
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

A typed, prioritized process algebra

Alan Jeffrey

Report 13/93 December 1993

Computer Science
School of Cognitive and Computing Sciences

University of Sussex
Brighton BN1 9QH

ISSN 1350–3170



A typed, prioritized process algebra

ALAN JEFFREY

ABSTRACT. This paper describe a typed, prioritized process algebra PPA based on the untyped
algebra �����

θ. We give this an operational semantics, and provide a complete axiomatization for
prioritized bisimulation of closed finite terms. Guarded recursion is added to ����� to give µ ����� ,
and we show that every guarded recursion has a unique fixed point. We provide a translation for
CLEAVELAND and HENNESSY’s prioritized CCS, a subset of BAETEN, BERGSTRA and KLOP’s ����� θ,
and a subset of HANSSON and ORAVA’s PC into PPA. The only operators which we cannot translate
into PPA are those which do not respect prioritized bisimulation.

1 Introduction

Process algebra is a methodology for reasoning about concurrent systems. In
MILNER’s (1989) Calculus of Communicating Systems (CCS) one can describe
concurrent systems and their specifications as agents, and the task of showing
that a system meets its specification becomes that of showing a bisimulation
SPEC 	 SYS. For example, we could specify a sink process, that will accept
arbitrarily many go actions until it receives a stop signal as:

SPEC
def


go � SPEC
�

stop � τ � 0
We could then attempt to implement this using a sink which can be interrupted,
in parallel with an interrupt handler:

SYS
def
�


SINK � HANDLER ��� i

SINK
def


go � SINK
�

i � 0
HANDLER

def

stop � i � 0

Unfortunately, SPEC �	 SYS since after a stop action the internal interrupt can be
delayed indefinitely, for example:

SYS stop����� go���
SPEC stop����� go� �� �

We would like to specify that the interrupt action i has higher priority than the go
action, and so the only transition SYS can make after a stop action is the internal

Copyright c
�

1993 Alan Jeffrey.
Author’s address: COGS, University of Sussex, Brighton BN1 9QH, UK.
EMail: alanje@cogs.susx.ac.uk
This work was supported by SERC project GR/H 16537.



2 Alan Jeffrey

i. We can do this in CLEAVELAND and HENNESSY’s (1988) prioritized variant
of CCS where actions are either of low priority (a) or high priority (a). Then we
can respecify SPEC and SYS with a high priority interrupt:

SPEC
def


go � SPEC
�

stop � τ � 0
SYS

def
�

SINK � HANDLER ��� i

SINK
def


go � SINK
�

i � 0
HANDLER

def

stop � i � 0

Then we can show SPEC 	 SYS, since the expansion law gives:

SYS 	 go � SYS
�

stop � SYS �
SYS � 	 go � SYS � � τ � 0

where:

SYS � def
 

SINK � i � 0 � � i

Then we can apply CLEAVELAND and HENNESSY’s priority law, which says that
high priority τ actions have priority over low priority actions:

α � t � τ � u 	 τ � u
This gives:

SYS � 	 τ � 0
Thus SPEC satisfies the same guarded equations as SYS so:

SPEC 	 SYS

The crucial step in this reasoning is the application of the priority law. Many
other prioritized calculi have a similar law. For example, BAETEN, BERGSTRA

and KLOP’s (1986) ����� θ has the law:

a � p �
b � q 	 θ b � q 


a � b �
where 	 θ is defined in Section 3. HANSSON and ORAVA’s (1992) PC has:

τ 
 π � � P � τ 
 π � � � Q 	 π τ 
 π � � � Q 
 π � π � �
These laws are all examples of a general law:

a � P �
b � Q 	 θ b � Q 


a � b �
where � is a strict partial order on actions. For example:
� In CLEAVELAND and HENNESSY’s prioritized CCS, α � τ.
� In BAETEN, BERGSTRA and KLOP’s ����� θ, � is part of the language.
� In HANSSON and ORAVA’s PC, the order � is complex but includes τ 
 π ���

τ 
 π � � if π � π � , discussed further in Appendix C.



A typed, prioritized process algebra 3

HANSSON and ORAVA observed that one may require a partial order rather than
a total order for priority, if one is interested in modelling highly distributed sys-
tems. For example, in a totally ordered alphabet A where a � b, we can model
livelock as:

aω � � bω

where:

Pω def

P� Pω

Then we can prove that:

aω � � bω 	 θ


a
�

b � ω 	 θ bω

The a action is never performed, as it is always beaten by the higher priorty b ac-
tion. This is fine if we wish to model systems where there is only one scheduler,
but in a highly distributed system, aω and bω may be running on different pro-
cessors, and so the a action might still be scheduled. In order to model this, we
can use the alphabet relabelling constructor ρ f



P � to inject the processes aω and

bω from alphabet A to A
�

A:

ρinl


aω � � � ρinr



bω �

Then since inla �� inrb we have:

ρinl


aω � � � ρinr



bω � 	 θ



inla � ω � � 
 inrb � ω 	 θ



inla

�
inrb � ω �	 θ



inrb � ω

Thus, by using a partial order A
�

A, rather than a total order A, we can model
a highly distributed system, rather than a one-scheduler system. This is similar
to the author’s (1992b) use of partial ordered time domains to represent highly
distributed timed systems.

In this paper, we:
� Present a typed prioritized process algebra � � � 
 A � based on BAETEN, BERGSTRA

and KLOP’s (1986) ����� θ. The important difference between PPA and ����� θ
is that PPA is typed—if A is a strict partial order, then � � � 
 A � is a process
algebra with alphabet A. For example, if f : A � B and P is of type � � � 
 A �
then ρ f



P � is of type � � � 
 B � . Although this adds the complexity of a type

inference system, it means that prioritized bisimulation is a congruence for
PPA.

� Provide � � � 
 A � with an operational semantics and a complete axiomatiza-
tion for prioritized bisimulation of closed finite terms.

� Add guarded recursion into � � � 
 A � to get µ � � � 
 A � , and show that all guard-
ed recursions have a unique solution, up to prioritized strong bisimulation.

� Show that all the combinators from the above process algebras that respect
prioritized bisimulation can be translated into µ � � � . Prioritized bisimulation



4 Alan Jeffrey

is a congruence for µ � � � , and so the combinators which do not respect it
cannot be translated into µ � � � .

Although we are interested in the prioritized bisimulation equivalence P 	 θ Q, it
is simpler to define it via the unprioritized bisimulation P 	 Q. In many cases, it
is possible to show that two processes are bisimilar without taking priority into
account, and so it is useful to define P 	 Q. An analogy could be made with
MILNER’s (1989) use of strong and weak bisimulation: weak bisimulation is
the equivalence of interest, but many proofs can be performed more easily with
strong bisimulation.

This paper is a first step towards finding an expressive language for priori-
tized process algebra. Further work could involve defining a format for priori-
tized process algebra similar to GROOTE and VAANDRAGER’s (1989) nyft or DE

SIMONE’s (1985) format, and showing that any operator given in such a style
could be translated into an appropriate target language.

In this paper, we are only considering algebras where priority is associated
with actions. There are other algebras, such as CAMILLERI’s (1990) CCS with
prioritized sum, where priorities are associated with processes. It remains to be
seen whether there is a framework in which both prioritized actions and priori-
tized processes can be considered.

2 Strict posets

Our model of prioritized actions is a strict poset A

 


UA � � A � , that is a set UA

together with a transitive irreflexive relation � A
�

UA � UA. We shall write a : A
for a � UA. A morphism f : A � B is a function f � UA

� UB such that:

a � A b � f a � B f b

We shall use morphisms to model relabellings: if f : A � B and P is from � � � 
 A �
then ρ f



P � is from � � � 
 B � . Two strict posets A and B are isomorphic (written

A � B) iff we can find:

f : A � B g : B � A f � g



id g � f



id

Given strict posets A and B, we can define the product and coproduct strict posets
as the smallest strict posets such that:

where � A � B and � A � B are the smallest strict posets such that:

UA � B


	 


a � b � � a � UA � b � UB �
a � A a � � b � B b � � 


a � b � � A � B


a � � b � �

UA � B


	

inla � a � UA �
� 	 inlb � b � UB �
a � A a � � inla � A � B inla �



A typed, prioritized process algebra 5

b � A b � � inrb � A � B inrb �

Thus we have morphisms:

inl : A � A
�

B inr : B � A
�

B

fst : A � B � A snd : A � B � B

A set H
�

UA is lower-closed iff:
�

a � H � � b � A a � � b � H

We will write H : Low


A � if H is lower-closed. The strict poset ∂HA is defined:

U∂H A



UA � H

a � A b � a � ∂H A b

For example, let 2 be the two-point poset with elements 0 � 2 1. Then
	
0 � is

lower-closed, and ∂ � 0 � 2 is the one-point poset with element 1. We shall use ∂H

to model restriction: if P is from � � � 
 A � and H is lower-closed then ∂H


P � is

from � � � 
 ∂HA � .
A � B is the smallest strict poset such that:

UA �B

 


UA
�

UB � � 

UA � UB �

a � A a � � inla � A �B inla ��� A �B


a � b �

b � B b � � inrb � A �B inrb � � A �B


a � b �

We shall use this to model concurrency: if P is from � � � 
 A � and Q is from
� � � 
 B � then P � Q is from � � � 
 A � B � . Note that A � B is not commutative or
associative, but is commutative and associative up to isomorphism, that is:

A � B � B � A A � 
 B � C � � 

A � B � � C

This strict poset is similar to WINSKEL’s (1984) synchronization algebra and is
necessary if we are to model algebras such as HANSSON and ORAVA’s PC, where
concurrency is only commutative and associative up to isomorphism.

3 Prioritized process algebra

We can now define our typed variant of ��� � θ. In order to remain inside classical
set theory, we shall assume a universal set of actions U , which is closed under
product and coproduct, that is U � U

�
U and U

�
U
�

U . Then the untyped
language � � � is defined:

P ::



a � α � P� P � P �
P � P � P � ρ f P � ∂HP � θP � x

where:
� a ranges over U .
� α ranges over

	 δ � ε � .



6 Alan Jeffrey
� f ranges over partial functions from U to U .
� H ranges over subsets of U .
� x ranges over an infinite set of variables V.

We shall write P



Q for syntactic identity between processes.
The process constructors of � � � are:

� a is the process which performs a then terminates.
� δ is the deadlocked process.
� ε is the successfully terminated process.
� P� Q is the sequential composition of P and Q.
� P

�
Q is the choice between P and Q.

� P � Q is the concurrent composition of P and Q. If P can perform a and Q
can perform b then P � Q can perform the interleaving inla or inrb, or the
synchronization



a � b � . This is similar to WINSKEL’s (1984) synchronization

algebra, except that we do not have a 0 action to represent deadlock.
� ρ f P applies f to the actions of P, so ρsucc



1 � 2 � 3 � is 2 � 3 � 4.

� ∂HP stops P performing actions in H, so ∂ � b �


a � b � c � is a � δ.

� θP prunes P, that is it removes any actions that can be beaten by a higher
priority action. For example, if a � A b then θ 
 a �

b � is b. This operators se-
mantics depends on the strict poset A which is given by the type information
below.

� x is a free variable, used to define recursion in Section 5
� � � is an untyped language, which presents problems for prioritized bisimula-
tion, since the constructors of � � � do not have to respect the priority ordering.
For example, if f is not a morphism then we can find a � A b such that f a �� A f b,
and so:

a
�

b 	 θ b but ρ f


a
�

b � 	 ρ f a
� ρ f b �	 θ ρ f b

Similarly, if H is not lower-closed then we can find a � A b such that a �� H and
b � H, and so:

a
�

b 	 θ b but ∂H


a
�

b � 	 ∂Ha
� ∂Hb 	 a �	 θ ∂H



b �

Our type judgements for � � � are given in Table 1 as judgements of the form:

Γ � P : � � � 
 A �
where:
� Γ is a context of the form x1 : � � � 
 A1 � � � ��� � xn : � � � 
 An � and each of the xi

are distinct variables.
� P is a process.
� A is a strict poset with UA

�
U .



A typed, prioritized process algebra 7
a : A�

a : ������� A � �
δ : ������� A � �

ε : ������� A �
Γ
�

P : ������� A � Γ
�

Q : ������� A �
Γ
�

P�Q : ������� A �
Γ
�

P : ������� A � Γ
�

Q : ������� A �
Γ
�

P � Q : ������� A �
Γ
�

P : ������� A � Γ
�

Q : ������� B �
Γ
�

P � Q : ������� A � B �
f : A � B Γ

�
P : �����	� A �

Γ
�

ρ f P : ������� B � H : Low � A � Γ
�

P : ������� A �
Γ
�

∂HP : ������� ∂HA �
Γ
�

P : �����	� A �
Γ
�

θP : ������� A �
x : ������� A � � x : ������� A �

Γ 
 x : ������� A ��
 y : ������� B ��
 ∆ �
P : ������� A �

Γ 
 y : ������� B ��
 x : ������� A ��
 ∆ �
P : ������� A �

Γ
�

P : �����	� A �
Γ 
 x : ������� B � � P : ������� A � � x not in Γ 


TABLE 1. The type rules for �����

The context Γ is used to give the type of any free variables in P, for example:

x : � � � 
 A � � y : � � � 
 B � � x � y : � � � 
 A � B �
Note that the relabelling constructor ρ f P is allowed to change the priorities of
P. For example, if � P : � � � 
 A � is unprioritized (that is � A


 /0) and f : A � N
assigns a priority to each action then:�

f : A � A � N�
f a


�

a � f a �

is a morphism, and so ρ �f P prioritizes P. Thus, if we want to use an unprioritized
component in a prioritized system, we can verify it in an unprioritized setting,
and then embed it using a morphism. This is similar to SCHNEIDER’s (1990)
approach to embedding untimed processes into timed settings using timewise
refinements.

As another example, we could model a UNIX process as a process from
� � � 
 A � N � where



a � n � has priority n. Then the ������������� n operator which

decreases the priority of a process by n could be defined:

ρsubtractn
P

where:

subtractn


a � m � 
 


a � m � n �



8 Alan Jeffrey

ε �
P � Q �� P�Q ��� P �� P � Q ��� Q �� P � Q ��� P � Q �� P � Q ��� P �� ρ f P ��� P �� ∂HP ��� P �� θP ���

TABLE 2. The termination of ������� A �

a a� � ε
P a� � P �

P�Q a� � P � �Q
P � Q a� � Q �

P�Q a� � Q �
P a� � P �

P � Q a� � P �
Q b� � Q �

P � Q b� � Q �
P a� � P �

P � Q inla��� � P � � Q
Q b� � Q �

P � Q inrb��� � P � Q �
P a� � P � Q b� � Q �

P � Q �
a � b ��	� � P � � Q �

P a� � P �
ρ f P f a� � ρ f P �

P a� � P �
∂H P a� � ∂HP �

�
a 
� H 


P a� � P � P � a
θP a� � θP �

TABLE 3. The operational semantics of ������� A �
The operational semantics of � � � 
 A � is similar to that of ACP, and is given in
Tables 2 and 3. In particular, the semantics of sequential composition P� Q uses
a predicate P 
 , which is true iff P can terminate—this is similar to BAETEN and
WEIJLAND’s (1990, Section 3.3.5) 
 P from � �

ε. The semantics for θP allows
θP a��� θP � if P � a, where:

P � a iff
�

b � a � P b� �� �
Note that the priority order is only used in the pruning operator θP. For example,
a � P �

b � Q a��� P even if a � b, but θ 
 a � P �
b � Q � a� �� � . Note also that since there

is no recursion in � � � we can show by induction on P that the relation P a� � P �
is well-defined.

We can then define MILNER’s (1989) strong bisimulation, modified to take
typing and termination into account. R is a strong � � � 
 A � -bisimulation if, when-
ever P R Q:

� � P : � � � 
 A � and � Q : � � � 
 A � ,
� If P a��� P � then Q a��� Q � and P � R Q � .
� If Q a��� Q � then P a��� P � and P � R Q � .
� P 
 iff Q 
 .

We shall write � P 	 Q : � � � 
 A � iff there is a strong � � � 
 A � -bisimulation R such
that P R Q. For example, the identity relation I is a strong � � � -bisimulation, and
so � P 	 P : � � � 
 A � . As another example, if a � b then the only transition of
θ 
 a � P �

b � Q � is θ 
 a � P �
b � Q � a��� θP, and so it is simple to show that the relation:
	�
 θ 
 a � P �

b � Q � � θ 
 a � P � � � � I



A typed, prioritized process algebra 9

is a strong bisimulation, and so θ 
 a � P �
b � Q � 	 θ 
 a � P � . Thus, � a � P �

b � Q 	 θ
a � P : � � � 
 A � if we define:

� P 	 θ Q : � � � 
 A � iff � θP 	 θQ : � � � 
 A �
This paper is more concerned with prioritized bisimulation 	 θ than with unpri-
oritized bisimulation 	 . However, it is often simpler to prove properites about 	
than about 	 θ. The rest of this section will be taken up by proving that 	 θ is a
congruence.

PROPOSITION 1. If Γ � P : � � � 
 A � and x is free in P then x is in Γ.

PROOF. An induction on the proof of Γ � P : � � � 
 A � . �
Let a substitution σ be a function σ : V � � � � which is almost everywhere the
identity. Let



x1 :



P1 � ��� � � xn :



Pn � be the substitution which maps xi to Pi

and anything else to itself. Define P
�
σ � as the standard replacement of x by

σx with appropriate α-conversion of bound variables. We can extend typing,
bisimulation and prioritized bisimulation to open terms and substitutions in the
obvious pointwise fashion:

Γ � σ : ∆ iff
�

i � Γ � Pi : � � � 
 Ai �
Γ � P 	 Q : � � � 
 A � iff

� � σ : Γ � � P
�
σ � 	 Q

�
σ � : � � � 
 A �

Γ � P 	 θ Q : � � � 
 A � iff Γ � θP 	 θQ : � � � 
 A �
Γ � σ 	 σ � : ∆ iff

�
i � Γ � Pi 	 P �i : � � � 
 Ai �

Γ � σ 	 θ σ � : ∆ iff Γ � θσ 	 θσ � : ∆

where:

∆ 
 

x1 : � � � 
 A1 � � � � � � xn : � � � 
 An � �

σ 
 

x1 :



P1 � ��� � � xn :



Pn �

σ � 
 

x1 :



P �1 � ��� � � xn :



P �n �

θσ 
 

x1 :


 θP1 � � ��� � xn :

 θPn �

Then we can show that our type system respects substitution.

PROPOSITION 2. If Γ � P : � � � 
 A � and ∆ � σ : Γ then ∆ � P
�
σ � : � � � 
 A � .

PROOF. An induction on the proof of Γ � P : � � � 
 A � . �
Note that this means the type system supports contraction:

Γ � x : � � � 
 A � � y : � � � 
 A � � P : � � � 
 B �
Γ � z : � � � 
 A � � P

�
x :



z � y :



z � : � � � 
 B �

and cut:
Γ � P : � � � 
 A � ∆ � x : � � � 
 A � � Q : � � � 
 B �

Γ � ∆ � Q
�
x :



P � : � � � 
 B �



10 Alan Jeffrey

PROPOSITION 3. 	 is a congruence.

PROOF. Define:

R 
 	 

P

�
σ � � P �

σ � � � � Γ � P : � � � 
 A � � � σ 	 σ � : Γ �
Then we can prove by induction on P that R is a � � � 
 A � -strong bisimulation.
Thus, if Γ � P : � � � 
 A � and � σ 	 σ � : Γ then � P

�
σ � 	 P

�
σ � � : � � � 
 A � . If Γ � P :

� � � 
 A � then:

∆ � σ 	 σ � : Γ � � � ρ : ∆ � σ �
ρ � 	 σ �

�
ρ � : Γ

� � � ρ : ∆ � P �
σ

�
ρ � � 	 P

�
σ �

�
ρ � � : � � � 
 A �

� � � ρ : ∆ � P �
σ � �

ρ � 	 P
�
σ � � �

ρ � : � � � 
 A �
� ∆ � P

�
σ � 	 P

�
σ � � : � � � 
 A �

And so 	 is a congruence. �
PROPOSITION 4. If Γ � P : � � � 
 A � and ∆ � σ : Γ then ∆ � θP

�
σ � 	 θP

�
θσ � :

� � � 
 A � .
PROOF. Since � � � 
 A � is image-finite, we can show that θP � a iff P � a. Using
this, we can show the following, by exhibiting appropriate bisimulations:

Γ � θ 
 P �
Q � 	 θ 
 θP

� θQ � : � � � 
 A �
Γ � θ 
 P� Q � 	 θ 
 θP� θQ � : � � � 
 A �

Γ � θ 
 P � Q � 	 θ 
 θP � θQ � : � � � 
 A � B �
Γ � θρ f P 	 θρ f θP : � � � 
 A �
Γ � θ∂HP 	 θ∂HθP : � � � 
 A �

Γ � θP 	 θθP : � � � 
 A �
From this, the result follows by structural induction on P. �
PROPOSITION 5. 	 θ is a congruence.

PROOF. For any Γ � P : � � � 
 A � :
∆ � σ 	 θ σ � : Γ � ∆ � θσ 	 θσ � : Γ

� ∆ � θP
�
θσ ��	 θP

�
θσ � � : � � � 
 A �

� ∆ � θP
�
σ � 	 θP

�
σ � � : � � � 
 A �

� ∆ � P
�
σ ��	 θ P

�
σ � � : � � � 
 A �

Thus 	 θ is a congruence. �
Note that the proofs of Propositions 4 and 5 depend on the use of strong bisimu-
lation and the pruning operation θP. If we were to define prioritized bisimulation
directly without the use of θP, then these proofs would be much harder.



A typed, prioritized process algebra 11

θP � P a � P � b �Q � b �Q � a � b � P � δ � P

ε � P � P � P � Q ��� R � P� R � Q � R P � P � P

δ � P � δ P � � Q � R � � � P � Q � � R P � Q � Q � P

ρ f a � f a ρ f
� P�Q � � � ρ f P ��� � ρ f Q � � P�Q ��� R � P� � Q � R �

ρ f α � α ρ f
� P � Q � � � ρ f P � � � ρ f Q � ∂H a � δ � a � H �

∂H α � α ∂H
� P�Q � � � ∂HP ��� � ∂HQ � ∂H a � a � a 
� H �

α � δ � δ ∂H
� P � Q � � � ∂HP � � � ∂HQ � α � ε � α

P � ∑
�
ai � Pi � i � I ��� α

Q � ∑
�
b j �Q j � j � J ��� β

� P � Q � ∑
� � inlai � � � Pi � Q ��� i � I �
� ∑

� � inr b j ��� � P � Q j ��� j � J �
� ∑

� � ai 
 b j ��� � Pi � Q j � � i � I 
 j � J �
� α � β

TABLE 4. The axiomatization of ������� A �
4 Complete axiomatization of PPA

Let us write Γ � P



Q : � � � 
 A � iff Γ � P : � � � 
 A � , Γ � Q : � � � 
 A � and P



Q
can be proved from the axioms in Table 4 together with standard equational rea-
soning. In this Section, we shall show that these axioms are sound and complete
for prioritized bisimulation.

PROPOSITION 6. If � P



Q : � � � 
 A � then � P 	 θ Q : � � � 
 A � .
PROOF. Provide a bisimulation for each axiom. �
Let � P : � � � 
 A � be � � � 
 A � -pre-normal iff:

P

 ∑ 	 ai � Pi � i � I � � α

where all the Pi are � � � 
 A � -pre-normal and α ranges over
	 δ � ε � . P is � � � 
 A � -

normal iff all the ai are � A-incomparable and all the Pi are � � � 
 A � -normal. � P :
� � � 
 A � can be (pre)-normalized iff there is a � � � 
 A � -(pre)-normal P � such that
� P



P � : � � �



A � .

PROPOSITION 7. If P and Q are � � � 
 A � -pre-normal then the following can be
� � � 
 A � -pre-normalized: P� Q, P

�
Q, P � Q, ρ f P, ∂HP, θP.

PROOF (BY INDUCTION ON P AND Q). We shall prove the case for P � Q, and
the others are similar. Let:

P

 ∑ 	 ai � Pi � i � I � � α

Q

 ∑ 	 b j � Q j � j � J � � β



12 Alan Jeffrey

Then let γ 
 ε if α 
 β 
 ε and let γ 
 δ otherwise. Then:

� P � Q 
 ∑ 	 
 inlai � � 
 Pi � Q � � i � I ��
∑ 	 
 inrb j � � 
 P � Q j � � j � J �� ∑ 	 
 ai � b j � � 
 Pi � Q j � � i � I � j � J �� γ : � � � 
 A �

By induction, Pi � Q, P � Q j and Pi � Q j can be � � � 
 A � -pre-normalized, and so P � Q
can be. �
PROPOSITION 8. Any � P : � � � 
 A � , can be � � � 
 A � -normalized.

PROOF. An induction on P, using Proposition 7, the laws for
�

and the priority
law a � P �

b � Q 

b � Q 


a � b � . �
PROPOSITION 9. If � P 	 θ Q : � � � 
 A � and P and Q are normal, then P



Q.

PROOF (BY STRUCTURAL INDUCTION ON P AND Q). Let P

 ∑P � α and

Q

 ∑Q � β where:

P 
 	
ai � Pi � i � I �

Q 
 	
b j � Q j � j � J �

Then for any i � I, θP ai��� θPi, so there must be a j such that θQ b j��� θQ j, ai



b j

and θPi 	 θQ j. By induction, Pi



Q j, so ai � Pi � Q . Thus, P
�

Q , and by similar
reasoning, Q

�
P , so P 
 Q . If α 
 δ then � P 
 so � Q 
 so α 
 δ. If α 
 ε then

P 
 so Q 
 so α 
 ε. Thus α 
 β and so P



Q. �
COROLLARY 10. � P 	 θ Q : � � � 
 A � iff � P



Q : � � � 
 A � .

5 Recursion

So far, we have only dealt with finite processes, and have not considered recur-
sive processes such as SINK from Section 1. To allow recursion, we shall add a
recursion combinator to � � � 
 A � to get µ � � � 
 A � . However, we shall only allow
guarded recursions, since there are some unguarded equations which have no
solutions. For example, there can be no process from µ � � � 
 N � which satisfies
the equation:

P 	 θ 
 0 � ρsuccP �
since:
� If

�
n � P n� �� � then P � 0 so θ 
 0 � ρsuccP � 0��� so P 0��� .

� If P n� � then 0
� ρsuccP n � 1� ��� so 0

� ρsuccP �� n so θ 
 0 � ρsuccP � n� �� � so P n� �� � .

For this reason, we shall only define guarded recursions in µ � � � 
 A � :
P ::


������ � µx � P



A typed, prioritized process algebra 13

where x is guarded in P, that is any occurrence of x in P is inside a subterm Q � R
where x is guarded in Q and � Q 
 . For example, x is not guarded in 0

� ρsuccx.
We can extend the type system from � � � 
 A � to µ � � � 
 A � :

Γ � x : µ � � � 
 A � � P : µ � � � 
 A �
Γ � µx � P : µ � � � 
 A �

There are two possible ways of extending the operational semantics. We can
either allow 
 and ��� to be defined for open terms, and use:

P 

µx � P 


P a� � P �
µx � P a� � P �

�
x :



µx � P �

Alternatively, we could use MILNER’s proof rule for recursion, which does not
require us to give a semantics to open terms:

P
�
x :



µx � P ��
 �

µx � P 
 �
P

�
x :



µx � P � a��� � P �
µx � P a��� � P �

These rules are more standard, but are not obviously well-defined, since the
semantics of the recursive term µx � P may involve negative premises (in G-
ROOTE’s (GROOTE, 1989) terms, this provides a stratification of the operational
semantics). For example, if we were to allow unguarded recursions such as
µx � 
 θ 
 0 � ρsuccx ��� then there would be no transition system ��� � . Fortunate-
ly, the above transition systems are equivalent, since we are only dealing with
guarded terms.

PROPOSITION 11. If x is guarded in P then:

1. P
�
x :



Q ��
 � iff P 
 � .
2. P

�
x :



Q � a� � � R iff P a��� � P � and R



P �
�
x :



Q � .

PROOF.

1. An induction on the proof of 
 .
2. An induction on the proof of ��� . �
COROLLARY 12. P 
 iff P 
 � and P a��� P � iff P a� � � P � .

This is useful, since ��� � is a more standard definition, but ��� is obviously well-
defined, since it is given by structural induction on processes. We can define
bisimulation and prioritized bisimulation as before, and adapt MILNER’s (1989,
Proposition 4.12) proof that strong bisimulation is a congruence for µ � � � 
 A � .
PROPOSITION 13. 	 is a congruence for µ � � � 
 A � .
PROOF. Show by induction on P that if Γ � P : � � � 
 A � and ∆ � σ 	 σ � : Γ then
∆ � P

�
σ ��	 P

�
σ � � . The only tricky case is if P



µx � Q. For any � ρ : ∆ and fresh



14 Alan Jeffrey

y:

P
�
σ � �

ρ � 
 µy � 
 Q �
x :



y � �
σ � �

ρ � � 

µy � R

P
�
σ � � �

ρ � 
 µy � 
 Q �
x :



y � �
σ � � �

ρ � � 
 µy � R �
By induction, y : µ � � � 
 A � � R 	 R � : µ � � � 
 A � . Then show by induction on the
proof of ��� and 
 that for any y : µ � � � � S : µ � � � 
 B � that:

� If S
�
y :



µy � R � a��� T then T 	 S �
�
y :



µy � R � and S
�
y :



µy � R � � a��� 	 S �
�
y :



µy � R � � .
� If S

�
y :



µy � R � � a��� T then T 	 S �
�
y :



µy � R � � and S
�
y :



µy � R � a��� 	 S �
�
y :



µy � R � .
� S

�
y :



µy � R ��
 iff S
�
y :



µy � R � ��
 .

Thus RB is a µ � � � 
 B � -strong bisimulation, where:

RB

 	�


T � T � � � y : µ � � � 
 A � � S : µ � � � 
 B �
� T 	 S

�
y :



µy � R � : µ � � � 
 B �
� T � 	 S

�
y :



µy � R � � : µ � � � 
 B � �
Since



µy � R � µy � R � � � RA this means � µy � R 	 µy � R � : µ � � � 
 A � and so for any

� ρ : ∆, � P
�
σ � �

ρ � 	 P
�
σ � � �

ρ � : µ � � � 
 A � and so ∆ � P
�
σ � 	 P

�
σ � � : µ � � � 
 A � . �

We can also show that µx � P is the unique solution to Q 	 P
�
x :



Q � .

PROPOSITION 14. If x is guarded in P and Γ � x : µ � � � 
 A � � P : µ � � � 
 A � then:

1. Γ � µx � P 	 P
�
x :



µx � P � : µ � � � 
 A � .

2. If Γ � Q 	 P
�
x :



Q � : µ � � � 
 A � then Γ � Q 	 µx � P : µ � � � 
 A � .
PROOF.

1. Let R 

I � 	 
 µx � P� P �

x :



µx � P � � � which is a µ � � � 
 A � -strong bisimulation,
so � µx � P 	 P

�
x :



µx � P � : µ � � � 
 A � . Then if y is a fresh variable then:
� � σ : Γ � µy � 
 P �

x :



y � �
σ � �

	 P
�
x :



y � �
σ � �

y :



µy � 
 P �
x :



y � �
σ � � � : µ � � � 
 A �

� � � σ : Γ � 
 µx � P � �
σ � 	 P

�
x :



y � �
σ � �

y :

 


µx � P � �
σ � � : µ � � � 
 A �

� � � σ : Γ � 
 µx � P � �
σ � 	 P

�
x :



y � �
y :


 

µx � P � � �

σ � : µ � � � 
 A �
� � � σ : Γ � 
 µx � P � �

σ � 	 P
�
x :

 


µx � P � � �
σ � : µ � � � 
 A �

� Γ � 

µx � P � 	 P

�
x :


 

µx � P � � : µ � � � 
 A �

Thus µx � P is a solution to Q 	 P
�
x :



Q � .

2. We shall first show the case when the only free variable of P is x. If � Q 	



A typed, prioritized process algebra 15

P
�
x :



Q � then:

R 
 	�

P � � Q � � � x : µ � � � 
 A � � R : µ � � � 
 A �

x is guarded in R

� P � 	 R
�
x :



µx � P � : µ � � � 
 A �

� Q � 	 R
�
x :



Q � : µ � � � 
 A � �
Then for any P � R Q � :
� If P � a��� P � � then R

�
x :



µx � P � a� � 	 P � � so by Proposition 11 R a��� R �

and P � � 	 R �
�
x :



µx � P � 	 R �

�
x :



P � �

x :



µx � P � . Since Q � 	 R
�
x :



Q � ,

Q � a��� Q � � 	 R �
�
x :



Q � 	 R �
�
x :



P � �
x :



Q � . Since x is guarded in R �
�
x :



P � , P � � R Q � � .
� Similarly, if Q � a� � Q � � then P � a��� P � � and P � � R Q � � .
� P � 
 iff R

�
x :



µx � P ��
 iff R 
 iff R
�
x :



Q ��
 iff Q � 
 .

Then R is a µ � � � 
 A � -strong bisimulation, so:

� µx � P 	 P
�
x :



µx � P � 	 P
�
x :



Q � 	 Q : µ � � � 
 A �

We can now show the case when P has many free variables. If y is a fresh
variable then:

Γ � Q 	 P
�
x :



Q � : � � � 
 A �

� � � σ : Γ � Q �
σ � 	 P

�
x :



Q � �

σ � : � � � 
 A �
� � � σ : Γ � Q �

σ � 	 P
�
x :



y � �

y :



Q � �
σ � : � � � 
 A �

� � � σ : Γ � Q �
σ � 	 P

�
x :



y � �

σ � �
y :



Q
�
σ � � : � � � 
 A �

� � � σ : Γ � Q �
σ � 	 µy � 
 P �

x :



y � �
σ � � : � � � 
 A �

� � � σ : Γ � Q �
σ � 	 


µx � P � �
σ � � : � � � 
 A �

Thus µx � P is the unique solution to Q 	 P
�
x :



Q � . �
We can now prove the same results about 	 θ.

PROPOSITION 15. If Γ � P : µ � � � 
 A � and ∆ � σ : Γ then ∆ � θP
�
σ ��	 θP

�
θσ � :

µ � � � 
 A � .
PROOF (BY INDUCTION ON THE SIZE OF P). The only case different from
Proposition 4 is if P



µx � Q. Then if y is fresh, then:

∆ � θ 
 µx � Q � �
σ � 	 θQ

�
x :



µx � Q � �

σ �
	 θQ

�
x :


 θµx � Q � �
σ �

	 θQ
�
x :



y � �

y :

 θµx � Q � �

σ �
	 θQ

�
x :



y � �

σ � �
y :


 θ 
 µx � Q � �
σ � � : µ � � � 
 A �



16 Alan Jeffrey

and:

∆ � θ 
 µx � Q � �
θσ � 	 θQ

�
x :



µx � Q � �

θσ �
	 θQ

�
x :



y � �

y :

 θµx � Q � �

θσ �
	 θQ

�
x :



y � �

θσ � �
y :

 θ 
 µx � Q � �

θσ � �
	 θQ

�
x :



y � �

σ � �
y :


 θ 
 µx � Q � �
θσ � � : µ � � � 
 A �

Then by Proposition 14.2:

∆ � θ 
 µx � Q � �
σ ��	 µy � 
 θQ

�
x :



y � �

σ � � 	 θ 
 µx � Q � �
θσ � : µ � � � 
 A �

as required. �
This is enough to show that µx � P is the unique solution to Q 	 θ P

�
x :



Q � .

PROPOSITION 16. If x is guarded in P and Γ � x : µ � � � 
 A � � P : µ � � � 
 A � then:

1. Γ � µx � P 	 θ P
�
x :



µx � P � : µ � � � 
 A � .

2. If Γ � Q 	 θ P
�
x :



Q � : µ � � � 
 A � then Γ � Q 	 θ µx � P : µ � � � 
 A � .

PROOF.

1. By Proposition 14.1, Γ � θµx � P 	 θP
�
x :



µx � P � : µ � � � 
 A � so Γ � µx � P 	 θ
P

�
x :



µx � P � .

2. By Proposition 15:

Γ � θQ 	 θP
�
x :



Q � 	 θP
�
x :

 θQ � : µ � � � 
 A �

Similarly:

Γ � θµx � P 	 θP
�
x :


 θµx � P � : µ � � � 
 A �
So by Proposition 14.2:

Γ � θQ 	 µx � θP 	 θµx � P : µ � � � 
 A �
So Γ � Q 	 θ µx � P : µ � � � 
 A � . �

Finally, we can show that 	 θ is a congruence for µ � � � 
 A � .
PROPOSITION 17. 	 θ is a congruence for µ � � � 
 A � .
PROOF. We shall prove by induction on the size ofΓ � P : µ � � � 
 A � that if ∆ �
σ 	 θ σ � : Γ then ∆ � P

�
σ � 	 θ P

�
σ � � : µ � � � 
 A � . The only case different from

Proposition 5 is if P



µx � Q. Let y be a fresh variable. Then:

∆ � θ 
 µx � Q � �
σ � 	 θQ

�
x :



µx � Q � �

σ �
	 θQ

�
x :



y � �

y :



µx � Q � �
σ �

	 θQ
�
x :



y � �

σ � �
y :


 

µx � Q � �

σ � �
	 θQ

�
x :



y � �

σ � �
y :


 θ 
 µx � Q � �
σ � � : µ � � � 
 A �



A typed, prioritized process algebra 17

Similarly:

∆ � θ 
 µx � Q � �
σ � � 	 θQ

�
x :



y � �

σ � � �
y :

 θ 
 µx � Q � �

σ � � � : µ � � � 
 A �
so:

∆ � θ 
 µx � Q � �
σ � 	 µy � 
 θQ

�
x :



y � �
σ � �

	 µy � 
 θQ
�
x :



y � �
σ � � �

	 θ 
 µx � Q � �
σ � : µ � � � 
 A �

Thus ∆ � µx � Q �
σ � 	 θ µx � Q �

σ � � : µ � � � 
 A � . �

6 Translating other prioritized calculi into PPA

In the appendices, we provide a translation into PPA of CLEAVELAND and HEN-
NESSY’s prioritized CCS, a subset of BAETEN, BERGSTRA and KLOP’s ��� � θ,
and a variant of HANSSON and ORAVA’s PC. For each process P in the source
language, we provide a translation

� �
P � � into PPA, and show that P 	 � �

P � � . In par-
ticular, for each constructor op of the source language, opx 	 � �

opx � � and so each
of the constructors can be translated into PPA. Thus, the constructors of PPA are
at least as expressive as the constructors of PCCS, ��� � θ and PC.

Unfortunately, not all of the constructors of each language can be translated
into PPA, since not all of them respect prioritized bisimulation. For example,
�����

θ has a constructor p � q, with the operational semantics:

p a� � p � q b� � q �
p � q c��� p � � � q �

�
a � b 


c �

where � : Aδ � Aδ � Aδ. Then if a � b, a � a 

a and a � b 
 δ then:

a
�

b 	 θ b

but: 

a
�

b � � a 	 θ a �	 θ δ 	 θ b � a
Thus � does not preserve prioritized bisimulation, which is one reason why un-
prioritized bisimulation is investigated by BAETEN, BERGSTRA and KLOP. Sim-
ilarly, in order to make sure that prioritized bisimulation is respected by p � � q and
∂H p, we have to put the following restrictions on � and H:
� If a � c then a � b � c.
� H is � -downwards closed.

HANSSON and ORAVA (1992, Proposition 5) claim that their variant of prioritized
bisimulation 	 π is a congruence for their language PC. Unfortunately, it is not,
since if we define:

P



a


1 � � d 
 1 � � � a � a



1 � � b



3 � � � b � d � b



3 � � c



7 � � d



1 �



18 Alan Jeffrey

Q



a


1 � � e 
 1 � � � a � a



1 � � b



3 � � � b � e � b



3 � � c



7 � � e



1 �

R



a


1 � � d 
 1 � � � a � a



1 � � b



0 � � � b � d � b



0 � � c



7 � � d



1 �

then P � 	 a � b � 	 π Q � 	 a � b � but P � 	 a � b � � 	 c � �	 π Q � 	 a � b � � 	 c � . Prioritized
bisimulation 	 θ is also not a congruence, since P � 	 b � c � 	 θ R � 	 b � c � but P �	

b � c � � 	 a � θR � 	 b � c � � 	 a � .
As discussed in Appendix C, this is because the priority ‘order’ implicitly

used by HANSSON and ORAVA is not transitive. For example, in P � 	 a � b � c � ,
the internal a action is lower priority than the internal b action, which is lower
priority than the internal c action, but the internal a action is incomparable with
the internal c action, since they are performed by concurrent processes.

In addition, HANSSON and ORAVA allow unguarded recursion, which is prob-
lematic. If we define:

A
def


a


0 � � 0 � 


a


1 � � � a � A �

Then for any n, A can perform an a with priority n, and so A � 	 a � is not well-
defined in HANSSON and ORAVA’s transition system.

In Appendix C we propose a different priority relation for PC, which is a
partial order, and we can show that the resulting calculus with guarded recursion
can be translated into PPA.

The only operators of prioritized CCS, ����� θ and PC which cannot be trans-
lated into PPA are those which do not respect prioritized bisimulation. This is
an example of a tradeoff between the expressivity of a language, and having
pleasant mathematical properties.

7 Conclusions

In this paper, we have provided:
� A typed, prioritized process algebra.
� An operational semantics, which provides a notion of prioritized bisimula-

tion.
� A complete axiomatization for prioritized bisimulation.
� A translation of three other prioritized process algebras into � � � .

It is worth noting that the three translations make heavy use of the type structure
of � � � , and it is not obvious whether there would be a similar simple translation
into a language without the type structure.

There are a number of open problems still to be resolved:
� Is there a treatment of priority which unifies priority by action (dealt with

here) and priority by process (dealt with, for example, by CAMILLARI (1990))?
� Is there a transition system format for which PPA is completely expressive, in

the same way as DE SIMONE (1985) has shown SCCS and the author (1992a)



A typed, prioritized process algebra 19

σ � t σ� � t
t σ� � t �

t � u σ� � t �
u σ� � u �

t � u σ� � u �
t σ� � t �

t
�

a σ� � t � � a

�
σ 
� �

a 
 a 
 a 
 a � 

t σ� � t �

t � u σ� � t � � u u σ� � u �
t � u σ� � t � u � t α� � t � u α� � u �

t � u τ� � t � � u � t α� � t � u α� � u �
t � u τ� � t � � u �

TABLE 5. The operational semantics of �������

has shown CSP is completely expressive for de Simone format?
� Can the partial order used to model concurrent prioritized actions be uni-

fied with the partial order structures investigated by MAZURKIEWICZ (1986),
PRATT (1986), WINSKEL (1989) and many others?

The appendices contain detailed comparisons of PPA with three other approaches
to priority.

A Translating prioritized CCS into PPA

CLEAVELAND and HENNESSY’s (1988) prioritized variant of CCS has actions
which are either low priority (written α) or high priority (written α). There are
two silent actions, one of low priority (τ) and one of high priority (τ). The only
priority law in their axiomatization is:

α � P � τ � Q 
 τ � P

More formally, there is a set Λ of labels, with a complement
�

such that a



a.
The set of actions is A 
 Λτ � 	 α � α � Λτ � , ranged over by σ. The language
PCCS is defined:

t ::



nil � σ � t � t � t � t � t � t � a � x

This is given an operational semantics in Table 5, and the prioritized operational
semantics is given as:

� If t α��� u then t α� � � u.
� If t α��� u and t τ� �� � then t α� � � u.

To translate PCCS into PPA, we define the strict partial order on A as the smallest
such that:

α � τ



20 Alan Jeffrey

Then define:

� �
nil � � 
 δ� �
σ � t � � 
 σ � � �

t � �� �
t
�

u � � 
 � �
t � � � � �

u � �� �
t � u � � 
 ρflat∂sync


 � �
t � � � � �

u � � �� �
t � a � � 
 ρinject∂ � a � a � a � a �

� �
t � �� �

x � � 
 x

Fail

 	 
 σ � σ � � � σ �
 σ � �

flat : ∂Fail

 A � A � � A

flat


inlσ � 
 σ

flat


inrσ � 
 σ

flat


a � a � 
 τ

flat


a � a � 
 τ

inject :

 ∂H A � � A

injectσ 
 σ

Then we can show that the PPA translation models PCCS up to unprioritized
bisimulation.

PROPOSITION 18.

1. If t σ��� t � then
� �
t � � σ��� 	 � �

t � � � .
2. If

� �
t � � σ��� P then t σ��� t � and

� �
t � � ��	 P.

3.


t � ��� � 	 
 � �

t � � � ��� � .
PROOF.

1. An induction on t.

2. An induction on t.

3. Define:

R 
 	�

t � � �

t � � � � t � � � ��� �
Then from parts 1 and 2 we can show that R is a strong bisimulation up to
strong bisimulation, and so t 	 � �

t � � . �
We can show that this translation models PCCS up to prioritized bisimulation.

PROPOSITION 19.

1. If t σ� � � t � then θ
� �
t � � σ��� 	 θ

� �
t � � � .

2. If θ
� �
t � � σ��� P then t σ� � � t � and θ

� �
t � � ��	 P.

3.


t � � � � � 	 
 θ � �

t � � � ��� � .
PROOF.

1. If t α� ��� t � then t α��� t � so by Proposition 18
� �
t � � α��� 	 � �

t � � � . Since α is � -
maximal,

� �
t � � � α, so θ

� �
t � � α��� 	 θ

� �
t � � � .

If t α� ��� t � then t α� � t � and t τ� �� � , so by Proposition 18
� �
t � � α� � 	 � �

t � � � . Since
t τ� �� � ,

� �
t � � � α, so θ

� �
t � � α��� 	 θ

� �
t � � � .

2. Similar to part 1.



A typed, prioritized process algebra 21

ε �
p � q �

p � q � p �
p � q �

q �
p � q �

p � q �
p � � q � p �

∂H p �
p �

θp �
TABLE 6. The termination of ����� θ

a a� � ε
p a� � p �

p � q a� � p � � q p � q a� � q �
p � q a� � q �

p a� � p �
p � q a� � p �

q a� � q �
p � q a� � q �

p a� � p �
p � � q a� � p � � � q q a� � q �

p � � q a� � p � � q � p a� � p � q b� � q �
p � � q a � b� � p � � q �

�
a � b 
� δ 


p a� � p � p � a
θp a� � θp �

p a� � p �
∂H p a� � ∂H p �

�
a 
� H 


TABLE 7. The operational semantics of ����� θ

3. Similar to Proposition 18. �
B Tanslating prioritized ACP into PPA

BAETEN, BERGSTRA and KLOP’s (1986) ��� � θ has actions A with a strict partial
order � and a strict, associative, commutative communication function � : Aδ �
Aδ

� Aδ. A priority law derivable from their axiomatization is:

θ 
 a � p �
b � q � 
 θ 
 b � q � 


a � b �
We shall not translate the entire language ��� � θ into PPA, for reasons discussed
in Section 6. The subset we shall consider is defined:

p ::

 δ � ε � a � p � p � p

�
p � p � � p � ∂H p � θp � x

where:
� If a � c then a � b � c.
� H is an � -downwards-closed set of actions.

This is given an operational semantics in Tables 6 and 7. Then define:� �
δ � � 
 δ� �
ε � � 
 ε� �
a � � 
 a� �

p
�

q � � 
 � �
p � � � � �

q � �� �
p � q � � 
 � �

p � � � � �
q � �� �

p � � q � � 
 ρinject∂ � δ � ρcomm

 � �

p � � � � �
q � � � �� �

∂H p � � 
 ∂H
� �
p � �� �

θp � � 
 θ
� �
p � �� �

x � � 
 x

comm : A � A � Aδ

comm


inla � 
 a

comm


inra � 
 a

comm


a � b � 
 a � b

inject : ∂HA � A

injecta



a

Then we can show that the PPA translation models ����� θ up to unprioritized
bisimulation.



22 Alan Jeffrey

PROPOSITION 20.

1. If p σ��� p � then
� �
p � � σ��� 	 � �

p � � � .
2. If

� �
p � � σ� � P then p σ��� p � and

� �
p � � � 	 P.

3.


p � ��� � 	 
 � �

p � � � ��� � .
PROOF. Similar to Propisition 19. �

C Tanslating PC into PPA

HANSSON and ORAVA’s (1992) Priority Calculus PC assumes a set of actions
Λτ


 Λ � 	 τ � and a total order of priorities


Pri � � � with a monotone, cancella-

tive, commutative monoid


Pri � � � 0 � . Their priority law is only between silent

actions:

τ 
 π � � P � τ 
 π � � � Q 
 τ 
 π � � � Q 
 π � π � �
In addition, priority is only important between actions performed ‘on the same
processor’, for example:

τ 
 0 � � P � L τ 
 1 � � Q �	 θ τ 
 1 � � 
 τ 
 0 � � P � L Q �
since in the LHS, the τ 
 1 � action does not override the τ 
 0 � action, since they are
performed concurrently. The syntax of PC is:

P ::

 0 � α 
 π � � P � P �

P � P � L P � P � L � x � µx � P
where L

� Λ. This is given a proof-labelled transition system similar to those
of BOUDOL and CASTELLANI (1988). Transitions are of the form P

�
α � π � O �� ��� � � � P �

where O
� 	

l � r� v � h ��� records how the transition was deduced. Let A 
 Λτ �
Pri � P 
 	

l � r� v � h ��� � . The transition system is given in Table 8, where:

O � x

 	 σx � σ � O �

In a transition P
�
α � π � O �� ��� � � � P � :

� If σv � O then the transition comes from the LHS of a
�

.
� If σh � O then the transition comes from the RHS of a

�
.

� If σl � O then the transition comes from the LHS of a � .
� If σr � O then the transition comes from the RHS of a � .

Note that a set O may have more than one element, where each string names
a concurrent component cooperating in the action. For example, a transition
 α � π � 	 l � r � � must come from both the LHS and the RHS of a � , such as:

a


1 � � 0 � � a � a



1 � � 0

�
a � 2 �

� l � r ���� ��� � � � � 0 � � a � 0

The transition system � � � makes no mention of the order
�

. It is introduced by
defining a priority ordering on A. The priorty ordering introduced implicitly by



A typed, prioritized process algebra 23

α � π ��� P �
α � π � � ε ���� ��� � � � � P

P
�
α � π � O �� � � � � � P �

P � Q
�
α � π � O � h �� � � � � � � P � � 0

Q
�
α � π � O �� � � � � � Q �

P � Q
�
α � π � O � v �� � � � � � � 0 � Q �

P
�
α � π � O �� � � � � � P �

P � L Q
�
α � π � O � l �� � � � � � � P � � L Q

�
α 
� L 


Q
�
α � π � O �� � � � � � Q �

P � L Q
�
α � π � O � r �� � � � � � � P � L Q �

�
α 
� L 


P
�
a � π � O �� ��� � � � P � Q

�
a � π � � O � �� � � � � � Q �

P � L Q
�
a � π � π � � O � l � O � � r �� � � � � � � � � � � � P � L Q �

�
a � L 


P
�
α � π � O �� � � � � � P �

P
�

L
�
α � π � O �� � � � � � P � � L

�
α 
� L 


P
�
α � π � O �� � � � � � P �

P
�

L
�
τ � π � O �� � � � � � P � � L

�
α � L 


TABLE 8. The operational semantics of ���

HANSSON and ORAVA is given:

 τ � π � O ��� 
 τ � π � � O � � iff π � π � and Comp



O � O � �

where:
� Comp


 σ � σ � , Comp

 σv � σ � h � and Comp


 σh � σ � v � .� if Comp

 σ � σ � � then Comp


 σl � σ � r � , Comp

 σr� σ � l � and Comp


 σx � σ � x � .� Comp


O � O � � iff 	 σ � O � σ � � O � � Comp


 σ � σ � � .
Unfortunately, this relation is not transitive, and as a result prioritized bisimula-
tion is not a congruence. For example:


 τ � 2 � 	 ll � vrl � ��� 
 τ � 6 � 	 hrl � vvr � ��� 
 τ � 7 � 	 hvr � �
but:


 τ � 2 � 	 ll � vrl � � �� 
 τ � 7 � 	 hvr � �
This counter-example is used in showing the counter-example in Section 6 where:

P � 	 b � c � 	 θ R � 	 b � c � but P � 	 b � c � � 	 a � �	 θ R � 	 b � c � � 	 a �
Here, we propose an alternative order on A, which only allows priorities to be
compared when the actions are performed on the same processor. Given σ �	

l � r� v � h � � we can define the processor identifier of σ to be:

pid


rσ � 
 rσ pidε 
 ε pid



hσ � 
 pidσ

pid


lσ � 
 lσ pid



vσ � 
 pidσ

Then we will define

 τ � π � O � � 
 τ � π� � O � � iff π � π � and the processors of O are



24 Alan Jeffrey

a subset of the processors of O � :

 τ � π � O � � 
 τ � π � � O � � iff π � π � and pid

�
O � � pid

�
O � �

For example, this means that:

τ 
 0 � � P � τ 
 1 � � Q 	 θ 0
� τ 
 1 � � Q

since

 τ � 0 � 	 v � � � 
 τ � 1 � 	 h � � but:


 τ 
 0 � � P � L 0 � � τ 
 1 � � R �	 θ 0
� τ 
 1 � � R

since

 τ � 0 � 	 lv � � �� 
 τ � 1 � 	 h � � . This priority relation seems to capture the moti-

vation of only allowing non-concurrent actions to be compared, whilst making
	 θ a congruence. We can use this relation to define the transition system � � on
PC:

P
�
α � π � O �� ��� � � � P � P � 
 α � π � O �

P
�
α � π � O ���� � � � P �

Then define: � �
0 � � 
 δ� �

α 
 π � � P � � 
�
 α � π � 	 ε � � � � �
P � �� �

P
�

Q � � 
 ρsnocv

� �
P � � � ρsnoch

� �
Q � �� �

P � L Q � � 
 ρflatL
∂FailL


 
 ρsnocl

� �
P � � � � 
 ρsnocr

� �
Q � � ���� �

P � L � � 
 ρhideL

� �
P � �� �

x � � 
 x� �
µx � P � � 
 µx � � �

P � �
where:

FailL

 	

inl

 α � π � O � � α � L �
� 	 inr


 α � π � O � � α � L �
� 	 
 
 α � π � O � � 
 β � π � � O � � � α �
 β �

flatL : ∂FailLA � A

flatL


inl


 α � π � O ��� 
 
 α � π � O �
flatL



inr


 α � π � O ��� 
 
 α � π � O �
flatL


 
 α � π � O � � 
 α � π � � O � � � 
�
 α � π � π � � O � O � �
snocx : A � A

snocx

 α � π � O � 
 
 α � π � O � x �

hideL : A � A

hideL

 α � π � O � 


� 
 τ � π � O � if α � L
 α � π � O � otherwise



A typed, prioritized process algebra 25

Then we can show that the PPA translation models PC up to unprioritized bisim-
ulation.

PROPOSITION 21.

1. If P a� � � P � then
� �
P � � a��� 	 � �

P � � � .
2. If

� �
P � � a��� Q then P a� � � P � and

� �
P � � ��	 Q.

3.


P� � ��� � 	 
 � �

P � � � ��� � .
PROOF. Similar to Propisition 19. �
We can also show that the PPA translation models PC up to prioritized bisimula-
tion.

PROPOSITION 22.


P� ��� � 	 
 θ � �

P � � � ��� � .
PROOF. Follows from the definition of



P� ��� � and the operational semantics of

θp. �
References
BAETEN, J. C. M., BERGSTRA, J. A., and KLOP, J. W. (1986). Syntax and defining equations for an

interrupt mechanism in process algebra. Fund. Inform., 9(2):127–168.

BAETEN, J. C. M. and WEIJLAND, W. P. (1990). Process Algebra. Cambridge University Press.

BOUDOL, G. and CASTELLANI, I. (1988). A non-interleaving semantics for CCS based on proved
transitions. Fund. Inform., XI:433–452.

CAMILLERI, J. (1990). Priority in Process Calculi. PhD thesis, Cambridge University.

CLEAVELAND, R. and HENNESSY, M. (1988). Priorities in process algebra. In Proc. LICS 88. The
Computer Society.

DE SIMONE, R. (1985). Higher-level synchronising devices in Meije-SCCS. Theoret. Comput. Sci.,
37:245–267.

GROOTE, J. F. (1989). Transition system specifications with negative premises. Report CS-R8950,
CWI, Amsterdam.

GROOTE, J. F. and VAANDRAGER, F. W. (1989). Structured operational semantics and bisimulation
as a congruence. In Proc. ICALP 89, pages 423–438. Springer-Verlag. LNCS 372.

HANSSON, H. and ORAVA, F. (1992). A process calculus with incomparable priorities. In Proc.
NAPAW ’92. Department of Computer Science, Johns Hopkins University.

JEFFREY, A. (1992a). CSP is completely expressive. Technical report 2/92, University of Sussex.

JEFFREY, A. (1992b). Observation Spaces and Timed Processes. D.Phil thesis, Oxford University.
Available as technical report PMG-R64 from the Programming Methodology Group, Chalmers
University.

MAZURKIEWICZ, A. (1986). Trace theory. In BRAUER, W., REISIG, W., and ROZENBERG, G.,
editors, Petri Nets: Applications and Relationships to Other Models of Concurrency. Springer-
Verlag. LNCS 255.

MILNER, R. (1989). Communication and Concurrency. Prentice-Hall.

PRATT, V. (1986). Modelling concurrency with partial orders. Internat. J. Parallel Programming,
15(1):33–71.

SCHNEIDER, S. A. (1990). Communication and Correctness in Real-time Distributed Computing.
D.Phil. thesis, Oxford University.



26 Alan Jeffrey

WINSKEL, G. (1984). Categories of models for concurrency. In BROOKES, S. D., ROSCOE, A. W., and
WINSKEL, G., editors, Proc. Seminar on Semantics of Concurrency, pages 246–267. Springer-
Verlag.

WINSKEL, G. (1989). An introduction to event structures. In DE BAKKER, J., DE ROEVER, W., and
ROZENBERG, G., editors, Linear Time, Branching Time and Partial Order in Logics and Models
for Concurrency. Springer-Verlag. LNCS 354.


