
Timed Spi-calculus with Types for Secrecy and
Authenticity?

Christian Haack1 and Alan Jeffrey1,2

1 CTI, DePaul University
2 Bell Labs, Lucent Technologies

Abstract. We present a discretely timed spi-calculus. A primitive for key com-
promise allows us to model key compromise attacks, thus going beyond the stan-
dard Dolev–Yao attacker model. A primitive for reading a global clock allows
us to express protocols based on timestamps, which are common in practice.
We accompany the timed spi-calculus with a type system, prove that well-typed
protocols are robustly safe for secrecy and authenticity and present examples of
well-typed protocols as well as an example where failure to typecheck reveals a
(well-known) flaw.

1 Introduction

Models for cryptographic protocols often assume perfect cryptography— an example is
the spi-calculus [3]— and ignore the fact that session keys can be compromised given a
sufficient amount of time. Yet typical protocols for the distribution of session keys are
careful to prevent attacks that fool honest agents into accepting compromised session
keys. A security goal of such protocols is that after the end of a protocol run each
principal possesses a session key that is currently secret (and will remain secret until its
expiration time). This goal could not be expressed, for instance, in [11], which instead
uses injective agreement as a security goal for key distribution protocols. In this paper,
we extend the spi-calculus with a simple notion of time so that we can express such
security goals. We also add a primitive for key compromise, which allows us to express
key compromise attacks, thus going beyond the Dolev–Yao attacker model. A primitive
for reading a global clock allows us to express protocols based on timestamps, which
are common in practice.

Our model of time is very coarse and simple. A clock-tick represents the end of
an epoch. Protocol designers may specify that a key is a short-term secret and a key
compromise primitive cracks keys that are short-terms secrets. Cracking uses up all
time of the current epoch (and not more than that) moving on to the next epoch. So
after a clock-tick short-term secrets cannot be considered secret anymore and expire.
Cracking a key is the only interesting action that uses up time. The usual spi-calculus
actions are instantaneous. The safety of cryptographic protocols often depends on the
fact that sessions expire when waiting for input for too long. We model this by letting
input and most other statements expire with a clock-tick.

? This material is based upon work supported by the National Science Foundation under Grant
No. 0208459.

We think that our simple model of time is enough to capture important aspects of
security protocols in the presence of key compromise. On the other hand, because of
its simplicity reasoning in this model remains tractable. In order to make this point, we
have accompanied our timed spi-calculus with a type system for secrecy and authentic-
ity and prove its robust safety. We show how an attempt to typecheck the Needham–
Schroeder Symmetric Key Protocol [20] reveals its flaw and typecheck Denning–Sacco’s
fix [8] of this protocol. It turns out that proving our type system safe for short-term as-
sertions is considerably simpler than the proofs for injective agreement in [11], which
may suggest that short-term assertions are easier to reason about than injective agree-
ment.

2 Syntax
Our protocol description language is an extension of the spi-calculus. In this section,
we define its syntax: Messages are built from variables, time constants and the empty
message by concatenation, symmetric encryption and message tagging. Unlike some
other versions of the spi-calculus, we do not distinguish between variables and names.
The ciphertext {M}K represents M encrypted with symmetric key K. Key K may be an
arbitrary message, but the typing rules for honest agents require K to be a variable. The
term L(M) represents M tagged by label L. Label L may be an arbitrary message, but the
typing rules for honest agents require L to be a variable. Message tagging is a common
technique for avoiding type confusion attacks [17, 4] and is often treated explicitly in
typed spi-calculi. A ciphertext that is formed by honest principals is typically of the
form {l(M)}k, where k is a secret key and l is a public message tag, whose purpose it
is to distinguish the plaintext l(M) from other plaintexts that are encrypted by the same
key k.

Messages:

x,y,z,k, l,m,n variables and names
s, t ∈ N discrete time
K,L,M,N ::= message

x variable or name
t time
() empty message
(M,N) M concatenated with N
{M}K M encrypted with symmetric key K
L(M) M tagged by L

As usual for spi-calculi, the process language includes a π-calculus extended with prim-
itives for encryption. The importance of this paper is the inclusion of the operation
crack M is {x:T}y:U . This operation gives attackers the capability of cracking short-term
keys given a sufficient amount of time. Thus, the attacker capabilities that we model go
beyond the standard Dolev–Yao model. We also include an operation clock(x:T) for
reading a global clock. This clock-operation permits to express protocols with times-
tamps, which are quite common in practice.

For specification purposes, secrecy and correspondence assertions may be inserted
into programs. The meaning of secrecy assertions is the intuitive one. Correspondence

2

assertions are a standard method for specifying authenticity. They specify that in ev-
ery protocol run every end(M)-assertion must have been recently preceded by a cor-
responding begin!(M)-assertion. In this paper, we restrict our attention to short-term,
many-to-one correspondences for short-term, non-injective agreement.

Processes with Assertions:

~x:~T type-annotated variables, |~x|= |~T |
τ ∈ {lt,st} long/short qualifier (long-term or short-term)
O,P,Q,R ::= process

P | Q parallel composition
!P replication
0 inactivity
out N M asynchronous output of message M on channel N
π; P prefix π followed by P
A assertion

π ::= prefix
inp N (x:T) input x from channel N (binding x in P)
new(n:T) generating name n (binding n in T,P)
decrypt M is {x:T}K decrypting M (binding x in P)
untag M is L(x:T) untagging M (binding x in P)
split M is (x:T,y:U) splitting M (binding x in U and x,y in P)
match M is (N,x:T) matching M against (N,x) (binding x in P)
crack M is {x:T}y:U cracking key y of ciphertext M (binding x,y in P)
clock(x:T) reading current time into x (binding x in P)
begin!(M) short-term begin-assertion: begin session M

A,B,C ::= assertions
end(M) short-term end-assertion: session M has recently begun
θ(M) secrecy assertion

θ ::= secrecy predicates
τ-secret τ = st: secret for the current epoch; τ = lt: secret forever
public public

Prefixing and replication bind more tightly than parallel composition. We often elide 0
from the end of processes, write (out N M; P) for (out N M | P), write (A;P) for (A | P),
and write (new θ (n:T); P) for (new(n:T); θ(n); P). We write fv(P) for the set of free
variables of P; similarly for messages and other objects that may contain variables.

3 Semantics

The architecture of our operational semantics is inspired by [18]. It is defined as a reduc-
tion relation on states of the form (t;~n; Ā || P), where t is a natural number representing
the global time,~n is a binder for (Ā,P)’s free names, Ā is the set of correspondences that
can be ended in the particular run, and P is the process that remains to be executed. The
reduction rules are divided into a set of instantaneous reductions, which are assumed
to take no time, and a set of tick-reductions, which use up all time in the current epoch
moving on to the next epoch. The instantaneous reductions are pretty standard:

3

Structural Process Equivalence, P≡ Q:

P≡ P (Struct Refl)
P≡ Q⇒ Q≡ P (Struct Symm)
P≡ Q,Q≡ R⇒ P≡ R (Struct Trans)
Q≡ R⇒ P | Q≡ P | R (Struct Par)
P | 0≡ P (Struct Par Zero)
P | Q≡ Q | P (Struct Par Comm)
(P | Q) | R≡ P | (Q | R) (Struct Par Assoc)
!P≡ P | !P (Struct Repl Par)

Instantaneous Reductions, (t;~n; Ā || P)→ (t;~m; B̄ || Q):

P≡ P′, (t;~n; Ā || P′)→ (t;~m; B̄ || Q′), Q′ ≡ Q ⇒ (t;~n; Ā || P)→ (t;~m; B̄ || Q)
(Redn Equiv)

m 6∈ fv(~n,Q) ⇒ (t;~n; Ā || new(m:T);P | Q)→ (t;~n,m; Ā || P | Q) (Redn New)
(t;~n; Ā || out N M | inp N (x:T);P | Q)→ (t;~n; Ā || P{x←M} | Q) (Redn IO)
(t;~n; Ā || decrypt {M}K is {x:T}K ;P | Q)→ (t;~n; Ā || P{x←M} | Q) (Redn Decrypt)
(t;~n; Ā || untag L(M) is L(x:T);P | Q)→ (t;~n; Ā || P{x←M} | Q) (Redn Untag)
(t;~n; Ā || split (M,N) is (x:T,y:U);P | Q)→ (t;~n; Ā || P{x,y←M,N} | Q) (Redn Split)
(t;~n; Ā || match (M,N) is (M,x:T);P | Q)→ (t;~n; Ā || P{x←N} | Q) (Redn Match)
(t;~n; Ā || clock(x:T);P | Q)→ (t;~n; Ā || P{x←t} | Q) (Redn Clock)
(t;~n; Ā || begin!(M);P | Q)→ (t;~n; Ā,end(M) || P | Q) (Redn Begin)

Tick-Reductions, (t;~n; Ā || P)
σ
→ (t +1;~n; /0 || Q):

(Tick Par)
(t;~n; Ā || P)

σ
→ (t +1;~n; /0 || P′) (t;~n; Ā || Q)

σ
→ (t +1;~n; /0 || Q′)

(t;~n; Ā || P | Q)
σ
→ (t +1;~n; /0 || P′ | Q′)

(Tick Crack)
P = (st-secret(K) | crack {M}K is {x:T}y:U ;Q)

(t;~n; Ā || P)
σ
→ (t +1;~n; /0 || Q{x,y←M,K})

(Tick Remain)
P is !Q, (out N M), public(M) or lt-secret(M)

(t;~n; Ā || P)
σ
→ (t +1;~n; /0 || P)

(Tick Expire)

(t;~n; Ā || P)
σ
→ (t +1;~n; /0 || 0)

We write⇒ for the reflexive and transitive closure of (→∪
σ
→).

The tick-reduction rule (Tick Par) ensures that a clock-tick happens simultaneously
in every branch of a parallel composition. crack operates as expected and uses up time.
Process replication and output remain alive in the next epoch. Importantly, every other
syntactic form expires with a clock-tick, degenerating to the null-process. In particular,
if a process waits for input for more than one epoch it aborts and declines to accept
later incoming messages. Many security protocols depend on this kind of behavior, and
we have decided to make expiring input the default in our process calculus. Because

4

process replication survives clock-ticks, we can express the capability to start a session
at any time in the future. Our choice to let asynchronous output survive clock-ticks
is a bit arbitrary. A language where output expires would probably have been equally
suitable for modeling security protocols.

Definition 1 (Safety). P is safe for secrecy iff (s; fv(P); /0 || P) 6⇒ (t;~n; Ā || public(N) |
τ-secret(M) | out N M |Q). P is safe for authenticity iff (s; fv(P); /0 || P)⇒ (t;~n; Ā || end(M) |
Q) implies end(M) ∈ Ā. P is safe iff it is both safe for secrecy and authenticity.

Definition 2 (Opponent Processes). A process is an opponent process iff its only as-
sertions are of the form public(M) and all its type annotations are the special type Un.

Definition 3 (Robust Safety). A process P is robustly safe iff (P | O) is safe for all
opponent processes O.

Our type system is designed so that well-typed processes with public free names are
robustly safe:

Theorem (Robust Safety) If (~n:~T ` public(~n)) and (~n:~T ` P), then P is robustly safe.

4 Examples

We will use derived forms for lists and matching against tagged lists. Their definition
uses derived forms for list types as type annotations. Type annotations have no impact
operationally and the definition of list types is postponed to the type system.

Derived Forms for Lists and Matching Against Lists:

〈〉
∆
= () 〈M〉

∆
= (M,()) 〈M,~N〉

∆
= (M,〈~N〉)

match M is 〈N〉[Ā]
∆
= match M is (N,x:〈〉[Ā])

match M is 〈x:T 〉[Ā]
∆
= split M is (x:T,y:〈〉[Ā])

match M is 〈x:T,nxts〉[Ā]
∆
= split M is (x:T,y:〈nxts〉[Ā]); match y is 〈nxts〉[Ā]

match M is 〈N,nxts〉[Ā]
∆
= match M is (N,y:〈nxts〉[Ā]); match y is 〈nxts〉[Ā]

match M is L〈nxts〉[Ā]
∆
= untag M is L(x:〈nxts〉[Ā]); match x is 〈nxts〉[Ā]

Example 1: Establishing a session key using a nonce.

B generates nonce n
B→ A n
A generates short-term secrets kab and m
A begins! “A sending session key kab to B” and “A sending secret message m to B”
A→ B {msg1〈n,kab〉}lab, {msg2〈m〉}kab
B asserts st-secret(kab) and ends “A sending session key kab to B”
B asserts st-secret(m) and ends “A sending secret message m to B”

Bob wants to receive a secret message from Alice. To this end, he sends Alice a freshly
generated nonce n. In reply, Alice generates a short-term session key kab and sends it to
Bob together with n and encrypted by their shared long-term key lab. Alice also sends
the secret message m encrypted by kab. The names msg1 and msg2 are used as tags.

5

To express this protocol in spi, we assume that X is some finite set of principal
names and abbreviate newa,b∈X lt-secret (lab:?) for the generation of their long-term
keys and ∏x,y∈X P(x,y) for the parallel composition of all processes P(x,y). We use the
additional tags key and sec in our correspondence assertions.

P
∆
= public(net) | newa,b∈X lt-secret (lab:?); ∏a,b∈X (!PA(a,b, lab) | !PB(a,b, lab))

PA(a :?,b :?, lab :?)
∆
=

inp net (n:?); new st-secret (kab:?); begin!(key(a,kab,b)); new st-secret (m:?);
begin!(sec(a,m,b));out net ({msg1〈n,kab〉}lab, {msg2〈m〉}kab)

PB(a :?,b :?, lab :?)
∆
=

new public (n:?); out net n; inp net (x:?,u:?); decrypt x is {y:?}lab;
match y is msg1〈n,kab:?〉[?]; st-secret(kab); end(key(a,kab,b));
decrypt u is {v:?}kab; match v is msg2〈m:?〉[?]; st-secret(m); end(sec(a,m,b))

This protocol is robustly safe: Bob only accepts the session key kab if received shortly
after he generated nonce n. Because the ciphertext contains the fresh nonce, Bob knows
that it must have been formed recently and that it is not a replay of an old message.
Consequently, the session key that is contained in the ciphertext is still a secret and A
has recently begun the key(A,kab,B)-session. Bob’s second secrecy and end-assertions
are safe, because Bob’s session expires before opponents can possibly have cracked the
session key. With appropriate type annotations this protocol typechecks.

Example 2: Needham–Schroeder Symmetric Key Protocol (NSSK). In this protocol,
Alice and Bob want to establish a short-term session key kab via key server S using
long-term keys las and lbs. NSSK is not robustly safe and, by the robust safety theorem,
does not typecheck.

A generates nonce na
A→ S A,B,na
S generates short-term secret kab
S begins! init(kab,A,B) and resp(kab,B,A)
S→ A {msg2〈na,B,kab,{msg3〈A,kab〉}lbs〉}las
A asserts st-secret(kab) and ends init(kab,A,B)
A→ B {msg3〈A,kab〉}lbs
B generates nonce nb
B→ A {msg4〈nb〉}kab
A→ B {msg5〈nb〉}kab
B asserts st-secret(kab) and ends resp(kab,B,A)

Alice’s secrecy- and end-assertions are safe. Bob’s secrecy and end-assertions, however,
are unsafe. The problem is that msg3 may be a replay from an old protocol run. Here is
an opponent process O that compromises this protocol; (NSSK | O) is unsafe for both
secrecy and authenticity:

O
∆
= inp net (m3:Un); out net m3; // monitoring msg3

inp net (m4:Un); out net m4; // monitoring msg4
crack m4 is {x:Un}kab:Un; // cracking short-term key kab
inp net (m′3:Un); // intercepting msg3 from a later protocol run
out net m3; // sending m3 instead of m′3 to Bob
out net kab // publishing old key kab

6

The output statement (out net m3) results in a violation of Bob’s end-assertion, be-
cause Bob wants to end an old resp(kab,B,A)-session, but is only entitled to end a
resp(kab′,B,A)-session, where kab′ is the new session key that is contained in mes-
sage m′3. The output statement (out net kab) obviously violates Bob’s secrecy assertion
st-secret(kab).

5 Type System
For the type system we extend the set of assertions from Section 2:

Type-Level Assertions:

A,B,C ::= assertions
. . . as defined in Section 2
M : T M has type T
fresh(N) N is a fresh nonce
now(N) N is the current time
N-stampedt(A) A is stamped by time N
N-stampedn(A) A is stamped by nonce N

Type-level assertions are needed to define type environments: An environment is simply
an assertion set. Let E,F,G, Ā, B̄,C̄ range over environments. An important judgment
of our system is assertion entailment, E ` Ā. We usually use meta-variables E,F,G
left of ` and Ā, B̄,C̄ right of `. We define the subjects of environments: subj(/0)

∆
=

/0; subj(E,M:T)
∆
= subj(E) ∪ {M}; subj(E,A)

∆
= subj(E) otherwise. Let (E ` ¦) iff

fv(E) ⊆ fv(subj(E)). We often write (M1, . . . ,Mn):(T1, . . . ,Tn) for {M1:T1, . . . ,Mn:Tn},
write ~M:T for {M:T | M ∈ ~M}, write θ{~M} for {θ(M) | M ∈ ~M}, write end{~M} for
{end(M) | M ∈ ~M}, write fresh{~N} for {fresh(N) | N ∈ ~N}, and write N-stampedi(Ā)
for {N-stampedi(A) | A ∈ Ā} if i ∈ {t,n}.

Types:

T,U,V,W ::= types
Top well-typed text
Un public text
τ-Secret τ-secret
τ-Key(~M) principals ~M’s shared τ-key
Tag(X) tag of type-scheme X
τ-Auth(K, ~M) plaintext to be authenticated by principals ~M’s shared τ-key K
(x:T,U) T -text paired with U-text (binding x in U)
Ok(Ā) empty text with precondition Ā

X ,Y,Z ::= type-schemes for tags
T → τ-Auth(k:U,~x:~V) text T to tagged text τ-Auth(k,~x) (binding k,~x in T,U,~V)

A type T is called generative iff T = Ok(Ā) implies Ā = /0. Names generated by new

are required to have generative types.
Types include a top type, dependent pair types, a type Un for public messages and

types τ-Secret (where τ ∈ {lt,st}) for long- or short-term secrets. In addition, there are
the following types:

7

– The key type τ-Key(~M) is the type of secret keys shared by principals ~M.
– The ok-type Ok(Ā) is a type for the empty message. In order to assign this type to

the empty message in environment E, it is required that (E ` Ā).
– The authentication type τ-Auth(K, ~M) is a type of tagged messages that require

authentication by principals ~M’s shared τ-key K.
– The tag type Tag(T → τ-Auth(k:U,~x:~V)) is a type of tags l that may tag mes-

sages M of type T{k,~x←K,~N}. The type of the resulting tagged message l(M) is
τ-Auth(K,~N).

For instance, consider the following tag:

l : Tag((x:st-Secret, Ok(end(sec(p,x,q))))→ st-Auth(k:st-Key(p,q), p:Un,q:Un))

In environment E =(A:Un,B:Un,kab:st-Key(A,B),m:st-Secret,end(sec(A,m,B))), this
tag can be used to tag message 〈m〉 (= (m,())) forming l〈m〉 of type st-Auth(kab,A,B),
which can then be authenticated by encryption with kab resulting in {l〈m〉}kab. Type-
schemes for tags are a form of dependent types. Technically, they resemble type-schemes
for polymorphic data constructors in languages like Haskell or ML (with the difference
that binders range over messages instead of types).

Ok-types are important as a tool to “statically communicate” assertions between
parallel processes for the purpose of typechecking. Typically, the set Ā in Ok(Ā) con-
tains assertions of the form end(M) indicating that it is safe to end M-sessions. When
typechecking a sender of the empty message at type Ok(end(M)), the typechecker is
required to prove that it is safe to end M-sessions. On the other hand, when typecheck-
ing a receiver of a message of type Ok(end(M)), the typechecker may use that it is safe
to end M-sessions.

Subtyping, T ≤U:

(Sub Refl)

T ≤ T

(Sub Top)

T ≤ Top

(Sub Key)

τ-Key(~M)≤ τ-Secret

(Sub Tag)

Tag(X)≤ Un

(Sub Pair)
T ≤ T ′ U ≤U ′

(x:T,U)≤ (x:T ′,U ′)

(Sub Pair Un)
T ≤ Un U ≤ Un

(x:T,U)≤ Un

(Sub Ok Un)

Ok()≤ Un

(Sub Env)
E ` ¦ fv(T,U)⊆ fv(E) T ≤U

E ` T ≤U

The rule (Sub Key) expresses that long- or short-term keys are long- or short-term
secrets, and (Sub Tag) expresses that tags are public. Pair types are covariant, by (Sub
Pair). The rules (Sub Ok Un) and (Sub Pair Un) express that the empty message and
pairs of public messages may be published.

Step-Function, step(Ā):

step(T)
∆
= Un, if T ≤ st-Secret or T = st-Auth(K, ~M); step(Ok(Ā))

∆
= Ok(step(Ā));

step(x:T,U)
∆
= (x:step(T),step(U)); step(T)

∆
= T, otherwise; step(end(M))

∆
= /0;

step(st-secret(M))
∆
= {public(M)}; step(fresh(N))

∆
= step(now(N))

∆
= /0;

step(M:T)
∆
= {M:step(T)}; step(A)

∆
= {A}, otherwise; step(Ā)

∆
= ∪{step(A) | A ∈ Ā}

8

The step-function maps an assertion set to the assertion set that it evolves into with
a clock-tick: assertions fresh(N) or now(N) are dropped, st-secret(M) is mapped to
public(M), short-term types are mapped to Un, and all other clauses are the identity or
defined by structural induction. We call an assertion set Ā long-term if step(Ā) = Ā, and
short-term otherwise.

Assertion Entailment, E ` Ā:

(Id)
E,A ` ¦

E,A ` A

(And) E ` ¦
E ` A1 · · · E ` An

E ` A1, . . . ,An

(Public)
E `M : Un

E ` public(M)

(Secret)
E `M : τ-Secret

E ` τ-secret(M)

(Time)
E ` ¦

E ` t : Un

(Nonce Stamp)
E ` N : Top, A

E ` N-stampedn(A)

(Time Stamp)
E ` N : Top, now(N), A

E ` N-stampedt(A)

(Sub)
E `M : T E ` T ≤U

E `M : U

(Encrypt)
E ` K : τ-Key(~N), M : τ-Auth(K,~N)

E ` {M}K : Un

(Encrypt Un)
E ` K : Un, M : Un

E ` {M}K : Un

(Tag Un)
E ` L : Un, M : Un

E ` L(M) : Un

(Tag) ρ = (k,~x←K,~N)

τ = st⇒ step(T)≤ Un τ = lt⇒ step(T,U,~V) = (T,U,~V)

E ` L : Tag(T → τ-Auth(k:U,~x:~V)), M:T{ρ}, K:U{ρ}, ~N:~V{ρ}
E ` L(M) : τ-Auth(K,~N)

(Pair)
E `M : T, N : U{x←M}

E ` (M,N) : (x:T,U)

(Empty)
E ` Ā

E ` () : Ok(Ā)

The rule (Time) expresses that time values are public. (Nonce Stamp) is typically used
to stamp short-term assertions. Importantly, stamped assertions are long-term. Thus, the
rule (Nonce Stamp) turns short-term assertions into long-term assertions by associating
them with a nonce N. The rule (Time Stamp) is similar. The process-level typing rules
(Nonce Unstamp) and (Time Unstamp) presented below, then permit a “receiver” of
an assertion N-stampedi(A) to use A, if he can validate that N is a fresh nonce or the
current time. Note that the rule (Time Stamp) requires that the “creator” of a times-
tamped assertion knows that the stamp is current: it would be dangerous if he used a
future timestamp. The rule (Encrypt) is consistent with our informal interpretation of
authentication types; ciphertexts are public. (Encrypt Un) and (Tag Un) allow us to type-
check Dolev–Yao attackers; typically, these rules are not used for type-checking honest
agents. Perhaps the most interesting typing rule is (Tag) for formation of trusted tagged
messages. The premise for τ = st enforces that short-term keys may not encrypt long-
term secrets; a requirement that is obviously needed for long-term secrecy. The premise
for τ = lt enforces that long-term keys may not encrypt messages of short-term types.
Without this premise the system would be unsafe because a receiver of a short-term
assertion under a long-term key has no guarantee that the short-term assertion is still

9

valid at the time of reception. It is still possible to communicate short-term assertions
under long-term keys, provided the short-term assertions are associated with nonces or
timestamps using (Nonce Stamp) and (Time Stamp). The rule (Pair) is the standard rule
for dependent pair types.

Well-Typed Processes, E ` P:

(Par)
E ` P E ` Q

E ` P | Q

(Repl)
E ` P step(E) ` P

E ` !P

(Zero)
E ` ¦

E ` 0

(Begin)
E, end(M) ` P

E ` begin!(M); P

(Out)
E ` N : Un, M : Un

E ` out N M

(In) x 6∈ fv(E)
E ` N : Un E, x : Un ` P

E ` inp N (x:Un); P

(New) n 6∈ fv(E), T generative
E, n : T, fresh(n) ` P

E ` new(n:T); P

(Clock) x 6∈ fv(E)
E, x : Un, now(x) ` P

E ` clock(x:Un); P

(Crack) x,y 6∈ fv(E)
E `M : Un step(E), x : Un, y : Un ` P

E ` crack M is {x:Un}y:Un; P

(Decrypt) x 6∈ fv(E)

E `M : Un, K : τ-Key(~N) E, x : τ-Auth(K,~N) ` P

E ` decrypt M is {x : τ-Auth(K,~N)}K ; P

(Decrypt Un) x 6∈ fv(E)
E `M : Un, K : Un E, x : Un ` P

E ` decrypt M is {x:Un}K ; P

(Untag Un) x 6∈ fv(E)
E `M : Un, L : Un E, x : Un ` P

E ` untag M is L(x:Un); P

(Untag) x 6∈ fv(E) ρ = (k,~y←K,~N) E ` T{ρ} ≤U
E ` M : τ-Auth(K,~N), L : Tag(T → τ-Auth(k:U,~y:~V)) E, x : U ` P

E ` untag M is L(x:U); P

(Split) x,y 6∈ fv(E)
E `M : (x:T,U) E, x : T, y : U ` P

E ` split M is (x:T,y:U); P

(Split Un) x,y 6∈ fv(E)
E `M : Un E, x : Un, y : Un ` P

E ` split M is (x:Un,y:Un); P

(Match) y 6∈ fv(E) ρ = (x←N)
E `M : (x:Top,T), N : Top E, y : T{ρ} ` P

E `match M is (N,y:T{ρ}); P

(Match Un) x 6∈ fv(E)
E `M : Un, N : Un E, x : Un ` P

E `match M is (N,x:Un); P

(Nonce Unstamp) E,A ` P
E ` fresh(N), N-stampedn(A)

E ` P

(Time Unstamp) E,A ` P
E ` now(N), N-stampedt(A)

E ` P

(Ok) E, Ā ` P
E `M : Ok(Ā)

E ` P

Among the process rules, (Repl) for process replication is noteworthy, because it re-
quires to typecheck the body P of a replicated process !P both in the current envi-
ronment E and the future environment step(E). Checking P in E is needed because

10

replicated processes unfold instantaneously (by (Redn Equiv)); checking P in step(E)
is needed because replicated processes survive clock-ticks (by (Tick Remain)); because
the step-function is idempotent, it suffices to check P in environment step(E) instead of
stepn(E) for all n≥ 1. For typechecking the process continuation P in (new(x:T);P) or
(clock(x:Un);P), we may assume that x is fresh or current. Remember that specification
processes end(M) and θ(M) are both processes and assertions, so their typing rules are
given with the rules for assertion entailment.

6 Typed Examples
We will annotate the earlier example with types using these derived forms:

Derived Forms for List Types:

〈〉[Ā]
∆
= Ok(Ā); 〈x:T 〉[Ā]

∆
= (x:T,Ok(Ā)); 〈N〉[Ā]

∆
= (x:Top,Ok(Ā));

〈x:T,nxts〉[Ā]
∆
= (x:T,〈nxts〉[Ā]); 〈N,nxts〉[Ā]

∆
= (x:Top,〈nxts〉[Ā])

Example 1: Establishing a session key using a nonce. Recall Example 1 from Section 4.
Here are the types for the global names:

net : Un Ā(n,k, p,q)
∆
= n-stampedn(k:st-Key(p,q), end(key(p,k,q)))

msg1 : Tag(〈n:Un,k:Top〉[Ā(n,k, p,q)]→ lt-Auth(l:lt-Key(p,q), p:Un,q:Un))
msg2 : Tag(〈m:st-Secret〉[end(sec(p,m,q))]→ st-Auth(k:st-Key(p,q), p:Un,q:Un))

In the type of msg1, note that the typing rules force us to stamp the type assertion
k:st-Key(p,q). If we directly annotated the binder k by short-term type st-Key(p,q),
then the protocol would not typecheck: Alice would not be permitted to form the mes-
sage msg1〈t,kab〉 because step(st-Key(p,q)) 6= st-Key(p,q) in violation to the premise
for τ = lt in the (Tag)-rule. Here is the type-annotated spi-calculus specification:

PA(a:Un,b:Un, lab:lt-Key(a,b))
∆
=

inp net (n:Un); new st-secret (kab:st-Key(a,b)); begin!(key(a,kab,b));
new st-secret (m:st-Secret); begin!(sec(a,m,b));
out net ({msg1〈n,kab〉}lab, {msg2〈m〉}kab)

PB(a:Un,b:Un, lab:lt-Key(a,b))
∆
=

new public (n:Un); out net n; inp net (x:Un,u:Un);
decrypt x is {y:lt-Auth(lab,a,b)}lab;
match z is msg1〈n,kab:Top〉[Ā(n,kab,a,b)]; st-secret(kab); end(key(a,kab,b));
decrypt u is {v:st-Auth(kab,a,b)}kab;
match v is msg2〈m:st-Secret〉[end(sec(a,m,b))];
st-secret(m); end(sec(a,m,b))

Example 2: Needham–Schroeder Symmetric Key Protocol (NSSK). This protocol is
unsafe and, hence, does not typecheck. The problem is msg3:

· · ·
A→ B {msg3〈A,kab〉}lbs
· · ·

Here is the type that we want to give to the message tag:

msg3 : Tag(〈p:Un,k:st-Key(p,q)〉[]→ lt-Auth(l:lt-Key(p,q), p:Un,q:Un))

11

However, this type does not permit Alice to form the tagged message msg3〈A,kab〉
because step(st-Key(p,q)) 6= st-Key(p,q) in violation to the premises of (Tag).

Example 3: Denning–Sacco Protocol with acknowledgment. The Denning–Sacco pro-
tocol for establishing a short-term session key avoids the key compromise attack on
NSSK by including a timestamp. We have added to the Denning–Sacco protocol Bob’s
acknowledgment for receipt of session key kab, which is achieved by Bob using kab to
encrypt a tagged null-message.

A→ S A,B
S generates short-term secret kab and timestamp t
S begins! init(S,kab,A,B) and resp(S,kab,B,A)
S→ A {msg2〈t,B,kab,{msg3〈t,A,kab〉}lbs〉}las
A asserts st-secret(kab) and ends init(S,kab,A,B)
A→ B {msg3〈t,A,kab〉}lbs
B asserts st-secret(kab) and ends resp(S,kab,B,A)
B begins! ack(B,kab,A)
B→ A {msg4〈〉}kab
A ends ack(B,kab,A)

The types for the long-term keys are las:lt-Key(A,S) and lbs:lt-Key(B,S). Here are the
tag types:

msg2 : Tag(〈t:Un,q:Un,k:Top,x:Un〉[t-stampedt(k:st-Key(p,q), end(init(s,k, p,q)))]
→ lt-Auth(l:lt-Key(p,s), p:Un,s:Un))

msg3 : Tag(〈t:Un, p:Un,k:Top〉[t-stampedt(k:st-Key(p,q), end(resp(s,k,q, p)))]
→ lt-Auth(l:lt-Key(q,s),q:Un,s:Un))

msg4 : Tag(〈〉[end(ack(q,k, p))]→ st-Auth(k:st-Key(p,q), p:Un,q:Un))

7 Type Preservation

Like in other type systems for spi-calculi, robust safety is a consequence of a type
preservation theorem. In this section, we present this theorem and a few selected lem-
mas that are needed to prove it. Proofs and additional lemmas are omitted and given
in an extended version of this paper. In order to define well-typed computation states,
we extend the judgment for assertion entailment: Let (E `+ Ā) iff it is derivable by
the `-rules plus the rules (Useless Nonce) and (Useless Time) below. The relation ≤
in (Useless Time) is defined by: M ≤ N iff either M = N or M = s ≤ t = N for times
s, t ∈ N.

Well-typed Computation States, (t;~n;end{~M} || P) : ¦:

(Good State) E = (~n:~T ,end{~M}, fresh{~N},now(t))
E `+ Ā Ā ` P ~n distinct ~T generative

(t;~n;end{~M} || P) : ¦

(Useless Nonce) fv(A)⊆ fv(E)
fresh(N) 6∈ E E `+ N : Top

E `+ N-stampedn(A)

(Useless Time) fv(A)⊆ fv(E)
(∀M)(now(M) ∈ E⇒M 6≤ N) E `+ N : Top

E `+ N-stampedt(A)

12

The additional rules (Useless Nonce) and (Useless Time) allow to stamp assertions with
messages that are neither fresh nonces nor current or future times. This is safe because
the typing rules for unstamping are not applicable in such cases. Technically, these rules
are needed to prove the following lemma.

Lemma (Step Invariance) If E is basic and (E `+ Ā), then (step+(E) `+ step(Ā)).

Proof step+/step maps (Nonce Stamp) to (Useless Nonce), and (Time Stamp) to
(Useless Time). (Encrypt) is mapped to itself if τ = lt and to (Encrypt Un) if τ = st.
(Tag) is mapped to itself if τ = lt and to (Tag Un) if τ = st. ¤

Here are the definitions that are needed to fully understand the step invariance lemma:
We call environment E basic iff it is of the form E = (~n:~T ,end{~M}, fresh{~N},now(t))

for distinct~n and generative ~T . Let step+(E,now(t))
∆
= (step(E),now(t +1)).

Lemma (Cut) If E is basic, (E `+ Ā) and (Ā ` B̄), then (E `+ B̄).

This cut lemma is not hard to prove. Step invariance and cut are used to prove that tick-
reductions preserve well-typedness. More generally, we obtain the following theorem.

Theorem (Type Preservation) If ((t;~n; Ā || P) : ¦) and (t;~n; Ā || P)⇒ (s;~m; B̄ || Q),
then ((s;~m; B̄ || Q) : ¦).

8 Conclusion

Related Work. Compared to other work on the spi-calculus [3, 1, 11, 12, 10, 2, 16], the
novelty of this paper is the addition of time, key-compromising attackers and short-
term assertions for secrecy and authenticity. To the best of our knowledge, this is the
first spi-calculus type system for reasoning about short-term assertions.

There are some formal models for cryptographic protocols that deal with recency
or key compromise implicitly (without explicitly modeling time): BAN logic [5] has a
primitive formula for freshness, which allows reasoning about recency. Guttman shows
how to reason about recency for nonce-based protocols within the strand space model
[15]. Both these works are based on the assumption that protocol sessions time out be-
fore short-term keys can possibly get compromised. Paulson’s inductive method [21]
models key compromise by a rule called “Oops” for leaking short-term keys, and his
safety theorems typically require premises that certain data has not been leaked to dis-
honest principals. Recently, Gordon and Jeffrey [13] have presented a type system for
proving conditional secrecy that models key compromise in a similar way.

There are also some models that deal with time more explicitly: Evans and Schnei-
der [9] analyze time dependent security properties in tock-CSP using theorem proving
with the rank function method. Rank functions have similarities with type systems: on
the one hand, both rank functions and type systems are designed to prove safety prop-
erties without assuming a bounded number of sessions and, on the other hand, both
require less help from protocol specifiers than general theorem proving—the supply of
a rank-function or type-annotations is enough. Gorrieri, Locatelli and Martinelli [14]
present the process algebra tCryptoSPA with event-based time for expressing crypto-
graphic protocols. Both tock-CSP and tCryptoSPA seem a bit more expressive than our
timed spi-calculus. For instance, these languages can express processes that patiently

13

wait for input arbitrarily long, whereas it is not obvious how to express this in our lan-
guage. On the other hand, both tock-CSP and tCryptoSPA allow some anomalies, like
timestops, that our language omits. Bozga, Ene and Lakhnech [19] and Delzanno and
Ganty [7] model real time and present symbolic procedures for checking time sensitive
safety properties. These procedures are more automatic than typechecking; they do not
require help in the form of type annotations. On the other hand, they assume a bounded
number of sessions [19] or do not guarantee termination [7]. The Casper model checker
is based on discretely timed CSP and can analyze protocols for timed agreement and
timed secrecy [22]. It requires bounds on the size of protocols. Most of the languages
discussed in this paragraph, with the exception of [19], do not explicitly model key
compromising attackers. [19] models key compromising attackers by creating for each
short-term key a key-cracking process that accepts messages encrypted under this key,
then waits for a while and then publishes the key. In this model, attackers can crack
keys by directing ciphertexts to key-cracking processes. Key compromising attackers
could probably be modeled similarly in the other languages above, but we expect that
key-cracking processes create additional problems for some of the verification methods.

Limitations of our Model of Time. A limitation is that we cannot distinguish between
the amounts of time that it takes to timeout and the time needed for cracking short-term
keys. In reality, the former is usually much shorter than the latter. While it is often safe
to assume that timeout happens later than it really does, it sometimes prevents us from
expressing attacks. Consider, for instance, the Wide Mouthed Frog protocol (WMF):

A generates short-term key kab
A→ S A,{ti,B,kab}kas
S→ B {ts,A,kab}kbs
B asserts st-secret(kab)

There is a type confusion attack on WMF, where the attacker repeatedly intercepts the
second message and plays it back to the server as the first message of another run. The
attacker, thus, always has a message of the correct format that contains a current times-
tamp and after cracking kab he can fool either principal to accept the compromised kab
as recent. In our model, the server’s timestamp ts will always be equal to the initiator’s
timestamp ti. Therefore, the attack is not possible in the model. (Fortunately, WMF still
does not typecheck, though.) While it would not be hard to refine our model of time, it
is less clear how to refine the type system.

Future Work. Although this article deals with symmetric cryptography only, we expect
no problems to integrate this work into a more general system with public cryptography
and other cryptographic operators [12, 16]. Our type system is simple and can typecheck
many key distribution protocols from the literature [6]. While we plan to investigate
how it can be extended to verify protocols with additional intricacies, like Yahalom [5],
we do not think that such extensions are of utmost importance, because often similar,
sometimes simpler, protocols exist that achieve the same security goals and obey our
type discipline, for instance BAN’s Yahalom simplification [5]. More interestingly, we
plan to investigate if we can find similar type systems for refined models of time.

14

References
1. M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–786,

September 1999.
2. M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. In Foundations

of Software Science and Computation Structures, volume 2030 of LNCS. Springer, 2001.
3. M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi calculus. Infor-

mation and Computation, 148:1–70, 1999.
4. M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols. IEEE

Transactions on Software Engineering, 22(1):6–15, 1996.
5. M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication. Proceedings of the

Royal Society of London A, 426:233–271, 1989.
6. J. Clark and J. Jacob. A survey of authentication protocol literature. Unpublished report.

University of York, 1997.
7. G. Delzanno and P. Ganty. Automatic verification of time sensitive cryptographic proto-

cols. In K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 2988 of LNCS, pages 342–356. Springer, 2004.

8. D.E. Denning and G.M. Sacco. Timestamps in key distribution protocols. Communications
of the ACM, 24(8):533–536, 1981.

9. N. Evans and S. Schneider. Analysing time dependent security properties in CSP using PVS.
In F. Cuppens, Y. Deswarte, D. Gollmann, and M. Waidner, editors, ESORICS, volume 1895
of LNCS, pages 222–237. Springer, 2000.

10. A. D. Gordon and A.S.A. Jeffrey. Typing one-to-one and one-to-many correspondences in
security protocols. In Proc. Int. Software Security Symp., volume 2609 of Lecture Notes in
Computer Science, pages 263–282. Springer-Verlag, 2002.

11. A.D. Gordon and A.S.A. Jeffrey. Authenticity by typing for security protocols. J. Computer
Security, 11(4):451–521, 2003.

12. A.D. Gordon and A.S.A. Jeffrey. Types and effects for asymmetric cryptographic protocols.
J. Computer Security, 12(3/4):435–484, 2003.

13. A.D. Gordon and A.S.A. Jeffrey. Secrecy despite compromise: Types, cryptography and the
pi-calculus. In CONCUR 2005: Concurrency Theory, LNCS. Springer, 2005.

14. R. Gorrieri, E. Locatelli, and F. Martinelli. A simple language for realtime cryptographic
protocol analysis. In P. Degano, editor, 12th European Symposium on Programming, volume
2618 of LNCS, pages 114–128. Springer, 2003.

15. Joshua D. Guttman. Key compromise, strand spaces, and the authentication tests. Electr.
Notes Theor. Comput. Sci., 45, 2001.

16. C. Haack and A.S.A. Jeffrey. Pattern-matching spi-calculus. In 2nd IFIP Workshop on
Formal Aspects in Security and Trust, volume 173 of IFIP. Kluwer Academic Press, 2004.

17. J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security proto-
cols. In 13th IEEE Computer Security Foundations Workshop, pages 255–268. IEEE Com-
puter Society Press, 2000.

18. M. Hennessy and T. Regan. A process algebra for timed systems. Information and Compu-
tation, 117(2):221–239, 1995.

19. Y. Lakhnech L. Bozga, C. Ene. A symbolic decision procedure for cryptographic protocols
with time stamps. In CONCUR 2004: Concurrency Theory, volume 3170 of LNCS, pages
177–192. Springer, 2004.

20. R.M. Needham and M.D. Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12):993–999, 1978.

21. L.C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of
Computer Security, 6:85–128, 1998.

22. P. Ryan and S. Schneider. Modelling and Analysis of Security Protocols. Addison-Wesley,
2001.

15

Proofs

Lemma 1 (Transitivity of Subtyping). If T ≤U and U ≤V , then T ≤V .

Proof By induction on the derivation of T ≤U . Suppose D1B (T ≤U) and D2B

(U ≤V). If the last rule of either D1 or D2 is either (Sub Refl) or (Sub Top), we easily
get that T ≤ V . So suppose that neither D1 nor D2 ends in either of these rules. An
inspection of the other subtyping rules shows that then either both D1 and D2 end in
(Sub Pair), or D1 ends in (Sub Pair) and D2 in (Sub Pair Un). In the former case, we
get T ≤ V by induction hypothesis and (Sub Pair). In the latter case, we get T ≤ V by
induction hypothesis and (Sub Pair Un). ¤

The following facts are all quite obvious.

Lemma 2 (Basic Facts). fv(step(T)) ⊆ fv(T); fv(step(Ā)) ⊆ fv(Ā); subj(step(E)) =
subj(E); step(T){ρ}= step(T{ρ}); step(Ā){ρ}= step(Ā{ρ}); step(step(E))= step(E);
subj(E){ρ}= subj(E{ρ}); T ≤U ⇔ T{ρ} ≤U{ρ}.

Lemma 3 (Free Variables). If (E ` R), then (E ` ¦) and fv(R)⊆ fv(E).

Proof By induction on (E ` R)’s derivation. ¤

Lemma 4 (Environment Union). If (E ` ¦) and (F ` ¦), then (E,F ` ¦).

Proof Recall that, by definition, (E ` ¦) iff fv(E)⊆ fv(subj(E)). We have fv(E,F) =
fv(E)∪ fv(F)⊆ fv(subj(E))∪ fv(subj(F)) = fv(subj(E)∪ subj(F)) = fv(subj(E,F)). ¤

Lemma 5 (Weakening). If (E, Ā ` ¦) and (E ` R), then (E, Ā ` R).

Proof By induction on (E ` R)’s derivation. ¤

Lemma 6 (Specialization). If (E,M:U ` R) and (E ` T ≤U), then (E,M:T ` R).

Proof By induction on (E,M:U ` R)’s derivation. ¤

Lemma 7 (Substitutivity). If (E ` R), then (E{ρ} ` R {ρ}).

Proof By induction on (E ` R)’s derivation. Suppose (E ` R) and let ρ be a substi-
tution.

Proof case, R = ¦: We know that fv(E) ⊆ fv(subj(E)) and want to show that
fv(E{ρ}) ⊆ fv(subj(E{ρ})). Let x ∈ fv(E{ρ}). We distinguish two subcases. Suppose
first that x∈ fv(E)−dom(ρ). Then x∈ fv(subj(E))−dom(ρ). Then x∈ fv(subj(E){ρ})=
fv(subj(E{ρ})). Suppose now that x ∈ fv(ρ(y)) and y ∈ fv(E) ∩ dom(ρ). Then y ∈
fv(subj(E)). Then x ∈ fv(ρ(y))⊆ fv(subj(E){ρ}) = fv(subj(E{ρ})).

Proof case, (Tag): We know:

– ρ′ = (k,~x←K,~N)
– τ = st⇒ step(T)≤ Un

– τ = lt⇒ step(T,U,~V) = (T,U,~V)
– E ` L : Tag(T → τ-Auth(k:U,~x:~V)), M:T{ρ′}, K:U{ρ′}, ~N:~V{ρ′}

16

By renaming of bound variables, we may assume that (dom(ρ)∪ ran(ρ))∩{k,~x} = /0.
Note that applying the substitution ρ preserves the two implications for τ = st and τ = lt.

Define ρ′′ ∆
= (k,~x←K{ρ},~N{ρ}). Note that (ρ′;ρ) = (ρ;ρ′′). By induction hypothesis,

we get:

– E{ρ} ` L{ρ} : Tag(T{ρ}→ τ-Auth(k:U{ρ},~x:~V{ρ})),
M{ρ} : T{ρ}{ρ′′}, K{ρ} : U{ρ}{ρ′′}, ~N{ρ} : ~V{ρ}{ρ′′}

Then by (Tag):

– E{ρ} ` L{ρ}(M{ρ}) : τ-Auth(K{ρ},~N{ρ})
Proof case, (Untag): We know:

– ρ′ = (k,~y←K,~N)
– E ` T{ρ′} ≤U
– E ` M : τ-Auth(K,~N), L : Tag(T → τ-Auth(k:U,~y:~V))
– E, x : U ` P

By renaming of bound variables, we may assume that (dom(ρ)∪ran(ρ))∩{x,k,~y}= /0.

Define ρ′′ ∆
= (k,~y←K{ρ},~N{ρ}). Note that (ρ′;ρ) = (ρ;ρ′′). By induction hypothesis,

we get:

– E{ρ} ` T{ρ}{ρ′′} ≤U{ρ}
– E{ρ}` M{ρ} : τ-Auth(K{ρ},~N{ρ}), L{ρ} : Tag(T{ρ}→ τ-Auth(k:U{ρ},~y:~V{ρ}))
– E{ρ}, x : U{ρ} ` P{ρ}

Then by (Untag):

– E{ρ} ` untag M{ρ} is L{ρ}(x:U{ρ}); P{ρ}
The other proof cases are similar. ¤

Let M ≤ N iff either M = N or M = s ≤ t = N for times s, t ∈ N. Let (E `+ Ā) iff it is
derivable by the `-rules plus the rules (Useless Nonce) and (Useless Time) below.

Good Computation States, (t;~n;end{~M} || P) : ¦:

(Good State) E = (~n:~T ,end{~M}, fresh{~N},now(t))
E `+ Ā Ā ` P ~n distinct ~T generative

(t;~n;end{~M} || P) : ¦

(Useless Nonce) fv(A)⊆ fv(E)
fresh(N) 6∈ E E `+ N : Top

E `+ N-stampedn(A)

(Useless Time) fv(A)⊆ fv(E)
(∀M)(now(M) ∈ E⇒M 6≤ N) E `+ N : Top

E `+ N-stampedt(A)

Lemma 8 (Free Variables). If (E `+ R), then (E ` ¦) and fv(R)⊆ fv(E).

Proof Like the proof of Lemma 3 with two additional proof cases for the additional
rules. ¤

`+ does not satisfy weakening. For instance, (n : Top `+ n-stampedn(end())) but
(n : Top, fresh(n) 6`+ n-stampedn(end())). However, the following instances of weak-
ening hold:

17

Lemma 9 (Weakening). If (E,end(M) ` ¦) and (E `+ Ā), then (E,end(M) `+ Ā). If
n 6∈ fv(E), (E,n:T, fresh(n) ` ¦) and (E `+ Ā), then (E,n:T, fresh(n) `+ Ā).

Proof Each of the two statements is proved by induction of the derivation, just like
in the proof of Lemma 5. The only rules that may possibly cause problems are the
new rules (Useless Nonce) and (Useless Time). It is easy to see that neither of these
rules causes problems for the first statement. It is also easy to see that (Useless Time)
does not cause a problem for the second statement. So the only rule that is potentially
problematic is (Useless Nonce) in the proof of the second statement. We will do this
proof case: Suppose that n 6∈ fv(E), (E,n:T, fresh(n) ` ¦) and (E `+ n-stampedn(A)).
Suppose, furthermore, that the derivation of this last judgment ends in (Useless Nonce).
Then (E `+ n : Top). Then n∈ fv(E), by Lemma 8. But that contradicts our assumption
that n 6∈ fv(E). ¤

Call environment E basic iff it is of the form E = (~n:~T ,end{~M}, fresh{~N},now(t)) for

distinct~n and generative ~T . Let step+(E,now(t))
∆
= (step(E),now(t +1)).

Lemma 10 (Step Invariance). Let E be basic. If (E ` ¦), then (step+(E) ` ¦). If (E `
T ≤U), then (step+(E)` step(T)≤ step(U)). If (E `+ Ā), then (step+(E)`+ step(Ā)).

Proof By induction on the derivation of (E `+ R). step+/step maps (Nonce Stamp)
to (Useless Nonce), and (Time Stamp) to (Useless Time). (Useless Nonce) is mapped
to itself and so is (Useless Time). (Encrypt) is mapped to itself if τ = lt and to (Encrypt
Un) if τ = st. (Tag) is mapped to itself if τ = lt and to (Tag Un) if τ = st. ¤

Lemma 11 (Cut). If E is basic, (E `+ Ā) and (Ā ` B̄), then (E `+ B̄).

Proof By induction on (Ā ` B̄)’s derivation. ¤

Lemma 12 (Name Types). If (E `+ n:U), then E = (E ′,n:T) and (E ` T ≤ U) for
some T,E ′.

Proof The type U of n can only have been introduced by (Id), possibly followed by
one or more (Sub). ¤

Lemma 13 (Trusted Keys and Tags are Names). Suppose E is basic.

(a) If (E `+ K : τ-Key(~N)), then K is a name and E = (E ′, K : τ-Key(~N)) for some E ′.
(b) If (E `+ L : Tag(X)), then L is a name and E = (E ′, L : Tag(X)) for some E ′.

Proof The rules for encryption and tagging do not introduce key or tag types. Sub-
sumption does not either, because key and tag types are minimal types. Therefore, key
and tag types only get introduced by (Id). ¤

Lemma 14. If E is basic, then (E 6`+ M : τ-Secret, M : Un).

Proof Suppose E is basic and, towards a contradiction, (E `+ M : τ-Secret, M : Un).
If M was a variable, then Un and τ-Secret would have a common subtype, by Lemma 12
and functionality of basic environments. But Un and τ-Secret do not have a common
subtype, and so M is not a variable. M cannot be of the form M = {N}K , because

18

τ-Secret is not a supertype of Un. M cannot be of the form M = L(N), because τ-Secret

is neither a supertype of Un nor of τ′-Auth(K,~N′) for any τ′,K,~N′. M cannot be a pair,
because τ-Secret is neither a supertype of a pair type nor Un. M cannot be the empty
message, because τ-Secret is not a supertype of any ok-type. ¤

The following lemma is essential for proving type preservation for the reduction se-
mantics. Its proof is less obvious than in type systems that are purely syntax-directed.
The difficulty arises because of subtyping and rules like (Encrypt Un) and (Tag Un),
which are necessary to model attackers as well-typed processes. This is typical for type
systems for cryptographic protocols. The type system is carefully designed so that the
following inversion properties hold.

Lemma 15 (Rule Inversions). Suppose E is basic.

(a) If (E `+ {M}K : Un, K : τ-Key(~N)), then (E `+ M : τ-Auth(K,~N)).
(b) If (E `+ {M}K : Un, K : Un), then (E `+ M : Un).
(c) If (E `+ L(M) : τ-Auth(K,~N), L : Tag(T → τ-Auth(k:U,~x:~V))),

then (E `+ M : T{k,~x←K,~N}).
(d) If (E `+ L(M) : Un), then (E `+ M : Un).
(e) If (E `+ (M,N) : (x:T,U)), then (E `+ M : T, N : U{x←M}).
(f) If (E `+ (M,N) : Un), then (E `+ M : Un, N : Un).
(g) If (E `+ M : Ok(Ā)), then (E `+ Ā).
(h) If (E `+ fresh(N), N-stampedn(A)), then (E `+ A).
(i) If (E `+ now(N), N-stampedt(A)), then (E `+ A).

Proof Suppose E is basic.
Part (a): Suppose (E `+ {M}K : Un, K : τ-Key(~N)). The derivation of this judgment

can only end in (And), and we obtain (E `+ {M}K : Un) and (E `+ K : τ-Key(~N)). We
strip off all pointless uses of (Sub)/(Sub Refl) from the end of (E `+ {M}K : Un)’s
derivation. If the resulting derivation ended in (Encrypt Un), then we would have (E `+

K : τ-Key(~N), K : Un), in contradiction to Lemma 14. Moreover, the derivation cannot
end in (Id), because E is basic. Therefore, the derivation can only end in (Encrypt).
Then (E `+ M : τ-Auth(K,~N)).

Part (b): Similar to proof of part (a).
Part (c): Let X =(T→ τ-Auth(k:U,~x:~V)) and (E `L(M) : τ-Auth(K,~N), L : Tag(X)).

The derivation of this judgment can only end in (And). So (E ` L(M) : τ-Auth(K,~N))
and (E ` L : Tag(X)). The former judgment’s derivation can only end in either (Tag)
or (Tag Un) followed by a possibly empty sequence of applications of (Sub). So there
are D , W such that D B (E ` L(M) : W), (W ≤ τ-Auth(K,~N)) and D ends in (Tag
Un) or (Tag). Because Un 6≤ τ-Auth(K,~N), D does not end in (Tag Un), so it ends
in (Tag). Because τ-Auth(K,~N) is a minimal type, W = τ-Auth(K,~N). So there is a
type scheme X ′ = (T ′→ τ-Auth(k:U ′,~x:~V ′)) such that (E `+ L : Tag(X ′)) and (E `+

M : T ′{k,~x←K,~N}). By Lemmas 13 and 12 and functionality of E, it follows that
Tag(X) and Tag(X ′) have a common subtype. Because tag types are minimal types, it
follows that X = X ′. In particular, T = T ′. Thus, (E `+ M : T{k,~x←K,~N}).

Part (d): Suppose (E ` L(M) : Un). Then there are T , D such such that DB (E `
L(M) : T), (T ≤ Un) and D ends in either (Tag) or (Tag Un). Because authentication

19

types are not subtypes of Un, D cannot end in (Tag), so it ends in (Tag Un). Then
(E `M : Un).

Part (e): Suppose (E ` (M,N) : (x:T,U)). Then there are T ′,U ′,D such that DB
(E ` (M,N) : (x:T ′,U ′)), (x:T ′,U ′)≤ (x:T,U) and D ends in (Pair). From (x:T ′,U ′)≤
(x:T,U) it follows that T ′ ≤ T and U ′ ≤U , by inspection of the subtyping rules. By
substitutivity of subtyping (Lemma 2), we get U ′{x←M}≤U{x←M}. Because D ends
in (Pair), we have (E `M : T ′, N : U ′{x←M}). Then (E `M : T, N : U{x←M}), by
(Sub).

Part (f): Similar to proof of part (f).

Part (g): Suppose (E `M : Ok(Ā)). Then there are T , D such that DB(E `M : T),
(T ≤ Ok(Ā)) and D ends in either (Id) or (Empty). If Ā = /0, then trivially (E ` Ā) by
(And). So suppose that Ā 6= /0. Then Ok(Ā) is not generative, so D does not end in (Id),
so it ends in (Empty). Then (E ` Ā).

Part (h): Suppose (E `+ fresh(N), N-stampedn(A)). The derivation of this judg-
ment can only end in (And), and we obtain (E `+ fresh(N)) and (E `N-stampedn(A)).
The derivation of the former can only end in (Id), so fresh(N) ∈ E. Then the derivation
of the latter cannot end in (Useless Nonce), so it ends in (Nonce Stamp). Then (E ` A).

Part (i): Suppose (E `+ now(N), N-stampedt(A)). The derivation of this judgment
can only end in (And), and we obtain (E `+ now(N)) and (E ` N-stampedn(A)). The
derivation of the former can only end in (Id), so now(N)∈ E. Then the derivation of the
latter cannot end in (Useless Time), so it ends in (Time Stamp). Then (E ` A). ¤

We have to do a bit of proof normalization to cope with the fact that the process-level
rules (Nonce Unstamp), (Time Unstamp) and (Ok) are not syntax-directed. Call these
three rule critical. Call a derivation DB (E ` P) normal iff it has no subderivations D ′

of the form D ′ = ((D ′1,D ′2),(E ` Q | R), (Par)) where D ′1 or D ′2 ends in a critical rule,
or D ′ = ((D ′1,D ′2),(E `!Q), (Repl)) where D ′1 ends in a critical rule. Call a derivation
D = ((D1,D2),((t;~n; Ā || P) : ¦), (Good State)) normal iff D2 is normal and does not
end in a critical rule.

Lemma 16 (Normal Derivations). Every derivable judgment has a normal derivation.

Proof If a (Par)-node has critical rule as a child, they can be permuted. For instance:

E `M : Ok(Ā) E, Ā ` P
(Ok)

E ` P E ` Q
(Par)

E ` P | Q

⇓

E `M : Ok(Ā)

E, Ā ` P E, Ā ` Q
(Par)

E, Ā ` P | Q
(Ok)

E ` P | Q

Similarly if the first child of (Repl) is a critical rule:

20

E `M : Ok(Ā) E, Ā ` P
(Ok)

E ` P step(E) ` P
(Repl)

E `!P

⇓

E `M : Ok(Ā)

E, Ā ` P step(E, Ā) ` P
(Repl)

E, Ā ` P
(Ok)

E `!P

If the second child of (Good State) is a critical rule, this can be eliminated using cut and
Lemma 15(g), (h), (i). For instance, suppose that a derivation has the following shape:

D1

now(t),~n:~T ,end{~M}, fresh{~N} `+ Ā

D2

Ā `M : Ok(B̄)

D3

Ā, B̄ ` P
(Ok)

Ā ` P
(Good State)

(t;~n;end{~M} || P) : ¦

Let E = (now(t),~n:~T ,end{~M}, fresh{~N}). From (E `+ Ā) and (Ā ` M : Ok(B̄)) we
obtain (E `M : Ok(B̄)), by cut. Then (E `+ B̄), by Lemma 15(g). Then (E `+ Ā, B̄),
by (And). So we now have a derivation of the following form:

D ′1
now(t),~n:~T ,end{~M}, fresh{~N} `+ Ā, B̄

D3

Ā, B̄ ` P
(Good State)

(t;~n;end{~M} || P) : ¦

In the same way, we can eliminate all remaining critical rules from the end of D3. ¤

Call a derivation subnormal iff it is normal and does not end in a critical rule.

Lemma 17 (Congruence Preserves Typing). If P≡Q, then (E ` P) has a subnormal
derivation iff (E ` Q) has a subnormal derivation.

Proof By induction on (P≡ Q)’s derivation. ¤

Lemma 18 (Instantaneous Reduction Preserves Typing). If ((t;~n; Ā || P) : ¦) and
(t;~n; Ā || P)→ (t;~m; B̄ || Q), then ((t;~m; B̄ || Q) : ¦).

Proof By induction on (t;~n; Ā || P)→ (t;~m; B̄ ||Q)’s derivation. Let DB((t;~n; Ā || P) : ¦)
be normal and (t;~n; Ā || P)→ (t;~m; B̄ || Q). From the premises of D’s last rule, we ob-
tain a basic environment E = (~n:~T ,end{~M}, fresh{~N},now(t)), where Ā = end{~M},
and C̄,D ′ such that (E `+ C̄) and D ′B (C̄ ` P) is subnormal.

Proof case, (Redn Equiv): In this case, P ≡ P′, (t;~n; Ā || P′)→ (t;~m; B̄ || Q′) and
Q′ ≡ Q. By Lemma 17, (C̄ ` P′), thus ((t;~n; Ā || P′) : ¦). By induction hypothesis,
((t;~m; B̄ || Q′) : ¦). First normalizing the derivation of this judgment and then applying
Lemma 17 results in ((t;~m; B̄ || Q) : ¦).

Proof case, (Redn New): In this case, P = (new(k:U);P′ | R), k 6∈ fv(~n,R), ~m =
(~n,k), B̄ = Ā and Q = P′ | R. Let E ′ = (E,k:U, fresh(k)) and C̄′ = (C̄,k:U, fresh(k)).
Because D ′ is subnormal, it ends in (Par) preceded by (New). Therefore (C̄′ ` P′), U is
generative and (C̄ ` R). Then (C̄′ ` P′ | R = Q), by weakening and (Par). On the other
hand, (E ′ `+ C̄′), by weakening, (Id) and (And).

21

Proof case, (Redn IO): In this case, P = (out N M | inp N (x:U);P′ |R), ~m =~n, B̄ = Ā
and Q = P′{x←M} | R. Because D ′ is subnormal, it ends in (Par) preceded by (Out)
and (In). Therefore (C̄ `M:Un), (C̄,x:Un ` P′) and (C̄ ` R). Let C̄′ = (C̄,M:Un). From
(C̄,x:Un ` P′) we obtain (C̄′ ` P′{x←M}), by substitutivity. From (C̄′ ` P′{x←M})
and (C̄ ` R), we obtain (C̄′ ` P′{x←M} | R = Q), by weakening and (Par). On the other
hand, cutting (E `+ C̄) with (C̄ `M:Un) results in (E `+ C̄′).

Proof case, (Redn Decrypt): In this case, P = (decrypt {M}K is {x:T}K ;P′ | R),
~m =~n, B̄ = Ā and Q = P′{x←M} |R. Because D ′ is subnormal, it ends in (Par) preceded
by either (Decrypt) or (Decrypt Un). By inverting (Par), we obtain (C̄ ` R). Subcase
(Decrypt): In this subcase, we get (C̄ `{M}K :Un,K:τ-Key(~N′)) and (C̄,x:τ-Auth(K,~N′)`
P′). From (C̄ `{M}K :Un,K:τ-Key(~N′)) we get (C̄ `M:τ-Auth(K,~N′)), by Lemma 15(a).
From this point on, we proceed as in proof case (Redn IO). Subcase (Decrypt Un): In
case, we have (C̄ ` {M}K :Un,K:Un) and (C̄,x:Un ` P′). From (C̄ ` {M}K :Un,K:Un) it
follows that (C̄ `M:Un), by Lemma 15(b). From this point on, we proceed as in proof
case (Redn IO).

Proof case, (Redn Untag): Similar to proof case (Redn Decrypt), using Lemma 15(c)
and (d).

Proof cases, (Redn Split) and (Redn Match): Similar to proof case (Redn Decrypt),
using Lemma 15(e) and (f).

Proof case, (Redn Clock): In this case, P = (clock(x:T);P′ | R), ~m =~n, B̄ = Ā and
Q = P′{x←t} |R. Because D ′ is subnormal, it ends in (Par) preceded by (Clock). There-
fore (C̄,x:Un,now(x)`P′) and (C̄ `R). Let C̄′=(C̄, t:Un,now(t)). From (C̄,x:Un,now(x)`
P′) we obtain (C̄′ ` P′{x←t}), by substitutivity. From (C̄′ ` P′{x←t}) and (C̄ ` R), we
obtain (C̄′ ` P′{x←t} | R = Q), by weakening and (Par). On the other hand, we obtain
(E `+ C̄′) from (E `+ C̄), by (Time), (Id) and (And).

Proof case, (Redn Begin): We have P = (begin!(M);P′ | R), ~m =~n, B̄ = (Ā,end(M))
and Q = P′ |R. Because D ′ is subnormal, it ends in (Par) preceded by (Begin). Therefore
(C̄,end(M) ` P′) and (C̄ ` R). Let C̄′ = (C̄,end(M)) and E ′ = (E,end(M)). By weak-
ening and (Par), we obtain (C̄′ ` P′ | R = Q). From (E `+ C̄), we obtain (E ′ `+ C̄′), by
weakening, (Id) and (And). ¤

Let (E `′ P) iff E is basic and there exists Ā such that (E `+ Ā) and (Ā ` P) has a
subnormal derivation. Let P

σ
→ Q iff (t;~n; Ā || P)

σ
→ (t +1;~n; /0 || Q) for some t,~n, Ā.

Lemma 19 (Tick Preserves Typing). If (E `′ P) and P
σ
→ Q, then (step+(E) `′ Q).

Proof By induction on (P
σ
→ Q)’s derivation. Suppose (E `′ P) and P

σ
→ Q. By

definition of `′, E is a basic environment and there exist Ā,D such that (E `+ Ā) and
D B (Ā ` P) is subnormal. From (E `+ Ā) we obtain (step+(E) `+ step(Ā)), by step
invariance.

Proof case, (Tick Par): In this case, P = P1 | P2, (P1
σ
→ Q1), (P2

σ
→ Q2) and Q =

Q1 | Q2. Because D is subnormal, its last rule is (Par) and we obtain that (E `′ P1)
and (E `′ P2). Then, by induction hypothesis, (step+(E) `′ Q1) and (step+(E) `′ Q2).
By definition of `′, this means that (step+(E) `+ B̄1), (B̄1 ` Q1), (step+(E) `+ B̄2)
and (B̄2 ` Q2) for some B̄1, B̄2. Then (step+(E) `+ B̄1, B̄2), by (And). By Lemma 4,
(B̄1, B̄2 ` ¦). Therefore, we can use weakening and (Par) to obtain (B̄1, B̄2 ` Q). Then
(step+(E) `′ Q), by definition of `′.

22

Proof case, (Tick Crack): In this case, P =(st-secret(K) | crack {M}K is {x:T}y:U ;P′)
and Q = P′{x,y←M,K}. Because D is subnormal, it ends in (Par) preceded by (Crack).
Inverting these rules gives (Ā ` st-secret(K),{M}K :Un) and (step(Ā),x:Un,y:Un ` P′).
Let Ā′ = (step(Ā),M:Un,K:Un). Applying substitutivity to (step(Ā),x:Un,y:Un ` P′)
results in (Ā′ `P′{x,y←M,K}= Q). Cutting (E `+ Ā) with (Ā` st-secret(K),{M}K :Un)
results in (E `+ st-secret(K),{M}K :Un). Then (step+(E)`+ public(K),{M}K :Un), by
step invariance. Because step+(E) is basic, (step+(E) `+ public(K))’s derivation can-
not end in (Id), thus ends in (Public), thus (step+(E) `+ K:Un). From (step+(E) `+

K:Un,{M}K :Un) we obtain (step+(E)`+ M:Un), by Lemma 15(b). Then (step+(E)`+

step(Ā),M:Un,K:Un = Ā′), by (And). From (step+(E) `+ Ā′) and (Ā′ ` Q) it follows
that (step+(E) `′ Q), by definition of `′.

Proof case, (Tick Remain), P =!P′: In this case P = Q =!P′. Because D is subnor-
mal, it can only end in (Repl). Therefore (step(Ā) ` P′). Because the step-function is
idempotent, it is also the case that (step(step(Ā)) ` P′). Therefore, (step(Ā) ` Q), by
(Repl). From (step+(E) `+ step(Ā)) and (step(Ā) ` Q) we obtain (step+(E) `′ Q), by
definition of `′.

Proof case, (Tick Remain), P = (out N M): In this case P = Q = (out N M). Be-
cause D is subnormal, it can only end in (Out). Therefore (Ā ` N:Un,M:Un). Cutting
(E `+ Ā) with (Ā ` N:Un,M:Un) results in (E `+ N:Un,M:Un). Then (step+(E) `+

N:Un,M:Un), by step invariance. On the other hand, (N:Un,M:Un ` out N M = Q).
From (step+(E) `+ N:Un,M:Un) and (N:Un,M:Un ` Q) we get (step+(E) `′ Q), by
definition of `′.

Proof case, (Tick Remain), P = public(M) or P = lt-secret(M): In this case P =
Q = B for some B such that step(B) = B. Cutting (E `+ Ā) with (Ā ` B) results in
(E `+ B). By step invariance, we get (step+(E) `+ B). On the other hand (B ` B = Q).
From (step+(E) `+ B) and (B ` Q) we get (step+(E) `′ Q), by definition of `′.

Proof case, (Tick Expire): In this case, Q = 0. By (And), (step+(E) `+). By (Zero),
(` Q). Then (step+(E) `′ Q), by definition of `′. ¤

Theorem 1 (Type Preservation). If ((t;~n; Ā || P) : ¦) and (t;~n; Ā || P)⇒ (s;~m; B̄ || Q),
then ((s;~m; B̄ || Q) : ¦).

Proof By induction on the length of ⇒. Suppose D B ((t;~n; Ā || P)) is normal and
(t;~n; Ā || P)⇒ (s;~m; B̄ || Q).

Proof case, (t;~n; Ā || P)→ (t;~k;C̄ || R)⇒ (s;~m; B̄ ||Q): By Lemma 18, (t;~k;C̄ || R) : ¦.
Then (s;~m; B̄ || Q) : ¦, by induction hypothesis.

Proof case, (t;~n; Ā || P)
σ
→ (t + 1;~n; /0 || R)⇒ (s;~m; B̄ || Q): Because D is normal,

there exists an environment E = (~n:~T ,end{~M}, fresh{~N},now(t)) such that (E `′ P).
Then (step+(E) `′ R), by Lemma 19. By definition of the step+-function, step+(E) =
(~n:step(~T),now(t +1)). From step+(E) = (~n:step(~T),now(t +1)) and (step+(E) `′ R)
it follows that ((t + 1;~n; /0 || R) : ¦), by (Good State). Then, by induction hypothesis,
(s;~m; B̄ || Q) : ¦. ¤

Lemma 20 (Message Typability). If fv(M) =~n, then (~n:Un `M:Un).

Proof By induction on the structure of M, using (Tag Un), (Encrypt Un), (Sub Pair
Un) and (Sub Ok Un). ¤

23

Lemma 21 (Opponent Typability). If O is an opponent process and fv(O) =~n, then
(~n:Un ` O).

Proof By induction on the structure of P, using Lemma 20 and rules (Untag Un),
(Decrypt Un), (Split Un) and (Match Un). ¤

Lemma 22 (Safety). If~n are distinct, ~T are generative and (~n:~T ` P), then P is safe.

Proof Suppose~n are distinct, ~T are generative and (~n:~T ` P). By Lemma 3, fv(P)⊆
~n. We may assume that new-bound names in P are distinct from~n.

For secrecy, suppose towards a contradiction that (t; fv(P); /0 || P)⇒ (s;~m; Ā || R)
where R = (public(N) | τ-secret(M) | out N M | Q). Because fv(P) ⊆~n, it is then also
the case that (t;~n; /0 || P)⇒ (s;~m; Ā || R). By (Good State), (t;~n; /0 || P) : ¦. By type
preservation, (s;~m; Ā || R) : ¦. By normalization, DB ((s;~m; Ā || R) : ¦) for some nor-
mal D . By inverting D’s last rules and cut, we obtain a basic environment E such
that (E `+ τ-secret(M)) and (E `+ M:Un). Because E is basic, the last rule of (E `
τ-secret(M))’s derivation can only be (Secret), thus (E `+ M : τ-Secret). Then, by
(And), (E `+ M : τ-Secret, M : Un), in contradiction to Lemma 14.

For authenticity, suppose (t; fv(P); /0 || P)⇒ (s;~m; Ā || R) where R = (end(M) | Q).
Because fv(P) ⊆~n, it is then also the case that (t;~n; /0 || P)⇒ (s;~m; Ā || R). By (Good
State), (t;~n; /0 || P) : ¦. By type preservation, (s;~m; Ā || R) : ¦. By normalization, DB
((s;~m; Ā || R) : ¦) for some normal D . By inverting D’s last rules and cut, we obtain an
environment E = (~m:~T ,end{~L}, fresh{~N}) such that Ā = end{~L} and (E `+ end(M)).
The only possible reason for (E `+ end(M)) is (Id). Therefore end(M) ∈ E. But this is
only possible if end(M) ∈ end{~L}= Ā. ¤

Theorem 2 (Robust Safety). If~n are distinct, (~n:~T ` public(~n)) and (~n:~T ` P), then P
is robustly safe.

Proof Suppose~n are distinct, (~n:~T ` public(~n)) and (~n:~T `P). From (~n:~T ` public(~n))
it follows that (~n:~T `~n:Un). Then ~T ≤ Un, by Lemma 12. Let O be an opponent pro-
cess with fv(O)⊆ (~n,~m). By opponent typability and weakening, (~n:Un,~m:Un `O). By
Lemma 6, (~n:~T ,~m:Un `O). By weakening, (~n:~T ,~m:Un ` P). Then (~n:~T ,~m:Un ` P |O),
by (Par). Moreover, ~T are generative, because subtypes of Un are. Then P | Q is safe,
by Lemma 22. ¤

24

