Ch{νL′, . . .} T ′ and E` νCh {L′} T ′ <:
νCh {?M′, !N′} T, or

(b) L is not of the formνM, and E` Tainted(νCh {?M′, !N′} T).
(2) If E ` L : Ch{?M′, !N′} T then either:

(a) L is of the form x, where x: U ∈ E and E`U <: Ch{?M′, !N′} T, or
(b) L is not of the form x, and È Tainted(Ch{?M′, !N′} T).

(3) If E ` L : (πx≤ y:T,U) then either:
(a) L is of the form(M′,N), where E`M : T and E`M′ : T and and È M ≤M′

and E` N : U{x←M}{y←M′}, or
(b) L is not of the form(M,N), and E` Tainted((πx≤ y:T,U)).

(4) If E ` L : T +U then either:
(a) L is of the forminl M, where E`M : T, or
(b) L is of the forminr N, where È N : U, or
(c) L is not of the forminl M or inr N, and E` Tainted(T +U).

(5) If E ` L : Ok S then either:
(a) L is of the form>, where E` S, or
(b) L is not of the form>, and E` Tainted(Ok S).

Proof A case analysis on the typing ofL. For example, ifE ` L : (πx≤ y:T,U) then
we have thatE ` L : V (without using(Msg Subsum)) andE `V <: (πx≤ y:T,U). We
then have a case analysis on the proof ofE `V <: (πx≤ y:T,U):

– If E `V <: (πx≤ y:T,U) used(Sub Split)or (Sub Match), thenV = (πx≤ y:T ′,U ′)
whereE ` T ′ <: T andE,x:T ′,y:T ′,x≤ y`U ′ <: U . SinceE ` L : (πx≤ y:T ′,U ′)
without the use of subtyping, we have thatL must be of the form(M,N) where
E ` M : T ′ and E ` N : U ′{x←M}{y←M}. By Lemma12, E ` U ′{x←M} <:
U{x←M}, and so by(Msg Subsum)E ` M : T and E ` N : U{x←M}{y←M},
as required.

– If L is of the form(M,N) andE `V <: (split x≤ y:T,U) used(Sub Public/Tainted),
thenE ` Public(V) andE ` Tainted((split x≤ y:T,U)). SinceE ` L : V without
using (Msg Subsum), we must haveV = (πx≤ y : :T ′,U ′) with E ` M : T ′ and
E `N : U ′{x←M}{y←M}. By (Public Split)or (Public Match), we must haveE `
Public(T ′) and E,x:T ′,y:T ′,x ≤ y ` Public(U ′), and hence by Lemmas12 E `
Public(U ′{x←⊥}{y←M}). By (Tainted Split), we must haveE ` Tainted(T) and
E,y:T ` Tainted(U{x←⊥}), and hence by Lemma12, it must be the case thatE `
Tainted(U{x←⊥}{y←M}). Thus, by(Sub Public/Tainted)and(Msg Subsum), we
haveE `M : T andE ` N : U{x←⊥}{y←M} with E ` ⊥ ≤M as required.

– If L is of the form(M,N) andE `V <: (matchx≤ y:T,U) used(Sub Public/Tainted),
then the proof is similar to the previous case, but with a use of Lemma7.

– If L is not of the form(M,N) andE `V <: (πx≤ y:T,U) used(Sub Public/Tainted),
thenE ` Tainted((x:T,U)), as required.

The other cases are similar. 2

Proposition 2 (Subject Congruence).If E ` P and P≡ P′ then E` P′.

Proof An induction on the proof ofP≡ P′. 2

24

Proposition 3 (Subject Reduction).If E ` P anderase(P) = Q and Q→Q′ then E`
P′ anderase(P′) = Q′ for some P′.

Proof An induction on the proof ofP→ P′, making use of Lemma12 and Proposi-
tions1 and2.

2

Proposition 4 (Erasure respects reduction).If P→ P′ thenerase(P)→ erase(P′).

Proof First show that erasure respects subject congruence, by induction on the deriva-
tion. The result then follows by induction on the derivation ofP→ P′.

2

Lemma 13 (Env is canonical).For all P, env(P) is canonical.

Proof A direct induction onP. 2

Proof of Theorem 1 If E ` P and E is generative then P is safe for conditional
secrecy.

Proof Suppose thatP→∗ new~n:~U ;(secretM amongstN | out !x M :: L | P′). By
Propositions4, 2 and3, we getE ` new~n:~T;(secretM amongstN | out !x M :: L | P′).
The derivation of the latter must involve the following judgments:

– E,~n:~T ` secretM amongstN | out !x M :: L | P′
by (Proc Res), with ~T generative;

– E,~n:~T,env(P′) ` secretM amongstN andE,~n:~T ` out !x M :: L | P′
by (Proc Par Mutual), sinceenv(out !x M :: L) = env(secretM amongstN) = ∅;

– E,~n:~T,env(P′) ` out !x M :: L andE,~n:~T ` P′

by (Proc Par Mutual), sinceenv(out !x M :: L) = ∅;
– E,~n:~T,env(P′) `M : νCh {?N} T by (Proc Secret Cap);
– E,~n:~T,env(P′) `M : U , E,~n:~T,env(P′),L≤⊥ ` Public(U) by (Proc Output);

Let E′ = E,~n:~T,env(P′). SinceE and~T are generative, Lemma13gives us thatE′ is
canonical. SinceE′ `M : νCh {?N} T, by Proposition1 we have two cases:

(1) If M = νM′ whereE′ `M′ : Ch{νN′, . . .} T ′ and
E′ ` νCh {N′} T ′ <: νCh {?N} T, then we have two sub-cases:
(a) If E′ ` νCh{N′} T ′ <: νCh {?N} T used(Sub Public/Tainted), then

E′ ` Tainted(νCh {?N} T), and so from(Tainted I)or (Tainted O)we have
E′ ` N≤⊥ and henceE′ ` N≤ N′.

(b) If E′ ` νCh {N′} T ′ <: νCh {?N} T used(Sub I)or (Sub O)then we have
E′ ` N≤ N′.

In either subcase, we have thatE′ ` N≤ N′. By Proposition1 we have two further
sub-cases:
(a) If M′ = y where(y:U ′) ∈ E′ andE′ `U ′ <: Ch{νN′, . . .} T ′ then we have two

sub-sub-cases:

25

i. If E′ `U ′ <: Ch{νN′, . . .} T ′ used(Sub Public/Tainted), then
E′ ` Tainted(νCh {?N′} T ′), and so from(Tainted I)or (Tainted O)we
haveE′ ` N′ ≤⊥ and henceE′ ` N′ ≤ L.

ii. If E′ `U ′ <: Ch{νN′, . . .} T ′ used(Sub I)or (Sub O)then we have
U ′ = Ch{νN′′, . . .} T ′′, and soE′ ` N′ ≤ N′′.
Now, sinceE′ ` νy : U , we have thatE′ ` νCh {N′′} T ′′ <: U , which
gives us to sub-sub-sub-cases:
A. If E′ ` νCh {N′′} T ′′ <: U used(Sub Public/Tainted)then we have

E′ ` Public(νCh {N′′} T ′′), and so from(Public I) or (Public O)we
haveE′ ` N′′ ≤⊥ and soE′ ` N′′ ≤ L.

B. If E′ ` νCh {N′′} T ′′ <: U used(Sub I)or (Sub O)then we have
U = νCh {?M′′′, !N′′′} T ′′′ whereE′ ` N′′ ≤ N′′′. Since
E′,L≤⊥ ` Public(U), (Public I) or (Public O)gives us that
E′,L≤⊥ ` N′′′ ≤⊥ so by Lemma4 E′ ` N′′′ ≤ L, and hence by
transitivityE′ ` N′′ ≤ L.

In either sub-sub-sub-case, we haveE′ ` N′′ ≤ L, so by transitivity,
E′ ` N′ ≤ L.

In either sub-sub-case, we haveE′ ` N′ ≤ L.
(b) If E′ ` Tainted(Ch{νN′, . . .} T ′), then from(Tainted I)or (Tainted O)we

haveE′ ` N′ ≤⊥ and henceE′ ` N′ ≤ L.

In either sub-case, we haveE′ ` N′ ≤ L, so by transitivity,E′ ` N≤ L.
(2) If E′ ` Tainted(νCh {?N} T), then from(Tainted I)or (Tainted O)we have

E′ ` N≤⊥ and henceE′ ` N≤ L.

In either case, we haveE′ ` N≤ L, soclauses(E′) ` N≤ L, and soclauses(env(P′)) `
N≤ L, and soP′ ` N≤ L as required. 2

Proposition 5 (Opponent Typability).

(1) If E `~L : Un and M{~x} is a message withfn(M{~x}) = {~x} then E`M{~L} : Un.
(2) If E `~L : Un and O{~x} is an opponent then È O{~L}.

Proof

(1) An induction onM.
(2) An induction onO, making use of the previous case. 2

Proof of Theorem2 If E `P, E is generative, and and È~M : Un then P is robustly
safe for conditional secrecy despite~M.

Proof Consider any opponentO{~x}. By Proposition5, E ` ~M : Un implies E `
O{~M}. By (Proc Par Mutual)and Lemma5, E ` P | O{~M}. By Theorem1 and our
assumption thatE is generative, this impliesP | O{~M} is safe for secrecy. Hence,P is
robustly safe for secrecy despite knowledge of~M. 2

26

D The Calculus Extended with Symbolic Cryptography

D.1 Syntax

We extend the polarized pi calculus to the spi calculus by adding primitives for asym-
metric and symmetric encryption and decryption:

Names, Messages, Processes in spi:

L,M,N ::= spi message
· · · as in Section2
Enc (M) encryption capability
Dec (M) decryption capability
{|M|}N asymmetric encryption ofM with keyN
{M}N symmetric encryption ofM with keyN

P,Q,R ::= spi process
· · · as in Section2
decrypt M is {|x:T|}N−1;P asymmetric decryption ofM with keyN (scope ofx is P)
decrypt M is {x:T}N;P symmetric decryption ofM with keyN (scope ofx is P)

The operational semantics of polarized pi is extended to include appropriate reductions
for the cryptographic primitives:

Additional reduction rules for spi: P→ P′

decrypt {|M|}Enc k is {|x:T|}Dec k−1;P→ P{x←M} (Red Asymm)
decrypt {M}k is {x:T}k;P→ P{x←M} (Red Symm)

Ciphertexts are not intended to be used as levels, so we consider them to be least ele-
ments in the security ordering:

Additional preorder rules for spi: S`M ≤ N

S` {|M|}N ≤ L (Order Asymm)
S` {M}N ≤ L (Order Symm)

D.2 Types

The additional types required to verify cryptographic protocols are taken from [13]:
note that in this paper we are only considering secrecy rather than authenticity, so we
do not include nonce types.

Types:

T,U ::= spi type
· · · as in Section4
AKey K T asymmetric key pair forT messages
DKey K T asymmetric decryption key forT messages
EKey K T asymmetric encryption key forT messages
SKeyK T symmetric key forT messages

27

A spi type isgenerativeif and only if it is a channel typeChK T, an asymmetric key
pair typeAKey K T or a symmetric key typeSKeyK T.

We extend the typing judgements from polarized pi to spi as follows:

Public and Tainted Spi Types:

(Public Asymm)
E `M↔⊥ E ` N↔⊥ E ` Public(T) E ` Tainted(T)

E ` Public(AKey {?M, !N} T)

(Tainted Asymm)
E `M↔⊥ E ` N↔⊥ E ` Public(T) E ` Tainted(T)

E ` Tainted(AKey {?M, !N} T)

(Public Dec)
E `M E ` N↔⊥ E ` Public(T)

E ` Public(DKey {?M, !N} T)

(Tainted Dec)
E `M↔⊥ E ` N E ` Tainted(T)

E ` Tainted(DKey {?M, !N} T)

(Public Enc)
E `M E ` N↔⊥ E ` Tainted(T)

E ` Public(EKey {?M, !N} T)

(Tainted Enc)
E `M↔⊥ E ` N E ` Public(T)

E ` Tainted(EKey {?M, !N} T)

(Public Symm)
E `M↔⊥ E ` N↔⊥ E ` Public(T) E ` Tainted(T)

E ` Public(SKey{?M, !N} T)

(Tainted Symm)
E `M↔⊥ E ` N↔⊥ E ` Public(T) E ` Tainted(T)

E ` Tainted(SKey{?M, !N} T)

Subtyping for Spi Types:

(Sub Asymm)
E `M↔M′ E ` N↔ N′ E ` T <:> T ′

E ` AKey {?M, !N} T <: AKey {?M′, !N′} T ′

(Sub Symm)
E `M↔M′ E ` N↔ N′ E ` T <:> T ′

E ` SKey{?M, !N} T <: SKey{?M′, !N′} T ′

(Sub Dec)
E `M′ ≤M E ` N≤ N′ E ` T <: T ′

E ` DKey {?M, !N} T <: DKey {?M′, !N′} T ′

(Sub Enc)
E `M′ ≤M E ` N≤ N′ E ` T ′ <: T

E ` EKey {?M, !N} T <: EKey {?M′, !N′} T ′

Good Spi Message:

(Msg Dec)
E ` L : AKey {?M, !N} T

E `Dec L : DKey {M} T

(Msg Enc)
E ` L : AKey {?M, !N} T

E ` Enc L : EKey {N} T

(Msg Asymm)
E `M : T E ` N : EKey K T

E ` {|M|}N : Un

(Msg Symm)
E `M : T E ` N : SKeyK T

E ` {M}N : Un

28

Good Spi Process:

(Proc Asymm)
E `M : Un E ` N : DKey K T E,x:T ` P

E ` decrypt M is {|x:T|}N−1;P

(Proc Symm)
E `M : Un E ` N : SKeyK T E,x:T ` P

E ` decrypt M is {x:T}N;P

D.3 Encoding of the Extended Calculus

We will now demonstrate that the cryptographic features of the spi-calculus can be
encoded into the polarized pi-calculus. We will show the following properties of the
translation:

– Operational soundness: If P→ P′ in spi, thenP JPK→∗ P JP′K | P′′ in polarized pi.
– Type soundness: If E ` P in spi, thenEJEK ` P JPK in polarized pi.

¿From operational soundness it is routine to establish the following additional property:

– Reflection of safety: If P JPK is safe for secrecy in polarized pi, thenP is safe for
secrecy in spi.

and it is also routine to establish:

– Preservation of generativity: If E is a generative environment in spi, thenEJEK is
a generative environment in polarized pi.

Hence we can lift our type safety results from polarized pi to spi as follows:

(1) If E ` P andE is generative in polarized pi, then
(2) type soundness gives us thatEJEK ` P JPK in polarized pi, and
(3) preservation of generativity gives us thatEJEK is generative, so
(4) Theorem1 gives us thatP JPK is safe for secrecy in polarized pi, and so
(5) reflection of safety gives us thatP is safe for secrecy in spi.

Similar reasoning applies to robust safety. We will make these statements precise in
SectionD.5.

Note that we donot claim operational full abstraction for this translation, since
translated processes have many more reductions than the spi originals. For example,
all ciphertexts are mapped to the constant⊥, so any protocol which depends for cor-
rectness on comparing ciphertexts for equivalence will be considered unsound by this
translation.

D.4 Encoding spi into polarized pi

Translation of spi messages to polarized pi messagesM JMK:

M JxK 4= x

M J>K 4=>
M J(M,N)K 4= (M JMK,M JNK)
M JDec MK 4= M J?MK 4=?M JMK
M JEnc MK 4= M J!MK 4=!M JMK

29

Translation of spi messages to polarized pi processesP JMK:

P JxK 4= P J>K 4= P JDec MK 4= P J?MK 4= P JEnc MK 4= P J!MK 4= stop
P J(M,N)K 4= P JMK | P JNK
P J{|M|}NK 4= repeatout N M

P J{M}NK 4= repeatout !N M

Translation of spi processes to polarized pi processesP JPK:

P Jout M N :: LK 4= P JNK | out M JMK M JNK :: M JLK
P Jinp M(x : T);PK 4= inp M JMK(x : T JTK);P JPK
P Jnewx : T;PK 4= newx : T JTK;P JPK
P JrepeatPK 4= repeat P JPK
P JP |QK 4= P JPK | P JQK
P JstopK 4= stop
P Jsplit M is (x : T,y : U);PK 4= P JMK | split M JMK is (x : T JTK,y : T JUK);P JPK
P Jmatch M is (N,y : U);PK 4= P JMK |match M JMK is (M JNK,y : T JUK);P JPK
P JM ≤ NK 4= M JMK≤M JNK
P JsecretM amongstNK 4= secretM JMK amongstM JNK
P Jdecrypt M is {|x : T|}N−1;PK 4= P JMK | inp M JNK(x : T JTK);P JPK
P Jdecrypt M is {x : T}N;PK 4= P JMK | inp M JNK?(x : T JTK);P JPK

Translation of spi types to polarized pi typesT JTK:

T JChK TK 4= T JAKey K TK 4= T JSKeyK TK 4= ChK JKK T JTK
T J?Ch K TK 4= T JDKey K TK 4=?Ch K JKK T JTK
T J!Ch K TK 4= T JEKey K TK 4=!Ch K JKK T JTK
T J(x : T,U)K 4= (x : T JTK,T JUK)
T JOk{M1 ≤ N1, . . . ,Mn ≤ Nn}K

4= Ok{M JM1K≤M JN1K, . . . ,M JMnK≤M JNnK}

Translation of spi kinds to polarized pi kinds K JKK:

K J{!M,?N}K 4= {!M JMK,?M JNK}

Translation of spi environments to polarized pi environmentsEJEK:

EJ~x:~TK 4=~x:T J~TK

D.5 Correctness of the Encoding

Lemma 14 (Replication). P JNK≡ repeat P JNK

Lemma 15 (Respecting Substitution).

(1) M JMK{x←M JNK} ≡M JM{x←N}K.

30

(2) P JMK{x←M JNK} | P JNK≡ P JM{x←N}K | P JNK.
(3) P JPK{x←M JNK} | P JNK≡ P JP{x←N}K | P JNK.
(4) T JTK{x←M JNK} ≡ T JT{x←N}K.
(5) K JKK{x←M JNK} ≡K JK{x←N}K.

Proposition 6 (Operational Soundness).If P→P′ thenP JPK→∗ P JP′K |P′′ for some
compromise-free P′′.

Proposition 7 (Type Safety).

(1) If E ` � thenEJEK ` �.
(2) If E `M ≤ N thenEJEK `M JMK≤M JNK.
(3) If E ` Public(T) thenEJEK ` Public(T JTK).
(4) If E ` Tainted(T) thenEJEK ` Tainted(T JTK).
(5) If E ` T <: T ′ thenEJEK ` T JTK <: T JT ′K.
(6) If E `M : T thenEJEK `M JMK : T JTK andEJEK ` P JMK.
(7) If E ` P thenEJEK ` P JPK.

Proposition 8 (Reflection of Safety).If P JPK is safe for secrecy, then P is safe for
secrecy.

Lemma 16 (Preservation of Generativity). If E is generative, thenEJEK is genera-
tive.

Theorem 3 (Safety for Spi). If E ` P and E generative then P is safe for secrecy.

Theorem 4 (Robust Safety for Spi).If E ` P, E generative, and and È ~M : Un then
P is robustly safe for secrecy despite knowledge of~M.

31

	Secrecy Despite Compromise:Types, Cryptography, and the Pi-Calculus
	Introduction
	A Pi Calculus with Expectations of Conditional Secrecy
	Examples of Secrecy Despite Compromise
	A Type System for Checking Conditional Secrecy
	An Extended Calculus with Symbolic Cryptography (Outline)
	Related Work
	Conclusion
	Additional Examples
	Asymmetric Multiplexing Example
	Typing Lowe's Variant of the Needham--Schroeder Protocol
	Abbreviations Used In Examples

	Operational Semantics
	Properties of the Type System
	The Calculus Extended with Symbolic Cryptography
	Syntax
	Types
	Encoding of the Extended Calculus
	Encoding spi into polarized pi
	Correctness of the Encoding

