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Abstract. A realistic threat model for cryptographic protocols or for language-
based security should include a dynamically growing population of principals (or
security levels), some of which may be compromised, that is, come under the con-
trol of the adversary. We explore such a threat model within a pi-calculus. A new
process construct records the ordering between security levels, including the pos-
sibility of compromise. Another expresses the expectation of conditional secrecy
of a message—that a particular message is unknown to the adversary unless par-
ticular levels are compromised. Our main technical contribution is the first system
of secrecy types for a process calculus to support multiple, dynamically-generated
security levels, together with the controlled compromise or downgrading of se-
curity levels. A series of examples illustrates the effectiveness of the type system
in proving secrecy of messages, including dynamically-generated messages. It
also demonstrates the improvement over prior work obtained by including a se-
curity ordering in the type system. Perhaps surprisingly, the soundness proof for
our type system for symbolic cryptography is via a simple translation into a core
typed pi-calculus, with no need to take symbolic cryptography as primitive.

1 Introduction

Ever since the Internet entered popular culture it has had associations of insecurity.
The Morris worm of 1989 broke the news by attacking vulnerable computers on the
network and exploiting them to attack others. At least since then, compromised hosts
and untrustworthy users have been a perpetual presence on the Internet, and, perhaps
worse, inside many institutional intranets. Hence, like all effective risk management,
good computer security does not focus simply on prevention, but also on management
and containment.

There is by now a substantial literature on language-based techniques to prevent dis-
closure of secret2fl]. This paper contributes new language constructs to help manage
and contain the impact of partial compromise on a system: we generalize the attacker
model from a completely untrusted outsider to include attacks mounted by compro-
mised insiders. We use the pi-calculds]| a theory of concurrency that already sup-
ports reasoning about multiple, dynamically generated identities, and security based on
abstract channels or symbolic cryptograptiyl]. We formalize the new idea afon-
ditional secrecythat a message is secret unless particular principals are compromised.

* This material is based upon work supported by the National Science Foundation under Grant
No. 0208549.



We describe a type system that checks conditional secrecy, and hence may help assess
the containment of compromise within a system.

Specifying Compromise and Conditional Secrétfg model systems as collections of
processes, that interact by exchanging messages on named channels. Most of the exam-
ples in the paper rely on channel abstractions for security, but our methods also handle
protocols that rely on cryptography. The opponent is an implicit process that runs along-
side the processes making up the system under attack, and may interact with it using
channels (or keys) in its possession. We say a messagélis if it may come into the
possession of the opponent (possibly after a series of interactions).

We base our model of partially compromised systems seaurity orderingbe-
tween abstracsecurity levelsSecrecy levels model individual (or groups of) princi-
pals, hosts, sessions, and other identifiers. For instance, the level of the opponent is the
distinguished lowest security level.

The process construc < Ly, called astatementdeclares that levél; is less than
levelL,. Hence, any process defines a security ordering between levels; it is given by the
set of active statements occurring in the process, closed under a set of inference rules in-
cluding reflexivity and transitivity. (Statements are akin to the use of process constructs
to describe the occurrence of everid ] or to populate a database of faci€].) We
say alevel is compromiseavhenL < L. Compromise may arise indirectly:lif <L,
and subsequentlly, is compromised, then so toolig, by transitivity. SoL; < L, can
be read L, is at risk fromL,” as well as ‘L1 is less secure thdm.”

Compromise may be contained or non-catastrophic in the sense that despite the
compromise of one part of a system, another part may reliably keep messages secret.
For example, key establishment protocols often have the property dad Bcan keep
their session key secret even though a session key established betamea Bompro-
mised partyC has become public. However, as soon as either B is compromised,
their session key may become public.

The process construsecretM amongstL, called anexpectation of conditional
secrecydeclares the invarianM is secret unlesk is compromised”. For example, the
processsecretS amongst(A, B) asserts that & secret unless the composite security
level (A,B) has been compromised, which occurs if eitheoiAB has been compro-
mised. This definition of conditional secrecy via a syntactic process construct is new
and may be of interest independently of our type system. By embedding falsifiable ex-
pectations within processes, we can express the conditional secrecy of freshly generated
messages, unlike previous definitiord3. [Our trace-based notion of secrecy concerns
direct flows to an active attacker; we do not address indirect flows or noninterference.

Checking Conditional Secrecy by Typin@ur main technical contribution is the first
system of secrecy types for a process calculus that supports multiple, dynamically-
generated security levels, together with compromise or downgrading of security levels.
Abadi’s original system]] of secrecy types for cryptographic protocols, and its descen-
dants, are limited to two security levels, and therefore cannot conveniently model the
dynamic creation and compromise of security levels, or the possibility of attack from
compromised insiders. Our treatment of asymmetric communication channels builds on
our recent work on types for authentication properties. [



Our main technical result, Theoremis that no expectation of conditional secrecy
is ever falsified when a well-typed process interacts with any opponent process.

We anticipate applications of this work both in the design of security-typed lan-
guages and in the verification of cryptographic protocols. Security types with multiple
security levels are common in the literature on information flow in programming lan-
guages, but ours is apparently the first use in the analysis of cryptographic protocols.

Section2 describes our core pi-calculus. Secti®rexhibits a series of example
protocols that make use of secure channels. The@ean be applied to show these
protocols preserve the secrecy of dynamically generated data. Previous type systems
yield unconditional secrecy guarantees, and therefore cannot handle the dynamic de-
classification of data in these protocols. Sectopresents our type system formally.
Section5 outlines the extension of our results to a pi-calculus with symbolic cryptog-
raphy. Sectior discusses related work, and Sectibconcludes.

A companion technical repori§] includes further explanations and examples, an
extension of the core calculus and type system to cover symbolic cryptography, and
proofs. Notably, the soundness of the extended type system follows via a straightfor-
ward translation into our core pi-calculus. We represent ciphertexts as processes, much
like the encoding17] of other data structures in the pi-calculus. Although such a rep-
resentation of ciphertexts is well known to admit false attacks in general, it is adequate
in our typed setting.

2 A Pi Calculus with Expectations of Conditional Secrecy

Our core calculus is an asynchronous form of Odersky’s polarized pi-caldf8lieX-
tended with secrecy expectations and security levels.

Computation is based on communication of messages between processes on named
channels. The calculus is polarized in the sense that there are separate capabilities to
send and receive on each channel. The send capdbitipnfers the right to send (but
not receive) on a channkl Conversely, the receive capabili® confers the right to
receive (but not send) ok The asymmetry of these capabilities is analogous to the
asymmetry between public encryption and private decryption keys, and allows us to
write programs with the flavour of cryptographic protocols in a small calculus.

Messages are values communicated over channels between processes. As well as
send and receive capabilities, messages include names, pairs, tagged messages, and the
distinguished security levels and_L.

Processes include the standard pi-calculus constructs plus operations to access pairs
and tagged unions. To track direct flows of messages, each output is tagged with its
security level; for instance, an output by the opponent may be taggé&tie only new
process constructs are statemavits. N and expectationsecretM amongstL.

Names, Messages, Processes:
I 1

a,...,nVv,...,z names and variables
L,M,N::= message, security level

X name, variable

M? capability to input orM



M! capability to output oM

(M,N) message pair
inl M left injection
inr M right injection
T highest security
4 lowest security
C:=M<N clause: leveM less secure than levisl
M,N=Mq,...,Mn sequence of messages ¥ 0)
T,U type: defined in Sectioa
PQR:= process
OutM N ::L asynchronous output at level
inp M(xT);P input (scope ok is P)
newxT;P name generation (scopexfs P)
repeatP replication
PIQ parallel composition
stop inactivity
split Mis (x<y:T,zU);P pair splitting (scope oX,y isU, P, of zjustP)
match M is (x < N:T,zU);P pair matching (scope ofisU, P, of zjust P)
caseM isinl (xT) Pisinr (y:U) Q union case (scope afis P, of y is Q)
C statement of clause
secretM amongstL expectation of conditional secrecy

We writeP — Qto mearP may reduce t®, andP = Q to mearP andQ are structurally
equivalent. The mostly standard definitions of these relations are in AppBndike
only nonstandard reductions are fplit and the first-component-matching operation
match, which bind an extra variable. (We motivate the use of this variable in Segtion

split (M,N)is (x <y:T,zU);P — P{x—M}{y-—M}{z—N}
match (M,N) is (x<M,zU);P — P{x—M}{z—N}
Any messag®/ can be seen assecurity levelLevels are ordered, with bottom element

1, top element’, and meet given byM, N). We write Sfor a set of clauses of the form
M < N, and writeSF M < N whenM < N is derivable from hypothes&s

Set of Clauses:

I
S:={Cy,...,Cn} set of clauses
{C1,....Ca} =Cy|--- | Cn | Stop when considered as a process

Preorder on Security Levels:SFM <N

I

CeS=SIC (Order Id)

SEFM <M (Order Refl)
SFLKMASEFM<N=SFL<N (Order Trans)
SF1L<M (Order Bot-L)
SEMLST (Order Top-R)
SF(M,N)<M (Order Meet-L-1)
SE(M,N) <N (Order Meet-L-2)
SFLSMASHFL<N=SFL<(M,N) (Order Meet-R)

|




Since processes contain ordering statements, we can deriviel < N wheneverP
contains statement andS- M < N.

Security Order Induced by a ProcessP+M < N

I

LetP M < N if and only if P = newx:T; (S| Q) andSF M < N andfn(M,N) N {X} = 2.
|

An expectatiorsecretM amongstN in a process is justified if every output bf is

at a levelL such thatN < L. That is, the secrd¥l may flow up, not down. We saky

is safe for conditional secredp mean no unjustified expectation exists in any process
reachable fronP. The “robust” extension of this definition means the process is safe
when composed with any opponent process, much as in earlier w#jrk [

Safety:
I

A proces<P is safe for conditional secredfand only if

whenevelP —* newx:T; (secretM amongstN | out Ix M :: L | Q), we haveQ+ N < L.
| |

Opponent Processes and Robust Safety:
I

A proces0 is Un-typedif and only if every type occurring i© is Un.
Write erase(P) for the Un-typed process given by replacing all typesiiby Un.
A proces<0 is secretfreeif any only if there are n@ecretexpectations irD.
A procesO{xX} with fn(O{X}) = {X} is anopponenif and only if it is Un-typed andsecretfree.
A processP is robustly safe for conditional secrecy despité and only if
P | O{L} is safe for secrecy for all opponer@{x}.

3 Examples of Secrecy Despite Compromise

The examples in this section illustrate some protocols and their secrecy properties, and
also informally introduce some aspects of our type system. We use mostly standard
abbreviations for common message and process idioms, such as arbitrary-length tuples.
These are much the same as in previous wbg jand are given in Appendi’.3.

A Basic ExampleConsider a world with just the two security levelsand L. The
following processes, at leval, communicate along a shared channe(We use the
keywordprocessto declare non-recursive process abbreviations.)

processSender(KCh(Secref T })) =

news:Secref T }; out k!(s) :: T| secretsamongst T .
processReceiver(kCh(Secref T })) =

inp k?(sSecre{ T }); secretsamongst T .

The parallel composition Sender(Kreceiver(k)s robustly safe despite but not, for
example, despite eithdk!} (because the attacker can send public data to falsify the
receiver's expectation) ofk?} (because the attacker can obtain the sectetfalsify

the sender’s expectation).



Our type system can verify the robust safety property of this system based on its
type annotations. Messages of typecret{L} are secrets at levél. Messages of type
Ch T are channels for exchanging messages of fiypkater on, we use typesCh T
and ICh T for the input and output capabilities on channel3 ahessages.

An Example of Secrecy Despite Host Comproniiseestablish secrecy properties (for
example, that Aand Bshare a secret) in the presence of a compromised insider (for
example C who also shares a secret with) Bequires more security levels than just
T and L. For example, consider the following variant on an example of Abadi and
Blanchet B] (rewritten to include the identities of the principals).

processSender(dJn, b:Un, cA:Type2(a,b), cB:Typel(b)) =
newk:Secretf a,b}; secretk amongst(a,b);
news:Secret{a,b}; secretsamongst(a,b);
outcB (a, k, cAl) :: g
inp cA? (match k, cAB:IType3(a,b)); // pattern-matching syntax
Out cAB (s) :: a.

processReceiver(bJn, cB:Typel(b)) =
inp cB? (a<d:Un, k:Secref a,b}, cA:!'Type2(a,b)); // pattern-matching syntax
new cAB:Type3(a,b);
out cA (k,cAB!) :: b |
inp cAB? (zSecret{a,b}); stop.

Here, sender Aends to receiver B tuple (A,k,cAl) along a trusted output channel,cB
whose matching input channel is known only toShe then waits to receive a message
of the form (k,cAB) whose first component matches the freshly generated name k
along the channel cAwvhich must have come from,&s only Aand Bknow k. Hence,

A knows that cABis a trusted channel to,Bnd so it is safe to sendatong cAB

Receiver Bruns the matching half of the protocol, but gets much weaker guarantees,
as the output channel cB public, and so anyone (including an attacker) can send
messages along it. WhenrBceives (A,k,cA?)he knows that it claims to be from,A
and binds ato A’s security level. However, he does not know who the message really
came from: it could be Aor it could be an attacker masquerading a®\AB knows is
that there is some security leveka indicating who really sent the message.

When a process such as Receikggeives an input such as (A k,cAl) binds two
variables &£ d reflecting the actual and claimed security level of the message. This
is reflected in the dependent tyfrex < y: T,U), which binds two variables ib. The
variablex is bound to the actual security level, and the varigh$ebound to the claimed
security level. At run-time, the binding faris unknown, so it is restricted to only being
used in types, not in messages. In examples, we oftenxeliden it is unused.

Processes have two ways of accessing a pair: they may uspltheonstruct to
extract the components of the pair, or they may usemh&h construct to match the
first element of the pair against a constant. For example, the Spraterss above con-
tains the inputnp ca?(atch k, cAB:!Type3(a,b)) which requires the first component
to match the known name kr else fails, and (implicitly) usesplit to bind the second
component to cAB(We are using pattern-matching abbreviations to avoid introducing



large numbers of temporary variables, as discussed in Appén8ixThese two forms
of access to tuples are not new, and have formed the basis of our previous work on type-
checking cryptographic protocol$Z,13]. What is new is that these forms of access are
reflected in the types. We tag fields with a markewhich is eithersplit or match, to
indicate how they are used.

The types for this example are:

type Type3(a,b) =Ch (Secref a,h})
type Type2(a,b) =Ch (match k:Secrefa,b}, split cAB:!Type3(a,b))
type Typel(b) =Ch (split a<d:Un, split k:Secret{a,b}, split cA:!Type2(a,b))

Given the environment:
A:Un, CA:Type2(A,B), BUn, CB:Typel(B), CUn, CC:Type2(C,B)
we can typecheck:

repeat Sender(A,B,CA,CB!) repeat Receiver(B,CB)
repeat Sender(C,B,CC,CB!)C< L

Hence, soundness of the type system (Thedgimplies the system is robustly safe
for secrecy despit¢A,B,C,CA!,CB!,CC}. The statement € L represents the com-
promise of C Thus, Aand Bare guaranteed to preserve their secrecy, even though
compromised Ghares a secret Ofiith B.

An Example of Secrecy Despite Session Comprofrisally, we consider an adaption

of the previous protocol to allow for declassification of secrets. Declassification may
be deliberate, or it may model the consequences of an exploitable software defect. We
regard the session identifierds a new security level, that may be compromised inde-
pendently of Aand B We modify the example by allowing the sender to declassify the
secret after receiving a message on channel d

processSender(aJn, b:Un, cA:Type2(a,b), cB:Typel(b), dn) =
newk:Secret{a,b}; secretk amongst(a,b);
news:Secref{a,b,k; secretsamongst(a,b,k);
outcB (a, k, cAl) :: g
inp cA? (match k, cAB:IType3(a,b));
out cAB (s) :: a|
inp d?(); k< L;outdl(s)::a

Here, the sender declassifiedby the statement K L. Since kis mentioned in the
security level of sthis statement allowsts be published on public channelThe rest
of the system remains unchanged and the types are now:

type Type3(a,b,k) =Ch (Secrefa,b,k)
type Type2(a,b) =Ch (match k:Secrefa,b}, split cAB:!Type3(a,b,k))
type Typel(b) =Ch (split a<d:Un, split k:Secret{a,b}, split cA:!Type2(a,b))

Theoren® now gives us not only that And Bcan maintain secrecy despite compromise
of C, but also that it is possible to compromise one sessj@n#l hence declassify the
matching secret, svithout violating secrecy of the other sessions.



4 A Type System for Checking Conditional Secrecy

A basic idea in our type system is to identify classes of public and tainted t§fes [
Intuitively, messages of public type can flow to the opponent, while messages of tainted
type may flow from the opponent. More formally, ifn is the type of all messages
known to the opponent and: is the subtype relation, a type is public just when

T <:Un, and a typ€T is taintedjust whenUn <: T.

Both classes depend on the security ordering. Just as the attacker encroaches on
the compromised parts of a system over time, types may become public or tainted over
time. We reflect this dependency syntactically by decorating types with symbolic kinds.
A kind Kis a pair{?M, !N} of security levels. A message of a type decordted, !N}
can be assumed to flow from a source at lé¥or higher), and is allowed to flow to a
target at leveN (or higher). IfM < | the type is tainted; iN < | the type is public.

We often write shorthand such &8, ?B,!C} for the kind{?(A,B),!(A,C)}.

Kinds:
I
K= {?M,IN} tainted ifM < L, publicif N < L

Write {Lq,..., Li,”M1,...,2Mm,!Ng,...,INn}

for {?(Ll ..... L|,M1,...,Mm),!(L1....,L|,N1,...,Nn)}.

Our language of types consists of standard constructs for channels with optional read-
only and write-only attributes, sum types, a®# types [L1]. The only non-standard
types are the dependent pajrx < y: T,U), discussed previously in Secti@n

Types:
I 1
vi="2|! input-only (?) or output-only (!) attribute
1t::= split | match split-only or match-only attribute
T,U = type
ChKT channel fofT messages
vChKT input or output capability on channel fdrmessages
(x<y:T,U) split-only or match-only dependent pair (scopexofis U)
T+U tagged sum type
Ok S proof of security ordering

Our judgments are defined with respect toearironmenta list of all names in scope,
paired with their types. A generative type is one that can be freshly generated.

Environments:

I

E:=o|EXT environment: list of name typings
dom(@) =2 dom(E,xT)=dom(E)U{x}

clauses(@) =@ clauses(E,x:T) = clauses(E) U{Cy,...,Cq| T isOk{Cy,...,Cn}}
|

Generative Types and Environments:

I
Let a type begenerativef and only if it is a channel typ€h K T.

Let an environmenE begenerativef and only if E(x) is generative for eacke dom(E).
| |




Judgments of the Type System:
I

EFo good environment

E - Public(T) public type:T data may flow to the opponent

E I TaintedT) tainted typeT data may flow from the opponent
EFT<T subtype

EFM:T good message of type

EFP good process

|

Next, we present the rules defining these judgments. We rely on several abbreviations.
Abbreviations:

I

Write E, Sfor the environmenE, x : Ok Swherex is fresh.
Write E - M for E F ¢ andfn(M) C dom(E).

Write EF M <N for E+ (M,N) andclauses(E) M < N.
Write EF Sfor EFM < N for every(M <N) € S
WriteEFM «— NforEFM <NandEFN <M.
WriteEFT <:>UforEFT <:U andEHU <: T.

L

The following standard rules state that in a good environment, each declared name must
be fresh, and each name occurring in a type must be declared previously.

Good Environment:

I(Env@) (Envx)
EFo x¢dom(E) fn(T)C dom(E)
gFo E.xTko

The judgment& + Public(T) andE + Tainted T) formalize the classes of public and
tainted types. The rules follow the pattern of previous wdr$.[ The most interesting

rules are those for determining when a dependent(pai y:T,U ) is tainted. If data

of this type has been received from the opponent, then we know that the real security
level of the term isl, and so when we chedld for taintedness, we first replace

by L. In the case whem is match, we can be even more liberal, and add into the
environment extra clauses generated by tainting the Tygler example(match x <
y:Secret{a}, Secret{a}) is tainted, because we add the claase_L to the environment
before checking taintedness of the typecret{a}.

Extracting a Set of Clauses from a Tainted Type:
I

taint(Ch{?M,IN} T) £ {M < I ,N< 1}

taint(vCh {?M,IN} T) = {M < 1}

taint(TX < y:T,U) = taint(T +U) = taint(Ok S) = @
L

Public and Tainted Types:
I
(Public 1/0) (Tainted 1/0)

EFM—~ 1 EFN« L EFM«—~ 1 EFN« L
EF Public(T) EF TaintedT) EF Public(T) EF TaintedT)
E F Public(Ch {?M,IN} T) E + TaintedCh {?M,IN} T)



(Public I) (Tainted 1)
EFM EFN« 1 EFPubliT) EFM« L EFN EF TaintedT)

E F Public(?Ch {?M,IN} T) E F Tainted?Ch {?M,IN} T)
(Public O) (Tainted O)
EFM EFN«< L1 EFTaintedT) EFM~ 1 EEN EFPublic(T)
E + Public(!Ch {?M,IN} T) E I Tainted!Ch {?M,IN} T)
(Public Split) (Tainted Split)
E + Public(T) E F TaintedT)

E,xT,y:T,x<yF Public(U) E,y:T - TaintedU {x—_L})
E F Public((split x<y:T,U))  EF Tainted(split x<y:T,U))

(Public Match) (Tainted Match)
E - Public(T) E,taint(T) I TaintedT)
E,xT,y:T,x <yt PublicU) E,y:T,taint(T) - TainteqU {x—_L})
E F Public((matchx < y:T,U)) E F Tainted (match x <y:T,U))

(Tainted Sum) (Public Sum)
EF TaintedT) EF TaintedU) EF Public(T) E Public(U)
E I Tainted T +U) E I Public(T +U)
(Public Order) (Tainted Order)
Eto fn(S Cdom(E) ErFo EFMj«— L EFN Viel.n
E I Public(Ok S) E I Tainted Ok {M1 <Ng,...,Mp < Np})

The rules for subtyping are mostly taken frof8]. The main exception is the rule for
(matchx <y:T,U), which requires an extra condition to ensure that subtyping preserves
thetaint function used in the definition df + TaintedT).

Subtyping:
I 1
(Sub Public/Tainted) (Sub I/O)
EF Public(T) Et TaintedU) EFM<M EFN<N EFT<>T
EFT<:U EFCh{?M,IN} T <:Ch {M"IN'} T/
(Sub) (Sub O)

EFM' <M EFN<N E+T<:T' EFM<M EFN<N EFT' <T
EF2Ch {?M,IN} T <:2Ch {?M/,IN'} T/ EFICh {?M,IN} T <:ICh {2M/,IN'} T/

(Sub Split) (Sub Match)
EFT<T EFT<:T' E,taint(T/) F taint(T)
E.xT,yT,x<yFU<:U’ E.xT,yT,x<yFU<:U’
EF (splitx<yT,U) <: (splitx<yT' U’) EF (matchx<yT,U)<:(matchx<yT' ,U’)
(Sub Sum) (Sub Hierarchy)
EFT<T EFU<U’ EFo E,SFS
EFT+U < T +U’ E-OkS<:0k S

10



To illustrate the judgments defined so far, we derive the typesind SecretK, used
already in examples. (Our examples rely also on standard abbreviations, such as tuple
types encoded using pair types. Full details are in AppeAdx)

Abbreviations for Un and SecreK:

I

Un=Ch {1} (Ok{}) generative type of messages known to opponent
Secretk = 2Ch K Un type of secrets at kin
|

Given these derived types, the four tyscret{?M, !N} whereM,N € {T, L} have
the following properties, assuming that< T. Moreover, the subtype ordering induces
a diamond lattice, with Anyat the top, and Emptgt the bottom. The Empttype is
uninhabited, and the remaining inhabited types are exactly those of Aadi [

The Four Types Secre{?M, !N} with M,N € {T, L }:
I

Any = Secret{?L,1T} tainted, not public
Pub= Secret{?1,11} tainted, public

Sec= Secret{?T,!T} not tainted, not public
IEmptyé Secret{?T,!1} not tainted, public

Next, here are the type assignment rules for messages.

Good Message:

I

(Msg Subsum) (Msgx) (Msg 1)

EFM:T EFT<:T' EFko (XT)eE EFL:Ch{?M,IN}T
EFM:T EFXx:T EFL?:2Ch{M} T

(Msg O) (Msg Pair) (Msg 1)

EFL:Ch{?M,IN}T EFM:T EFN:U{x~M}{y—M} EFo

EFL'ICh{N}T EF(M,N): (x<y:T,U) EF_1:Un

(Msg Inl) (Msg Inr) (Msg Ok)

EFM:T fn(U)Cdom(E) EFN:U fn(T)Cdom(E) EkFo EFS
EFinNfM:T+U Erinr N:T+U EFT:0kS

The type rules for processes are standard, with two exceptions. The rule for output
performs an extra check on the security level of the output, to ensure that the data
can be published at that level: the assumptigh < | + Public(T) can be read “if

the levellL were compromised, the tygewould be public”. The rule for composition
typechecks each component in an environment extended with any top-level statement
M < N occurring in the other component.

Extracting Environments from Processes:
I

env(P | Q) =env(P),env(Q)

env(repeatP) = env(P)

env(M < N) =x:Ok {M < N} for freshx

11



env(newx:T;P) = y:T,env(P{x—y}) for freshy
env(P) = @ otherwise
|

Good Process:
I
(Proc Output)

. (Proc Input) (Proc Res)
E,L < L+ Public(T) . . . .
ELMIChKT ELN:T EFM.?ChKT ExTHP E,xTHP T generative
EroutMN-L Etinp M(xT);P EFnewxT;P
(Proc Repl) (Proc Par Mutual) (Proc Stop)
EFP E,env(Q FP E,env(P)FQ EFo

E F repeatP EFP|Q E F stop
(Proc Split) (Proc Match)

x & fn(erase(P)) x & fn(erase(P))

EFM:(splitx<yT,U) EFM:(matchx<yT,U) EFN:T

E,xT,yT,x<y,zUFP E,xT,x<N,zU{x—N} P

EFsplitMis(x<y:T,zU);P EFmatchMis (x<N,zU{y—N});P

(Proc Case) (Proc Clause)  (Proc Secret Cap)
EFM:T4+U ExTHP EyUFQ EFM EKN EFM:vCh{2L} T

EtcaseMisinl (xT) Pisinr (yU) Q EFM<N E F secretM amongstL
|

We can now state the main result of the paper, that the type system is sound with respect
to robust safety. (Proofs are in Appendiy)

Theorem 1 (Safety).If E - P and E is generative then P is safe for conditional secrecy.

Theorem 2 (Robust Safety).If E - P, E is generative, and E M : Un then P is
robustly safe for conditional secrecy despile

5 An Extended Calculus with Symbolic Cryptography (Outline)

To express cryptographic protocols, we can add symbolic encryption and decryption
operations to our core calculus to obtain a form of the spi-calclus\fe can easily ex-

tend our type system to accommodate these operations, much as in previoug3jjork [

for example, encryption and decryption keys are treated analogously to the output and
input capabilities in our core calculus. Somewhat surprisingly, we can prove sound-
ness of the extended type system by a straightforward translation into the core calculus.
Keys are translated to channels, encryption keys to output channels, decryption keys to
input channels, and ciphertexts to the constanthe translation is not fully abstract,

but preserves typings and reflects safety, which suffices to establish that well-typed spi-
calculus processes are robustly safe. (Appeidhas full details of the extended cal-
culus, type system, and the translation.) As an example of using the extended calculus,
consider Lowe's variant of the Needham—Schroeder public key protocol:
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Message 1. A—B: {msgl1(A,sA}kB
Message 2. B—A: {msg2(B,sA,sB}kA
Message 3. A— B: {msg3(sB}kB

In AppendixA.2 we show that this protocol robustly preserves conditional secrecy of
sAand sBamongst{ A, B}, in the presence of compromised insiders. The proof is based
on the type for a key for use by principal p

type NS(p) =Key( msgléplit a<a:Un, split saSecret{a,p})
| msg2atch b:Un, match saSecrefp,b}, split sbSecrefp,b})
| msg3atch sbSecref{?L,!Ip})).

Abadi and Blanchetd] consider the same protocol, under similar assumptions of com-
promise, but rely on two separate typing derivations to prove the secrecyaridaB

6 Related Work

Abadi [1] proposes the use of security types for establishing secrecy properties in cryp-
tographic protocols expressed in the spi-calcubjisAbadi takes a fixed, binary view of
security, where the world is divided into system and attacker, and a secret is something
the attacker does not have. We are the first to generalize his work to multiple security
levels and to allow the boundary between system and attacker to shift as levels are cre-
ated and compromised. Another generalization of Abadi’'s work is the type system of
Bugliesi, Focardi, and Maffeld], which checks security properties in the presence of a
fixed set of compromised hosts, but assumes this set is known during typechecking.

Abadi’s type system establishes an equationally-defined secrecy property of Abadi
and Gordon 5], that prevents some indirect flows as well as direct flows. Our ex-
pectations of conditional secrecy generalize the notion of explicit flow introduced by
Abadi [2], and since used in several papers on process cagf]i [

The decentralized label model (DLM) of Myers and Liskd¥{[[is the basis of the
Jif language in which security types track ownership and possible compromise of data.
DLM policies govern which principals can downgrade data—the system of the present
paper does not address this question. A “declassify” expression converts the level of a
whole expression, but it does not alter the security ordering. Since they convert high data
into low data, programs using declassification typically falsify noninterference proper-
ties; there have been several proposals of modified noninterference properties to handle
declassification42].

Pottier and Simonet’'s Flow Cam28], has global, static declarations of flows, but
no local or dynamic declarations.

Two recent papers consider dynamic additions to the security ordering. Boudol and
Matos [7] introduce block-structured declarations of orderings, in which edges may
temporarily be added to the security ordering. They present a type and effect system
that establishes a form of noninterference. They do not consider dynamic creation of
security levels and they do not associate levels with code. Tse and Zdan@dvic [
consider dynamic creation and communication of principal identities, and propose a
delegation operation that allows temporary modification of the lattice of security levels.

13



We mention a couple of the many studies of security orderings within process cal-
culi. Hennessy and Riely2[] study mobile agents migrating between locations, that
may or may not be compromised. By a combination of static and dynamic checks they
prevent type violations at uncompromised sites. Hoshina, Sumii, and Yonezéjva [
introduce a security order between protection domains in a process calculus. They use a
type system with dependent types to prevent access violations. To the best of our knowl-
edge, the present paper is the first to consider runtime compromise of security levels in
the setting of a process calculus.

Finally, many of the techniques for the Dolev-Yao model other than type systems
deal with host compromise and insider attacks; type systems such as ours do require
some human effort to construct type annotations, but given these annotations admit
automatic, efficient protocol checking.

7 Conclusion

This paper introduces a mutable security ordering into a process calculus, in order to
model a dynamically growing population of principals, some of which may become
compromised. We advocate the placement of conditional secrecy annotations in pro-
cesses to express containment of compromise; that particular messages are kept secret,
unless particular principals are compromised. We describe a type system for checking
that no opponent can interact with the system to falsify these annotations. As well as
proving a soundness theorem for the type system, we assess our proposal by exhibit-
ing a series of typed examples, showing an improvement over prior work. Our system
verifies versions of all the examples considered by Abadi and Blangh@h¢dified to
include multiple principals, and multiple simultaneous runs of the protocols).

We end by discussing three criticisms. First, our present system tracks only secrecy
properties. We expectitis possible to combine our system with prior constructs express-
ing authentication and authorization properti€g 14]. Second, our type system allows
any process to augment any part of the security ordering. This is acceptable in short
programs modelling cryptographic protocols, but for larger programs there should be
an enforceable policy governing additions to the security ordering. Prior work on poli-
cies for declassification may be applicable. Third, our type-based verification method
requires the programmer to supply type annotations. A type inference algorithm would
lessen this burden, although the lack of principal types would make such an algorithm
non-trivial. A complementary approach may be to adapt logic programming interpre-
tations of the pi-calculus4] to obtain a logic-based method for checking conditional
secrecy. We leave these directions for future work.

AcknowledgementgVe thank Grard Boudol, Ana Matos, Andrei Sabelfeld, and Dave

Sands for sending us previews of their CSFW’05 pap@é22]. Thanks also to Tony
Hoare and the anonymous reviewers for useful comments.
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Appendix

In the hope it may be of benefit to the referees, this Appendix elaborates on the main
part of the submission, with additional examples, definitions, and proofs.

A Additional Examples

A.1 Asymmetric Multiplexing Example

This example illustrates the use of sublevels to handle a dynamically growing set of
principals. It also illustrates the need fmsymmetric kindduring typechecking, that is,
kinds{?M, !N} whereM # N.

In this protocol, requests are sent on a single server channel, with a fresh identifier.
Responses are then returned on the client’s receiver channel, which the server looks up
in a database.

Message 1: A—B on cB (A,req,msgid)
Message 2: B— A on cBA (msgid,res)

All clients share a single channel to the server, but that the server has a dedicated chan-
nel back to each client. As a result, the server gets very weak guarantees. It knows that
the message has come from some client, not which client.

processSender(dJdn, b:Un, cb:!T1(b), cab:?T2(a,b), Clienta, Servex b) =
newmyid : Secrefa,b};
newreq :Secrefa,b};
secretmyid amongst(a,b);
secretreqamongst(a,b);
out cb (a,req,myid)::a;
inp cab (natch myid,resSecrefa,b});
secretresamongst(a,b).

processReceiver(bJn, cb:?T1(b), db:?DB(b), Serverb) =
inp cb (a<d:Un,reqSecref ?a,4,b},msgidSecref ?a,4,b},Client< a);
secretreqamongst(Client,b);
secretmsgidamongst(Client,b);
newres :Secret{d,b};
secretresamongst(d,b);
inp db (match &,cdb:!T2(d,b));
out cdb (msgid,res)::b.

Alongside the honest agents, we add an exploitable agent, who will receive a message
off the network which causes them to compromise themselves and then publish their
secrets:

processExploit(c:Un, b:Un, cb:IT1(b), cch:?T2(c,b), n&in, Client<c, Servex b) =
inp net? (); c< L ; out net! (c,cb,cch)::c.
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The entire system consists of an honest client A, together with an exploitable client C,
and an honest server B:

Client <A | Server<B | Client <C|

repeat outdb! (A,cAB!)::B | repeat outdb! (C,cCB!)::B|
repeat Sender(A,B,cB!,cAB?) repeat Sender(C,B,cB!,cCB7)
repeat Receiver(B,cB?,db?)Exploit(C,B,cB!,cCB?,net)

This typechecks in the environmehtgiven by:

A:Un, B:Un, C:Un, ClientUn, Servertn, netUn,
cB : T1(B), cAB: T2(A,B), cCB : T2(C,B), db:DB(B)

where we have types:

type T1(b) =Ch(split a<d:Un, split reqSecref ?a,a,b},

split msgidSecret?a,4,b'}, Client< a).
type T2(a,b) =Ch(match msgidSecref ?Client,a,B, split resSecrefa,b}).
type DB(b) = Ch(match p:Un, split cpB:!T2(p,B)).

We would like to verify that this system is robustly safe for conditional secrecy despite
{A,B,C,Client Servernet}, which follows from Theoren2.

A.2  Typing Lowe’s Variant of the Needham—Schroeder Protocol

The following example uses the encoding of cryptography into our polarized pi-calculus,
as described in AppendR. Lowe’s form of the Needham—-Schroeder protocol with se-
crecy assertions can be programmed in the spi-calculus as:

processSender(adn, kaDNS(a), bn, kb:ENS(b), netun) =
new saSecref{a,b}; secretsaamongst(a,b);
out net{msgl(a,sdkb :: a;
inp net{msg2atch b,match sa,sbSecret{a,b} ) ka ?;
secretsbamongst(a,b);
out net{msg3(sb}kb :: a.

processReceiver(bun, kb:DNS(b), db:?DB, netin) =
inp net{msgl(a<a:Un,saSecrefa,b})kb1;
inp db(match &, kd:ENS(d));
newsbSecrefd,b};
secretsbhamongst(d,b);
out {msg2(b,sa,slka :: b;
inp net{msg3atch sb)}kb?;
stop.

As in the previous example, we model an exploitable agent as a process:

processExploit(c:Un, ke:DNS(c), netn) =
inp net? (); c< L ; out net! (c,kc)::c.
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An example system, including a compromised hostlse private key has been pub-
lished, and a trusted database channedsiociating public keys to principals, is:

repeat outdb!(A, Enc kA)::A |

repeat outdb!(B, Enc kB)::B |

repeat outdb!(C, Enc kC)::C |

repeat Sender(ADeckA, B, Enc kB, net)|
repeat Sender(CPeckC, B, Enc kB, net)|
repeat Receiver(BDeckB, db?, net)
Exploit(C, DeckC, net)

This can be typechecked in the environmErntefined:
A:Un, B:Un, C:Un, kA:NS(A), kB:NS(B), KC:NS(C), db:DB, nétin
using the type:

type NS(p) =Key
(msgléplit a<ad:Un, split saSecrefa,p})
| msg2(match b:Un, match saSecrefp,b}, split shSecret{p,b})
| msg3fnatch sbSecre{?_L,!p})

).
type DB = Ch(match p:Un, split kp:ENS(p)).

We would like to verify that this system is robustly safe for conditional secrecy despite
{A,B,C,db?net}. To do this, we verify:

E + PubliclUn) E,p:Unt Public(ENS(p)) EF Public(?DB)

and the result follows from Theore Note that in this analysis, A knows that sA is

kept secret between A and B, but B does not: this is because we have not included nonce
types in this language. We expect that the nonce types featuré@lindquld be added

with little difficulty, and that this would solve this problem.

A.3 Abbreviations Used In Examples

We shall now show that the abbreviations we used in our examples can be defined in
our type system. We made use of types for dependent tuples and tagged unions.

Syntax Sugar for Use in Types:
I

T,U = type

as in Sectiort

(F1,...,Fm,M1 < Ng,...,Mp < Np) dependent tuple

(£2(T1) [ -+ [ €n(Tn)) tagged union

ChT channel with implicit kind

vChT read-only or write-only channel with implicit kind
F o= field

™<yT explicit lower bound

y<T implicit lower bound
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We allowed the construction of messages of tuple or tagged union type:

Syntax Sugar for Use in Messages:
I

L,M,N = message
as in Sectior?
(M4,...,Mp) tuple
4 (M) tagged union

In processes, we can make use of pattern-matching:

Syntax Sugar for Use in Processes:
I

O,PQ,R::= process
as in Sectior?
outMN:L;P output with residual
M <N;P statement with residual
secretM amongstN; P expectation with residual
bind M is X;P pattern match
inp M(X); P pattern matching input
letxT =M;P let binding
newx:vCh {M} T;P name generation of read-only or write-only channels
|

whereX ranges over a grammar of patterns:

Patterns:
I 1
XY, Z::= patterns
xT,X variable with implicit lower bound
x<y.T,X variable with explicit lower bound
match M:T, X match with implicit lower bound
matchx < M:T, X match with explicit lower bound
M1 < Ng,....Mp <N set of clauses
4i(X) tagged union
{X}m symmetric ciphertext
{X[m-1 asymmetric ciphertext

We will now give definitions for each of these extensions, beginning with types.

Abbreviations for Types:
I 1

(Tuxq < y1:T1,ToXe < ¥2:T2, oo, Tikm < Ymi Ty M1 < Ny,...,Mp < Np) =

(tuxq <y1:T1, (ToXe < Y2:To, ..., (ThXm < YmiTm, Ok{M1 < Nyp,...,Mn <Np})...))
(L (T |- [ n(Th)) = (Ta+ (T2 + (- (Tho1 +T) )
ChT2Ch{L}T
VChT2VCh {1} T
L

When a lower bound is left implicit, we just bind it to a fresh variable.

Abbreviations for Fields:
I

ny:T Sm< y:T for freshx
|
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The translations of messages are straightforward.
Abbreviations for Messages:
I

(M1,...,Mp) = (M1, (...(Mp, T)...))

G(M) £ injp (M)

iny1(M)=M
)

iNyn1(M)

. A
iNit1ne1 (M) =
L

inr |ni,n(M)

We write out x (M);P as a simple shorthand faut x M | P, and similarly for the
other operators with residuals. Pattern-matching expands out to the primitive process
destructors:

Abbreviations for Processes::
I

OUtMN:L;P= (outMN:zL)|P

M<NP=(M<N)|P

secretM amongstN; P = (secretM amongstN) | P

bind M is (y:T,X); P P2 split M is (x < y:T,z);bind zis X; P for freshx andz

bind M is (x < y:T,X);P = split M is (x < y:T, 2); bind zis X; P for freshz

bind M is (match N:T, X); P = match M is (x < N:T,2); bind zis X; P for freshx andz
bind M is (match x < N T,X);P = match M is (x < N:T,2); bind zis X; P for freshz
bind M is (M < N); P = let x:Ok{M < N} = M;P for freshx

bind M is (4 (X));P = b|nd M is (injn(X));P

bind Miis (iny 1 (X)); );P = bind M is X; P

bind M is (ing ny1 (X)); P £ caseM isinl (x) bind xis X;Pisinr (x) stop for freshx
bind M is (inj11, nJrl(X)) P = caseM isinl () stopisinr (x) bind xis (inj n (X)); P for freshx
bind M is {X }n;P = decrypt M is {x}n;bind xis X; P for freshx
bind M is {X[}y-1;P = decrypt M is {|x]}-1;bind x is X; P for freshx
inp M(X); P £ inp M(x); bind xis X; P for freshx

lety:T = M;P = match (M, M) is (M,x < y:T); P for freshx
newy:vCh {M} T;P £ newx:Ch {M} T;lety = vx; P for freshx

|

Thus we have demonstrated that our core language is powerful enough to describe the
examples in this paper.

B Operational Semantics

Structural Equivalence of ProcessesP = Q
I
P=P (Struct Refl)

Q=P=P=Q (Struct Symm)
P=Q,Q=R=P=R (Struct Trans)
P=P = newxT;P=newxT;P (Struct Res)
P=P=P|R=P|R (Struct Par)
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P =P = repeatP = repeat P’

P|stop=P
PIQ=QJP
(PIQ[R=P[(QI|R)

repeatP = P | repeatP
repeatrepeatP = repeat P

repeat (P | Q) = repeatP | repeatQ
repeat stop = stop

newx.T;(P|Q)=P|newxT;Q
newxp:Ty;newxy: Ty P =

newxo:To;newxy:Tq; P
L

(Struct Repl)

(Struct Par Zero)
(Struct Par Comm)
(Struct Par Assoc)

(Struct Repl Unfold)
(Struct Repl Repl)
(Struct Repl Par)
(Struct Repl Zero)

(Struct Res Par) (fax ¢ fn(P))
(Struct Res Res)
(for x1 # X2,X1 ¢ fn(T2), %2 ¢ fn(T1))

Reduction: P — P’

I

P-P=P|Q—-PFP|Q
P— P = newxT;P— newxT;P
P=QQ—-Q,.Q=P=P—=P

out!xM:L|inp X(y:T);P— P{y—M}
split (M,N) is (x<y:T,zU);P — P{xM}{y«—M}{z—N}
match (M,N) is (x < M,zU);P — P{x—M}{z—N}

(Red Par)
(Red Res)
(Red Struct)

(Red Comm)
(Red Split)
(Red Match)

caseinl Misinl (xT) Pisinr (y.U) Q — P{x—M} (Red Inl)
caseinr Nisinl (xT) Pisinr (y.U) Q— Q{y<—N} (Red Inr)

C Properties of the Type System

Canonical types:
I

Let T becanonicalif and only if it is generative or of the forr@kS.
Let E becanonicalif and only if E(x) is canonical for eack € dom(E).

Lemma 1 (Order Weakening). If S-EM < N then SUS+M < N.

Proof  Aninduction on the proof o6+ M < N.

Lemma 2 (Order Cut). If S-S and SS + S’ then §- S'.

Proof  Aninduction on the proof 08 S I S’, making use ofl.

O

Lemma 3 (Order Substitutivity). If S-EM <N then §L«—x} - M{L—x} < N{L<x}.

Proof  Aninduction on the proof 0§ M < N.

Lemma 4 (Order Elimination). f SU{N< L}FM < LthenS M <N.
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Proof Show that:
if SU{N< L} M <LandSk (L,L") <NthenSk (M,L') <N

by induction on the proof oBU{N < L} - M < L. The result follows by taking = L
andLl’' =T. O

Lemma5 (Weakening).If E,F+ 7 and ExT,F - othen ExT,F I 7.
Proof  An induction on the proof oE,F |- 7. O
Lemma 6 (Bound Weakening).If E,xT',F+ Jand EFT <: T’ then ExT,F I- 7.
Proof  Aninduction on the proof oE,x:T’,F F 7, making use of. o
Lemma 7 (Taint Cut). If E - TaintedT) and E taint(T) - J then EF- 7.
Proof A case analysis om. m]

Lemma 8 (Ignore Tainted). If E + Tainted T) and E+ Tainted T’) then:

(1) E,xT,F I oimplies ExT',F |- .

(2) E,xT,F+M <N implies ExT,F M < N.

(3) E,xT,F I~ PublicU) implies ExT’,F + Public(U).
(4) E,xT,F I~ TaintedU) implies ExT',F I~ TaintedU ).
(5) E,xT,FFU <:U’ implies ExT',FFU <:U".

Proof  We prove the statements by simultaneous induction on the proof of the left
hand judgement. The most interesting case is whea Ok{M; <N |i € 1..n} and
we are trying to shovE,x.T,F - M < N impliesE,x.T’,F - M < N. By definition of
EFM <N, we haveclauses(E,x:T,F) - M <N, so by definition ofclauses(x:T) we
haveclauses(E) U{M; < N; | i € 1..n} Uclauses(F) -+ M < N. By (Tainted Order)we
have thatlauses(E) - M; < L for everyi € 1..n, and we proceed by induction on the
proof of clauses(E) U{M; < N;j | i € 1..n} Uclauses(F) - M < N. The only interesting
case igOrder Id) where(M < N) € clauses(E) U{M; < N; | i € 1..n} Uclauses(F) |-

M <N, so either(M < N) € clauses(E) U clauses(F ), and so by(Order Id)we have
clauses(E) Uclauses(F) - M <N, or (M <N) € {M; < N; | i € 1..n}, in which case
clauses(E) =M < L and hence by Lemmhand transitivityclauses(E) Uclauses(F)

M < N. In either case, we hawtauses(E) Uclauses(F) - M < N and so by Lemma,
E,xT,FFM<N. O

Lemma 9 (Public-Down, Tainted-Up).

(1) FE+ T’ <: T and EF Public(T) then E+ Public(T’).
(2) fEFT <: T" and Et- TaintedT) then E Public(T’).

Proof We show both part simultaneously by inductionn

(1) If EFT' <: T was proved usin¢Sub Public/Taintedthen the result is immediate.
Otherwise, we proceed by case analysigon
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— If T =Ch{?M,IN} U, then sinceE - Public(T), we must have used the rule
(Public I/O), in which caseE+M < L, E+ N < L, E+ PubliclU) andE +
TaintedU). Since we have already covered the case whereT’' <: T was
proved using(Sub Public/Tainted)the only remaining possibility is that the
rule (Sub I/O)was used, in which cagé = Ch{?M’,IN’} U’, and we havé& +
M < M',EF+ N+« N andE U <:>U’. By transitivity, we havee - M’ < |
andE + N’ < 1, and by induction we havé - Public(U’) andE - TaintedU’).
Hence, by(Public I/O), we haveE I- Public(T’) as required.

— The other cases are all very similar, except for the case Whelmx < y:U,V)
in which case we must have us@lblic Split)or (Public Match) and scE +-
Public(U) andE,xU,y:U,x <y} Public(V). Since we have already covered
the case wher& - T’ <: T was proved usingSub Public/Tainted)the only
remaining possibility is tha¢Sub Match)or (Sub Split)was used, in which
caseT’ = (x<yU’ V'), EF U’ <:U andE V' <: V. By Lemmas, we
haveE, x:U’,y:U’, x <yt Public(V), and so we can proceed by induction to get
E + Public(U’) andE,x:U’,y:U’ x < y I Public(V’), and so by(Public Split)
or (Public Match) we haveE - Public(T’) as required.

(2) Almost all the cases are symmetric, except whes (Tx < y:U,V) because we
cannot use Lemma@ at a crucial point. Fortunately, we can use LenBriastead,
and so the proof goes through. ]

Lemma 10 (Subtyping Reflexivity). If E - ¢ andfn(T) C dom(E) then EF T <: T.

Proof  First note that ifn(M) C dom(E) thenEF M <M, and scE -+ M «— M. Also
note that iffn(S) C dom(E) thenE, S S. The result then follows by induction dn O

Lemma 11 (Subtyping Transitivity). fEFT <:T’and EFT' <: T” then EF T <:
T

Proof We show by induction off thatifEFT <: T’ <: T” thenE+T <: T” and
thatifEFT” <: T’ <: T thenE+T” <: T: we shall show the former case, as the latter is
symmetric. If eitheE =T <: T’ orEF T’ <: T" was proved usin¢Sub Public/Tainted)
then we use Lemm@ Otherwise, we proceed by case analysig owe shall show the
case wheM = Ch{?M, !N} U: the others are similar. Since we have already covered the
case wher& T <: T’ andE + T’ <: T” were proved usingSub Public/Taintedthe
only remaining possibility is thgSub I/O)was used for both judgements, in which case
T =Ch{M',IN'} U’ andT’ = Ch{?M"IN"} U’, and we hav&E - M « M’ < M",
EFN« N« N"andE U <:> U’ <:>U". By transitivity, we haveE - M « M”
andE F N < N”, and by induction we havé - U <:>U", so we us€Sub I/O)to get
EFT <:T” as required. O

Lemma 12 (Substitutivity). IfE,xT,FF 7and E-M: T then EF{M«x} - 7{M«x}.
Proof  Aninduction on the proof oE,x:T,F + 7. ]

Proposition 1 (Inversion).

(1) fEFL:vCh{?M',IN'} T then either:
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(a) L is of the formvM, where E- M : Ch{vL’,...} T"and EFvCh {L'} T’ <:
vCh {M'/IN'} T, or
(b) L is not of the fornvM, and E TaintedvCh {?M’,IN’} T).
(2) fEFL:Ch{?M',IN'} T then either:
(@) L is of the form x, where XU € E and E-U <: Ch{?M',IN'} T, or
(b) L is not of the form x, and E Tainted Ch{?M’,IN’} T).
(3) FEFL: (mx<yT,U) then either:
(a) Lis of the form(M’,N), where E-M : T and E- M’ : T and and B- M < M’
and E- N : U{x~—M}{y«—M’'}, or
(b) Lis not of the form(M,N), and EF Tainted (tx < y:T,U)).
(4) fEFL:T+U then either:
(a) Lis of the forminl M, where E-FM : T, or
(b) L is of the forminr N, where B- N : U, or
(c) Lis not of the forminl M or inr N, and EF Tainted T 4+ U).
(5) If E+ L: Ok S then either:
(a) Lis of the formT, where E- S, or
(b) Lis not of the formT, and EF Tainted Ok S).

Proof A case analysis on the typing bf For example, iE L : (Tx <y:T,U) then
we have thakE L : V (without using(Msg Subsum))andE -V <: (rx <y:T,U). We
then have a case analysis on the prodE¢fV <: (tx <y:T,U):

- If EFV < (Tx<y:T,U) used(Sub Split)or (Sub Match)thenV = (rx <y:T’,U’)
whereE - T’ <: T andE, xT',y:T/ x<yrU’ <:U. SinceE - L: (Tx <y:T’,U’)
without the use of subtyping, we have tHamust be of the form(M,N) where
EFM:T andE N : U'{x—M}{y—M}. By Lemmal2, E - U {x—M} <:
U{x<—M}, and so by(Msg SubsumE + M : T andE - N : U{x—M}{y—M},
as required.

— If Lis of the form(M,N) andE -V <: (split x<y:T,U) usedSub Public/Tainted)
thenE I Public(V) andE I Tainted (split x < y:T,U)). SinceE F L : V without
using (Msg Subsum)we must have/ = (x <y ::T’,U’) with E- M : T’ and
E - N:U'{x—M}{y-—M}. By (Public Split)or (Public Match) we must havé -
Public(T’) and E,x:T',y:T’,x < y I Public(U’), and hence by Lemmak2 E +
Public(U’{x« L }{y<M}). By (Tainted Split) we must havée +- TaintedT) and
E,y:T  TaintedU {x—_}), and hence by Lemm2, it must be the case th&t+-
TaintedU {x— L }{y«<M}). Thus, by(Sub Public/Taintedand(Msg Subsum)we
haveE+M: T andEF N :U{x—L}{y—M} with Et L <M as required.

— If Lis of the form(M,N) andE -V <: (matchx <y:T,U) usedSub Public/Tainted)
then the proof is similar to the previous case, but with a use of Leihma

— If Lis not of the form(M,N) andE FV <: (Tt <y:T,U) used(Sub Public/Tainted)
thenE I Tainted (x:T,U)), as required.

The other cases are similar. a
Proposition 2 (Subject Congruence)lf E - P and P= P’ then E- P'.

Proof  Aninduction on the proof oP = P'. |
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Proposition 3 (Subject Reduction).If E - P anderase(P) = Q and Q— Q' then E-
P’ anderase(P') = Q for some P.

Proof  An induction on the proof oP — P/, making use of Lemma2 and Proposi-
tions1 and2.
|

Proposition 4 (Erasure respects reduction)lf P — P’ thenerase(P) — erase(P’).

Proof First show that erasure respects subject congruence, by induction on the deriva-
tion. The result then follows by induction on the derivatiorPofs P’.
O

Lemma 13 (Env is canonical).For all P, env(P) is canonical.
Proof A directinduction orP. |

Proof of Theorem 1 If E+ P and E is generative then P is safe for conditional
secrecy.

Proof  Suppose thaP —* new fi:U; (secretM amongstN | out !x M :: L | P'). By
Propositionst, 2 and3, we getE - newi:T; (secretM amongstN | out Ix M:: L | P).
The derivation of the latter must involve the following judgments:

— E,A:T I secretM amongstN | out Ix M :: L | P/
by (Proc Res)with T generative;
— E,A:T,env(P) - secretM amongstN andE, A:T - out IxM:: L | P’
by (Proc Par Mutual)sinceenv(out !x M :: L) = env(secretM amongstN) = &;
— E,A:T,env(P) Fout!x M:: L andE,f:T - P/
by (Proc Par Mutual)sinceenv(out Ix M :: L) = &;
— E,f:T,env(P) =M :vCh {?2N} T by (Proc Secret Cap)
— E,A:T,env(P) M :U, E,f:T,env(P),L < LI Public(U) by (Proc Output)

LetE’ = E,A:T,env(P'). SinceE andT are generative, LemniB gives us thaE' is
canonical. Sinc&' - M : vCh {?N} T, by Propositiorl we have two cases:

(1) If M =vM’ whereE' - M’: Ch{vN’,...} T and

E’FvCh {N'} T <:vCh {?N} T, then we have two sub-cases:

(@) If E'FVvCh{N'} T’ <: vCh {?N} T used(Sub Public/Tainted}hen
E’' F TaintedvCh {?N} T), and so fron(Tainted I)or (Tainted O)we have
E'-N< L and henc&’ =N <N/,

(b) If E'’+=VvCh {N'} T <:vCh {?N} T used(Sub I)or (Sub O)then we have
E'FN<N.

In either subcase, we have ti#t- N < N’. By Propositionl we have two further

sub-cases:

(@) If M =ywhere(y:U’) e E' andE’ U’ <: Ch{vN',...} T’ then we have two
sub-sub-cases:
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i. If E'+U’ <:Ch{vN',...} T' used(Sub Public/Tainted}hen
E’ F TaintedvCh {?N’} T’), and so from(Tainted I)or (Tainted O)we
haveE’' - N’ < 1 and henc&’ - N’ < L.
i. If E'FU’<:Ch{vN’,...} T’ used(Sub I)or (Sub O)then we have
U’ =Ch{vN" ...} T”, and scE' - N’ < N”.
Now, sinceE’ - vy: U, we have thaE’ - vCh {N"} T” <: U, which
gives us to sub-sub-sub-cases:
A. If E'FvCh {N"} T” <: U used(Sub Public/Taintedjhen we have
E’ - Public(vCh {N”} T"), and so from(Public I) or (Public O)we
haveE’ - N” < 1 and soE’ - N” < L.
B. If E' -vCh {N”} T"” <: U used(Sub I)or (Sub O)then we have
U =vCh {?M"” IN"} T whereE' - N” < N”". Since
E’,L < L Public(U), (Public I) or (Public O)gives us that
E,L< LFN"<1sobylLemmatE = N" <L, and hence by
transitivity E' = N” < L.
In either sub-sub-sub-case, we h&/é- N” < L, so by transitivity,
E'FN <L.
In either sub-sub-case, we hawe- N’ < L.
(b) If E’ - TaintedCh{vN’,...} T'), then from(Tainted I)or (Tainted O)we
haveE’ - N’ < | and henc&’ - N’ < L.
In either sub-case, we ha# - N’ < L, so by transitivityE' - N < L.
(2) If E’ - TaintedvCh {?N} T), then from(Tainted I)or (Tainted O)we have
E'FN< 1 and henc&’ - N < L.

In either case, we hav - N < L, soclauses(E’) - N < L, and saclauses(env(P')) -
N <L, and soP N <L as required. a

Proposition 5 (Opponent Typability).

(1) FE +L:Unand M{X} is a message with(M{X}) = {X} then EF M{L} : Un.
(2) IFE+L:Unand O[X} is an opponent then E O{L}.

Proof

(1) Aninduction onM.
(2) Aninduction onO, making use of the previous case. a

Proof of Theorem2  IfE - P, E is generative, and andiEM : Un then P is robustly
safe for conditional secrecy despie

Proof  Consider any opponer®{X}. By Proposition5, E - M : Un implies E +
O{M}. By (Proc Par Mutualand Lemmas, E - P | O{M}. By Theorem1 and our
assumption tha is generative, this implieB | O{I\7I} is safe for secrecy. HencB,is
robustly safe for secrecy despite knowledgd/of ]
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D The Calculus Extended with Symbolic Cryptography

D.1 Syntax

We extend the polarized pi calculus to the spi calculus by adding primitives for asym-
metric and symmetric encryption and decryption:

Names, Messages, Processes in spi:

I
L,M,N:= Spi message
as in Sectior?
Enc (M) encryption capability
Dec (M) decryption capability
{M}n asymmetric encryption d¥l with key N
{M}n symmetric encryption ofl with key N
PQR:= Spi process
as in Sectior?
decrypt M is {x:T }}y-1;P asymmetric decryption d¥l with key N (scope ofx is P)
decrypt M is {x:T }n;P symmetric decryption ¥l with key N (scope oix is P)
|

The operational semantics of polarized pi is extended to include appropriate reductions
for the cryptographic primitives:
Additional reduction rules for spi: P — P’

I

decrypt {M[tenc k iS {XT [ pec k-1;P — P{x—M} (Red Asymm)
decrypt {M}y is {xT };P — P{x—M} (Red Symm)

|

Ciphertexts are not intended to be used as levels, so we consider them to be least ele-
ments in the security ordering:

Additional preorder rules for spi: SFM <N

I

SE{M}N <L (Order Asymm)
SEF{M}n <L (Order Symm)

| |
D.2 Types

The additional types required to verify cryptographic protocols are taken fi@n [
note that in this paper we are only considering secrecy rather than authenticity, so we
do not include nonce types.

Types:
I 1
T,U = spi type
as in Sectiort
AKey KT asymmetric key pair fof messages
DKey KT asymmetric decryption key faf messages
EKey KT asymmetric encryption key far messages
SKeyK T symmetric key foilT messages
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A spi type isgenerativeif and only if it is a channel typ€hK T, an asymmetric key
pair typeAKey K T or a symmetric key typ&Key K T.
We extend the typing judgements from polarized pi to spi as follows:

Public and Tainted Spi Types:

I
(Public Asymm)
EFM— 1 EFN«~ L ERPublicT) EF TaintedT)

E - Public(AKey {?M,IN} T)

(Tainted Asymm)
EFM— 1 EFN— L EFPubligT) EH TaintedT)

E I Tainted AKey {?M,IN} T)

(Public Dec) (Tainted Dec)

EFM EFNe— L EFPubligT) EFM— L EFN EF TaintedT)
E F Public(DKey {?M,IN} T) E I TaintedDKey {?M,IN} T)

(Public Enc) (Tainted Enc)

EFM EFN«< L ErTaintedT) EFM~ 1 EEN EF Public(T)
E + Public(EKey {?M,IN} T) E F TaintedEKey {?M,IN} T)

(Public Symm)
EFM— 1 EFN« L EFPubligT) EF TaintedT)

E - Public(SKey {?M, N} T)

(Tainted Symm)
EFM«— 1 EFN< L EFPublic(T) Et TaintedT)

E + TaintedSKey {?M,IN} T)

Subtyping for Spi Types:
I

(Sub Asymm) (Sub Symm)
EFM—~M EFN<N EFT<>T EFM—M EFNeN EFT<>T

EF AKey {M,IN} T <: AKey {?M',IN'} T"  EF SKey{?M,IN} T <: SKey {?M’,IN'} T’

(Sub Dec) (Sub Enc)
EFM' <M EFN<SN EFT<T EFM <M ERNZSN EFT' <:T

E - DKey {"M,IN} T <:DKey {?M',IN'} T EFr EKey {"M,IN} T <: EKey {?M',IN'} T’
| |

Good Spi Message:

I

(Msg Dec) (Msg Enc)

EFL:AKey {?M,IN} T EFrL:AKey {?M,IN} T
ElDeclL:DKey {M}T EFEncL:EKey{N}T

(Msg Asymm) (Msg Symm)
EFM:T EFN:EKeyKT EFM:T EFN:SKeyKT
E-{M}n:Un E-{M}n:Un
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Good Spi Process:

I

(Proc Asymm) (Proc Symm)

E-M:Un EFN:DKeyKT ExTHP EFM:Un EFN:SKeyKT EXTFP
E I decrypt M is {xT[n-1;P E I decrypt M is {x:T }n;P

D.3 Encoding of the Extended Calculus

We will now demonstrate that the cryptographic features of the spi-calculus can be
encoded into the polarized pi-calculus. We will show the following properties of the
translation:

— Operational soundnest P — P’ in spi, then®?[P] —* P[P] | P” in polarized pi.
— Type soundnesH E + P in spi, thenZ[E] - P[P] in polarized pi.

¢ From operational soundness it is routine to establish the following additional property:

— Reflection of safetyf 2P[P] is safe for secrecy in polarized pi, thénis safe for
secrecy in spi.

and it is also routine to establish:

— Preservation of generativityf E is a generative environment in spi, th&fE] is
a generative environment in polarized pi.

Hence we can lift our type safety results from polarized pi to spi as follows:

(1) If E+ P andE is generative in polarized pi, then

(2) type soundness gives us tiafE] + 2P[P] in polarized pi, and

(3) preservation of generativity gives us tHafE] is generative, so

(4) Theoreml gives us thatP[P] is safe for secrecy in polarized pi, and so
(5) reflection of safety gives us thBtis safe for secrecy in spi.

Similar reasoning applies to robust safety. We will make these statements precise in
SectionD.5.

Note that we danot claim operational full abstraction for this translation, since
translated processes have many more reductions than the spi originals. For example,
all ciphertexts are mapped to the constantso any protocol which depends for cor-
rectness on comparing ciphertexts for equivalence will be considered unsound by this
translation.

D.4 Encoding spiinto polarized pi
Translation of spi messages to polarized pi messag8¢[M]:
I

M[x] = x

M[T] =T

MIM,N)] = (MM, M[N])
M[Dec M] = M[M] =2M [M]
M[Enc M] 2 MIM] 21 M[M]

29



Translation of spi messages to polarized pi process&’:{[M]]:

P[] £ & P[T] £ PDec M] £ 2[M] £ P[Enc M] £ 2[IM] £ stop
P[(M,N)] = 2[M] | [N]

P[{M[n] = repeatout N M

P[{M}n] £ repeatout IN M

Translation of spi processes to polarized pi processe®]P]:
I 1

PloutM N L] 2 LP[[N]] | out M[M] M[NJ :: M[L]

Pllinp M(x: T); P] inp MM](x: T[T]): P[P]

Plnewx: T;P] = newx: T[T]; P[P]

P[repeatP] = repeat P[P]

2[P| Q] = 2[P] | 2[Q]

P[stop] = stop

PlsplitMis (x: T,y:U) P] = P[M] | split M[M]is (x: T[T],y: T[U]);P[P]
P[match M is (N,y:U);P] = P[M] | match M [M] is (M[N],y: T[U]); P[P]
P[M <N] £ M[M] < M[[N]]

P[secretM amongstN] = secreth[[M]] amongstM [N]

Pldecrypt M is {x: T[-1 Pﬂ £ P[M] |inp M[N](x: T[T]); ?[P]
P[decrypt M is {x: T}n;P] = 2[M] | inp M[N]2(x: T[T]); 2[P]

Translation of spi types to polarized pi types‘I[[T]]:
I

T[ChK T] = T[[AKey KT]= ‘I[[SKeyK T] £ Chk[K] T[T]

T[?Ch K T] £ T[DKey K T] £2Ch K[K] 7[T]

T[IChK T] £ T[EKey K T] £!Ch K[K] T[T]

TI(x:T,U)] = (x: T[T], T[U])

T[OK{M1 <Na,...,Mn < Nn}] = Ok{M[M1] < M[N¢],..., M[Mn] < M[Na]}

Translation of spi kinds to polarized pi kinds % [K]:
?([[{‘M N} = {1 [M], 2 [N]}

Translation of spi environments to polarized pi environmentsE[E]:
I 1

E[XT] £ % T[T]

D.5 Correctness of the Encoding

Lemma 14 (Replication). P[N] = repeat P[N]
Lemma 15 (Respecting Substitution).

(1) MM]{x—M[N]} = M[M{x—N}].
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2) PIM}{x—M[N]} | P[N] = P[M{x—N}] | Z[N].
3) P[P]{x—M[N]} | P[N] = P[P{x—N}] | Z[N].
@) TIT){x—MN]} = T[T {xN}].

() KIK]{x—=M[N]} = K[K{x—=N}].

Proposition 6 (Operational Soundness)lf P — P’ then®[P] —* P[P'] | P” for some
compromise-free’P

Proposition 7 (Type Safety).

(1) fEFothenE[E] Fo.

(2) fEFM <N thenE[E] - M[M] < M[N].

(3) If E - Public(T) thenE[E] - Public(‘ZT[T]).

(4) If E I TaintedT) thenE[E] F Tainted Z[T]).

(5) FEFT <: T’ thenE[E] - T[T] <: T[T'].

(6) fEFM:T thenE[E] - M[M] : T[T] and E[E] - P[M].
(7) If E + P thenE[E] F P[P].

Proposition 8 (Reflection of Safety).If P[P] is safe for secrecy, then P is safe for
secrecy.

Lemma 16 (Preservation of Generativity). If E is generative, therE[E] is genera-
tive.

Theorem 3 (Safety for Spi).If E - P and E generative then P is safe for secrecy.

Theorem 4 (Robust Safety for Spi).If E - P, E generative, and and EM : Un then
P is robustly safe for secrecy despite knowledgkl of
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