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Abstract Cryptographic protocols often make use of nested cryptographic primitives, for
example signed message digests, or encrypted signed messages. Gordon and
Jeffrey’s prior work on types for authenticity did not allow for such nested cryp-
tography. In this work, we present the pattern-matching spi-calculus, which is
an obvious extension of the spi-calculus to include pattern-matching as prim-
itive. The novelty of the language is in the accompanying type system, which
uses the same language of patterns to describe complex data dependencies which
cannot be described using prior type systems. We show that any appropriately
typed process is guaranteed to satisfy a strong robust safety property.

1. Introduction

Background. Cryptographic protocols are prone to subtle errors, in spite of the
fact that they are often relatively small, and so are a suitable target for formal
and automated verification methods. One line of such research is the develop-
ment of domain-specific languages and logics, such as BAN logic [6], strand
spaces [22], CSP [20, 21] MSR [8] and the spi-calculus [3]. These languages
are based on the Dolev–Yao model of cryptography [10], and often use Woo
and Lam’s correspondence assertions [23] to model authenticity. Techniques
for proving correctness include rank functions [21, 16, 15], theorem provers [5,
19, 9], model checkers [17, 18] and type systems [1, 2, 7, 12, 13, 11].

Towards more complete and realistic cryptographic type systems. Type sys-
tems for interesting languages are incomplete, that is they fail to type-check
some safe programs. Type systems usually are tailored to a particular idiom,
for example [2] treats public encryption keys but not signing keys, and [13]

∗This material is based upon work supported by the National Science Foundation under Grant No. 0208459.



covers full symmetric and asymmetric cryptography but not nested uses of
cryptography. In this paper, we will use the techniques developed in [12, 13,
11] to reason about protocols making use of nested cryptography and hashing.

Small core language. While increasing the completeness of a cryptographic
type system, it is also important to keep the system tractable, so that rigorous
safety proofs are still feasible. For that reason, we chose to define a very
small core language and obtain the full language through derived forms. The
core language is extremely parsimonious: its only constructs for messages are
tupling, asymmetric encryption and those for asymmetric keys. We show that
symmetric encryption, hashing, and message tagging are all derived operators
from this small core.

Authorization types. The language of types is small, too. It contains key types
for key pairs, encryption and decryption keys. Moreover, it contains parameter-
ized authorization types of the forms Public(M) and Secret(M). Typically, the
parameter M is a list of principal names. For instance, if principal B receives
from an untrusted channel a ciphertext {|M|}esA encrypted with A’s private sign-
ing key esA, then the plaintext M is of type Public〈A〉, because M is a public
message that has been authorized by A.

Patterns and nested cryptography. The process language combines the suite
of separate message destructors and equality checks from previous systems
[12, 13, 11] into one patten matching construct. Patterns at the process level
are convenient, and are similar to the communication techniques used in other
specification languages [22, 8, 4]. Notably, our system uses patterns not only in
processes but also in types. This permits types for nested use of cryptographic
primitives, which would otherwise not be possible. For example, previous type
systems [12, 13, 11] could express data dependencies such as

(∃a : Princ,∃m : Msg,∃b : Princ,[!begun(a,b,m)])

where !begun(a,b,m) is an effect ensuring that principals a and b have agreed
on message m. In this paper, we extend these systems to deal with more com-
plex data dependencies such as

{|#(∃a : Princ,∃m : Msg),∃b : Princ|}dk−1 [!begun(a,b,m)]

where the effect !begun(a,b,m) makes use of variables a, b and m which are
doubly nested in the scope of a decryption {| · |}dk−1 and a hash function #(·):
such data dependencies were not previously allowed because the occurrences
of a, b and m in !begun(a,b,m) would be considered out of scope.

Reusable long-term keys. Another form of incompleteness is that previous
systems have often been designed for verifying small (yet, subtle) protocol
sketches in isolation, but not for verifying larger cryptographic systems where



the same key may be used for multiple protocols. For instance, in [13] when
a signing key for A is generated, its type specification fixes a finite number of
message types that this key may sign. A more realistic approach for larger,
possibly extensible, cryptosystems would be to generate a key for encrypting
arbitrary data authorized by A. We show how the combination of key types,
authorization types and message tagging allow keys to be generated indepen-
dently of the protocols for which they will be used.

Notational conventions.. If the meta-variable x ranges over set S, then~x ranges
over finite sequences over S, and x̄ ranges over finite subsets of S.

2. An Introductory Example

Before the technical exposition, we want to convey a flavor of the type system
by discussing a simple example. Consider the following simple sign-then-
encrypt protocol:

A begins! (M,A,B)
A→ B {|{|sec(M,B)|}esA|}epB

B ends (M,A,B)

The begin- and end-statements are Woo-Lam correspondence assertions [23].
They specify that Alice begins a protocol session (M,A,B), which Bob ends
after message reception.

Protocol specification in pattern-matching spi.. Here are Alice’s and Bob’s
side of this protocol expressed in pattern-matching spi calculus:

PA
∆
= begin!(M,A,B); out net {|{|sec(M,B)|}esA|}epB

PB
∆
= inp net {|{|sec(∃x,B)|}dsA−1|}dpB−1 ; end(x,A,B)

The variable net represents an untrusted channel and dsA and dpB are the
matching decryption keys for esA and epB. An output statement of the form
(out net N) sends a message N out on channel net. A statement of the form
(inp net X ;P) inputs a message from channel net and then attempts to match
the message against pattern X . If the pattern match succeeds then P gets exe-
cuted, otherwise execution gets stuck. Existentials in patterns indicate which
variables get bound as part of the pattern match. In the input pattern above,
the variable x gets bound, whereas B, dsA and dpB are constants that must be
matched exactly.

Type annotations.. For a type-checker to verify the protocol’s correctness
(and also for us to better understand and document it), it is necessary that
we annotate the protocol with types. For our example, the types for the free



variables are:

M : Secret M will not be revealed to the opponent
epB : PublicCryptoEK(B) epB is B’s public encryption key
dpB : PublicCryptoDK(B) dpB is B’s matching decryption key
esA : SigningEK(A) esA is A’s private signing key
dsA : SigningDK(A) dsA is A’s matching signature verification key

No type annotations are necessary in PA, because PA does not have input state-
ments. In PB we add two type annotations. The input variable x is annotated
with Secret. Moreover, we add a postcondition to the input statement that
indicates that a (x,A,B)-session can safely be ended after a successful pattern
match. Here is the annotated version of PB:

PB
∆
= inp net {|{|sec(∃x : Secret,B)|}dsA−1|}dpB−1 [!begun(x,A,B)]; end(x,A,B)

These type annotations, together with our Robust Safety Theorem are enough
to ensure the safety of this protocol in the presence of an arbitrary opponent.

3. A Spi Calculus with Pattern Matching

3.1 Messages

As usual in spi calculi, messages are modeled as elements of an algebraic
datatype. They may be built from atomic names and variables by pairing and
asymmetric-key encryption. Moreover, there are two special symbolic opera-
tors Enc and Dec with the following meanings: if message M represents a key
pair, then Enc (M) represents its encryption and Dec (M) its decryption part.

In the presentation of messages, we include asymmetric-key encryption
{|M|}N which encrypts plaintext M with encryption key N. We also allow mes-
sages {|M|}N−1 which represents the encryption of plaintext M with the encryp-
tion key which matches decryption key N. This is clearly not an implementable
operation: it is used in the next section when we discuss patterns.

Messages:

x,y,z variables
m,n names
L,M,N ::= message

n name
x variable
() empty message
(M,N) message pair
{|M|}N M encrypted under encryption key N
{|M|}N−1 M encrypted under inverse of decryption key N
Enc (M) encryption part of key pair M



Dec(M) decryption part of key pair M

Syntactic restriction: No subterms of the form {|M|}(Dec (N))−1 .
Define: A message M is implementable if it contains no subterms {|M|}N−1 .

Because of the restriction that we never build messages {|M|}(Dec (N))−1 , we
have to be careful with our definition of substitution. This is standard, except
for when we substitute into a term of the form {|M|}N−1 .

Substitution into Messages:

({|M|}N−1){σ} ∆
=

{

{|M{σ}|}Enc (L) if N{σ}= Dec (L)
{|M{σ}|}(N{σ})−1 otherwise

We will write the list 〈M1, . . . ,Mn〉 as shorthand for (M1,(. . . ,(Mn,()) . . .))

3.2 Patterns

Patterns are of the form {~x . M | Ā}, where M is a pattern body and Ā an as-
sertion set. Assertion sets are only used in type-checking, so we delay their
discussion until Section 4.2. The variables ~x act as binders. A message N
matches a pattern {~x .M | Ā} if it is of the form N = M{~x←~L}, in which case
variables ~x will be bound to messages ~L. The pattern body M may have multi-
ple occurrences of the same variable and it may contain variables that are not
mentioned in~x: such variables are regarded as constants and must be matched
exactly. For instance, the pattern {x . (x,{|x|}y) | Ā} is matched by messages of
the form (M,{|M|}y), but not by messages (M,{|M|}z) or (M,{|N|}y).

Patterns:

X ,Y,Z ::= pattern
{~x .M | Ā} pattern matching term M binding ~x

Syntactic restrictions: ~x⊆ fv(M) and~x distinct.
Define: A pattern {~x .M | Ā} is implementable if (fn(M), fv(M)−~x, M 
~x).

Importantly, not all patterns are implementable. For instance, the patterns
{x,dk . {|x|}dk−1 | Ā} and {x . {|x|}ek | Ā} are not implementable, because they
would allow access to the plaintext without knowing the decryption key. On
the other hand, {x .{|x|}dk−1 | Ā}and {x .{|x|}Enc (k) | Ā} are implementable pat-
terns. A syntactic restriction forbids non-implementable input patterns in pro-
cesses. We formalize the notion of implementable pattern by making use of the
Dolev–Yao ‘derivable message’ judgment M̄ 
 N̄ meaning ‘An agent which
knows messages M̄ can construct messages N̄.’



Dolev–Yao Derivability, M̄ 
 N̄:

(DY Id)

M̄,N 
 N

(DY And)
M̄ 
 N1 . . . M̄ 
 Nk

M̄ 
 N1, . . . ,Nk

(DY Nil)

M̄ 
 ()

(DY Pair)
M̄ 
 N,N ′

M̄ 
 (N,N ′)

(DY Split)
M̄,N,N ′ 
 L

M̄,(N,N ′) 
 L

(DY Key)
M̄ 
 N k ∈ {Enc,Dec}

M̄ 
 k (N)

(DY Encrypt)
M̄ 
 N,N ′

M̄ 
 {|N ′|}N

(DY Decrypt)
M̄ 
 N M̄,N ′ 
 L

M̄,{|N ′|}N−1 
 L

(DY Unencrypt)
M̄ 
 N M̄,N ′ 
 L

M̄,{|N ′|}Enc (N) 
 L

We use some convenient syntactic abbreviations that treat patterns as if they
were messages containing binding existentials. These ‘derived forms’ for pat-
terns are defined below. For example:

{|{|sec(B,∃x : Secret)|}dsA−1 |}dpB−1 [!begun(x,A,B)]

≡ {x .{|{|sec(B,x)|}dsA−1 |}dpB−1 | x : Secret, !begun(x,A,B)}

Derived Forms for Patterns:

M
∆
= {M | }; T

∆
= {x . x | x : T} for fresh x;

∃x
∆
= {x . x | }; . . .

∆
= (∃x) for fresh x;

{|X |}N
∆
= {~x .{|M|}N | Ā}, if X = {~x .M | Ā};

{|X |}N−1
∆
= {~x .{|M|}N−1 | Ā}, if X = {~x .M | Ā};

X [B̄]
∆
= {~x .M | Ā, B̄}, if X = {~x .M | Ā};

〈X1, . . . ,Xn〉
∆
= {~x1, . . . ,~xn . 〈M1, . . . ,Mn〉 | Ā1, . . . , Ān}, if Xi = {~xi .Mi | Āi}

3.3 Processes

The spi-calculus with patterns is a variant of the spi-calculus, where we add
pattern-matching as a primitive capability (in the spi-calculus it is derived).

Processes:

O,P,Q,R ::= process
out N M asynchronous output of M on N
inp N X ;P input from N against pattern X
new n:T ;P name generation
P | Q parallel composition
!P replication
0 inactivity



Syntactic restrictions:
• In (out N M), both N and M are implementable messages.

• In (inp N X ;P), N is an implementable message and X is an implementable pattern.

Scope:
• The scope of~x in (inp N {~x .M | Ā};P) is M, Ā and P.

• The scope of n in new n:T ;P is P.

3.4 Specifying Authenticity by Correspondence Assertions
Following [12, 13, 11], we specify authenticity properties by inserting corre-
spondence assertions into protocol specifications.

Correspondence Assertions:

O,P,Q,R ::= process
· · · as in Section 3.3
begin!(L); P begin-many assertion
end(L); P end assertion

A process is safe whenever at run-time each end(M) is preceded by a begin!(M)
(precise definitions can be found in the appendix). For example, consider pro-
cess P:

P
∆
= PA | PB, where PA

∆
= (begin!(M,A,B); out net (M,B))

PB
∆
= (inp net (∃x,B)[!begun(x,A,B)]; end(x,A,B))

Process P is safe in isolation, but we are really interested in safety in the pres-
ence of an opponent. A process P is called robustly safe whenever (O | P)
is safe for all opponent processes O. The example process P is not robustly
safe, because (out net N | P) is not safe, and we ensure robust safety by adding
encryption:

P
∆
= new k : SigningKP(A); (out net (Dec (k)) | PA(Enc (k)) | PB(Dec(k)))

PA(ek)
∆
= begin!(M,A,B); out net {|M,B|}ek

PB(dk)
∆
= inp net {|∃x : Public,B|}dk−1 [!begun(x,A,B)]; end(x,A,B)

The crucial property of our system is that processes that only make use of
public data are robustly safe (we will return in Section 4.3 to the definition of
a public type):
Theorem (Robust Safety) If ~T are public types and (~n : ~T ` P), then P is
robustly safe.

4. Highlights of the Type System
4.1 Environments
As is usual in most type systems, we give our judgments relative to a typing
environment. In our case, this typing environment is used to:



Track the names of bound variables, for example dk and x.
Give message types, for example dk : SigningDK(A) and {|x,B|}dk−1 : Un.
List correspondences that have begun, for example !begun(x,A,B).

The environment containing these assertions would be:

dk,x; dk : SigningDK(A), {|x,B|}dk−1 : Un, !begun(x,A,B)

A significant difference to previous type systems for the spi-calculus [12, 13,
11] is that we are unifying the notions of variable environment and process
effect into a common language of environments.

Environments:

A,B,C,D ::= assertions
M : T type assertion
!begun(M) begun-many assertion

E,F,G ::= environments
x̄; Ā environment

dom(x̄; Ā)
∆
= x̄ environment domain

4.2 Typed Pattern Matching

We can now explain the assertion component of a pattern {~x .M | Ā}: it gives
the precondition Ā which must be satisfied by any process that constructs a term
matching the pattern. For example, the pattern (∃x : Public,B)[!begun(x,A,B)]
is a derived form for {x . (x,B) | x : Public, !begun(x,A,B)}.

Typed Pattern Matching (where X = {~x .N | Ā} ):

E `M ∈ X
∆
= E `M : Top, Ā{~x←~N}, where M = N{~x←~N} Match

E, M ∈ X ` J ∆
= E, M : Top, Ā{~x←~N} ` J , where M = N{~x←~N} Unmatch

4.3 Kinds and Subkinding

A message is publishable if it may be sent to an untrusted target. A message
is untainted if it has been received from a trusted source. An important part of
the type system is a kinding relation (T :: K) that assigns kinds K to types T .
The type system is designed so that the following statements hold:

If (T :: K) and Public ∈ K, then members of type T are publishable.
If (T :: K) and Tainted 6∈ K, then members of type T are untainted.

We say that type T is public (respectively tainted) if (T :: K 3 Public) (respec-
tively (T :: K 3 Tainted)) for some kind K.



Kinds and Subkinding:

K,H,J ⊆ {Public,Tainted}

(Public ∈H)⇒ (Public ∈ K) (Tainted ∈ K)⇒ (Tainted ∈ H)

K ≤ H

4.4 Types and Subtyping

We will now give the grammar of types, together with the definition of kinding
and subtyping. We discuss each of the types in more detail below.

Types:

T,U,V ::= types
K Top top type
K Auth(L) authorized type
(K,H)KT(X) key type

KT ::= key type symbols
EK encryption key
DK decryption key
KP key pair

Kinding T :: K:

K Top :: K; K Auth(L) :: K;

(K,H)KP(X) :: K∩H; (K,H)EK(X) :: K; (K,H)DK(X) :: H

Kinds are used to define subtyping. The rule (Subty Public Tainted) states that
any message of public type also has any tainted type, as in [13]. The subtyping
rules (Subty Top) and (Subty Auth) are new and have not been part of [13].

Subtyping, T ≤U :

(Subty Refl)

T ≤ T

(Subty Top)
T :: K K ≤ H

T ≤ H Top

(Subty Auth)
K ≤ H

K Auth(L)≤ H Auth(L)

(Subty Public Tainted)
T :: K∪{Public} U :: H ∪{Tainted}

T ≤U

4.5 Top Types

Top types have the form K Top and are the most general types of kind K, by
(Subty Top). Moreover, {Tainted}Top is the greatest type of the entire type
hierarchy. We define the following derived forms:



Derived Forms for Top Types:

Secret
∆
= /0Top; Public

∆
= {Public}Top; Un

∆
= {Public,Tainted}Top;

Top
∆
= Tainted

∆
= {Tainted}Top

4.6 Authorization Types

A novel feature of this system is authorization types. A message M : K Auth(L)
is a message of kind K which requires authorization by or for L.

Derived Forms for Authorization Types:

Secret(L)
∆
= /0Auth(L);

Public(L)
∆
= {Public}Auth(L);

Tainted(L)
∆
= {Tainted}Auth(L);

Un(L)
∆
= {Public,Tainted}Auth(L)

In meaningful authorization types, parameter L is usually a list of principal
names. For example, Public〈A,B,C〉 is the type of public messages M that
require authorizations by principals A, B and C. These authorizations are ac-
quired by A, B and C digitally signing M.

4.7 Key Types

In this system, key types are extremely general: in examples, we will often use
specialized derived key types for applications such as signing, as discussed in
Section 5.2. The key type (K,H)KT(X) contains a pattern X . These keys will
be used to encrypt plaintext messages M to produce ciphertexts which have an
authorization type J Auth(L). In order to form the ciphertext, we require the
pair (M,L) to match the pattern X . The key type (K,H)KT(X) also contains
a kind K, which is the kind of the encryption key, and a kind H , which is the
kind of the decryption key. For example, in Section 5.2 we define principal A’s
signing key to be:

SigningEK(A)
∆
= ( /0,{Public})EK(∃x : Secret(A,y),∃y)

A key esA of type SigningEK(A) is a secret encryption key, whose matching
decryption key is public. Thus, it is a signing key. It is typically used to
encrypt messages M of type Public(A, ~B) to produce ciphertexts {|M|}esA of
type Public(~B): thus, by signing the message, A removes her name from the
list of principals required to authorize it.

4.8 Output and Input

The interesting rules for the process judgment E ` P are for input and output.

E ` N : Un, M : Un

E ` out N M

~x∩dom(E) = /0
E ` N : Un ~x,E,M : Un ` Ā ~x,E, Ā ` P

E ` inp N {~x .M | Ā};P



In the output rule, message M has to be of type Un in order to be sent out on
the untrusted channel N. Note that M may also be sent out if M’s type is any
other public type, because each public type is a subtype of Un.

4.9 Encryption
There are two typing rules for encryption, which only differ in the kind at-
tributes of the types. The first rule applies to encryption with a trusted key:

Tainted 6∈ K∪H−1

E ` N : (K,H)EK(X), (M,L) ∈ X

E ` {|M|}N : Public(L)

Public−1 ∆
= Tainted

Tainted−1 ∆
= Public

The condition Tainted 6∈K∪H−1 expresses that the ciphertext is only publish-
able if the encryption key is untainted and the corresponding decryption key is
not public. Otherwise, the following rule is used for encryption:

Tainted ∈ K∪H−1 J = (J′−{Tainted})∪ (K−{Public})
E ` N : (K,H)EK(X), (M,L) ∈ X , M : J ′Top

E ` {|M|}N : J Auth(L)

Note that here the ciphertext type J Auth(L) is only public if the plaintext type
J′Top is public, and is tainted if the encryption key is tainted.

4.10 Decryption
There are two typing rules for decryption, which only differ in how they treat
kinds and authorizations. The first rule applies if both the decryption key and
the ciphertext are untainted, and is the inverse of the rule for encryption with a
trusted key:

Tainted 6∈ H∪ J
E ` N : (K,H)DK(X) E,(M,L) ∈ X ` B

E,{|M|}N−1 : J Auth(L) ` B

The second decryption rule applies if we cannot trust the ciphertext; in partic-
ular we do not know who has authorized the ciphertext:

Tainted ∈ J E ` N : (K,H)DK(X) x,E, (M,x) ∈ X ` B
(Tainted ∈ H∪K−1) ⇒ (x,E, M : J Top, x : Top ` (M,x) ∈ X)

E,{|M|}N−1 : J Top ` B

Note that when we apply this rule, the authorization is unknown, so we replace
it by a fresh variable x, which acts as a placeholder for the ‘real’ authoriza-
tion. If the decryption key is untrusted, then we have an additional require-
ment: we can only add (M,x) to the assumption list if it is derivable from
(x,E,M : J Top,x : Top); as a result, untrusted keys can only be used when the
pattern X is quite ‘weak’.



5. Derived Forms and Examples

5.1 Tagging

In previous type systems for cryptographic protocols [12, 13, 11], message
tags were introduced using tagged union types. These types are sound, and
they allow a key to be used in more than one protocol, but unfortunately they
require the protocol suite to be known before the key is generated, since the
plaintext type of the key is given as the tagged union of all the messages in the
protocol suite. In this paper, we adopt a variant of dynamic types to allow a
key to be generated with no knowledge of the protocol suite it will be used for.

In our system, we give message tags a type of the form ` : X→ Auth(Y ),
which can be used to tag messages M of kind (J∪Tainted) to get tagged mes-
sages `(M) : J Auth(L). For example, our previous protocol becomes:

P
∆
= new k : SigningKP(A); (out net (Dec (k)) | PA(Enc (k)) | PB(Dec (k)))

PA(ek)
∆
= begin!(M,A,B); out net {|snd(M,B)|}ek

PB(dk)
∆
= inp net {|snd(∃x : Public,B)|}dk−1 [!begun(x,A,B)]; end(x,A,B)

snd : (∃x : Public,∃b : Public)→Auth(∃a : Public, . . .)[!begun(x,a,b)]

Tags are not primitive in the pattern-matching spi-calculus, instead we can
encode tags as public key pairs, and message tagging as encryption. We treat
message tags ` as names with a globally agreed type.

`(M)
∆
= {|M|}Enc (`); `(X)

∆
= {|X |}Enc (`);

(X→ Auth(Y ))
∆
= ({Public},{Public})KP(X ,Y )

5.2 Signing Keys

A goal of this type system is to allow principals to have just one signing key,
which can be used for any protocol, rather than requiring different signing
key types for different protocols. Message tags are then used to ensure the
correctness of each protocol.

The type for a signing key is designed to support nested signatures, for
example {|{|M|}esA|}esB is a message M signed by A (using her signing key
esA : SigningEK(A)) and B (using his signing key esB : SigningEK(B)). This
message can be given type {|{|M|}esA|}esB : Secret as long as M : Secret〈A,B,y〉
for some y, and type {|{|M|}esA|}esB : Public as long as M : Public〈A,B,y〉 for
some y. This form of nested signing was not supported by [12, 13, 11].

SigningKT(L)
∆
= ( /0,{Public})KT(∃x : Secret(L,y),∃y)

A long version of this paper [14] contains a proof that the protocol in Sec-
tion 5.1 is well-typed.



5.3 Public Encryption Keys

Public encryption is dual to signing: the encryption key is public, and the de-
cryption key is kept secret. One crucial difference is that although our type
system supports nested uses of signatures, it does not support similar nested
uses of public-key encryption. As a result, although we can support sign-then-
encrypt, we cannot support encrypt-then-sign, due to the well-known prob-
lems with encrypt-then-sign applications (see, for instance, the analysis of the
CCITT X.509 protocol in [6]).

PublicCryptoKT(L)
∆
= ({Public}, /0)KT(∃x : Secret(L), . . .)

5.4 Symmetric Keys

Symmetric cryptography is not primitive in pattern-matching spi-calculus, in-
stead we encode it using asymmetric cryptography:

{M}N
∆
= {|M|}Enc (N); {X}N

∆
= {|X |}Enc (N); SymK(X)

∆
= ( /0, /0)KP(X , . . .)

5.5 Hashing

We can encode hashing as encryption with a hashing key, where the matching
decryption key has been discarded.

#(M)
∆
= hash({|M|}ekH) where ekH : ({Public}, /0)EK(. . .)

and hash : {|∃x : Secret(y)|}ekH→ Auth(∃y)

From this point on, we assume that each environment E is implicitly extended
by the above type assertions for the special global names ekH and hash. We
can then adapt the example from Section 5.1 to allow A to sign the message
digest of M rather than signing the entire message:

A begins! (M,A,B)
A→ B M,{|#(snd(B,M))|}esA

B ends (M,A,B)

This example uses the types which were introduced in previous examples, a
full version is given in a long version of this paper [14].

Appendix
Structural Process Equivalence, P≡ Q:

P≡ P (Struct Refl)
P≡ Q⇒ Q≡ P (Struct Symm)
P≡ Q,Q≡ R⇒ P≡ R (Struct Trans)
P≡ Q⇒ P |Q≡ P | R (Struct Par)
P | 0≡ P (Struct Par Zero)
P |Q≡ Q | P (Struct Par Comm)



(P |Q) | R≡ P | (Q | R) (Struct Par Assoc)
!P≡ P | !P (Struct Repl Par)

State Transition, (Ā ::: P)→ (B̄ ::: Q):

(Redn Equiv)
P≡ P′ (Ā ::: P′)→ (B̄ ::: Q′) Q′ ≡ Q

(Ā ::: P)→ (B̄ ::: Q)

n 6∈ fn(Ā,Q)⇒ (Ā ::: (new n:T ;P) |Q)→ (Ā, n:T ::: P | Q) (Redn New)
(Ā ::: (begin!(M);P) | Q)→ (Ā, !begun(M) ::: P |Q) (Redn Begin)
(Ā, !begun(M) ::: (end(M);P) | Q)→ (Ā, !begun(M) ::: P |Q) (Redn End)
(Ā ::: (out L M{~x←~N} | inp L {~x .M | Ā};P) |Q)→ (Ā ::: P{~x←~N} | Q) (Redn IO)

Good Environment, E ` �:

(Good Env)
fv(Ā)⊆ x̄

x̄;̄A ` �

Right Rules, E ` Ā:

(Id)
E,A ` �

E,A ` A

(And)
E ` A1 · · · E ` An n≥ 0

E ` A1, . . . ,An

(Empty)
E ` �

E ` () : Public

(Sub)
E `M : T T ≤U fv(U)⊆ dom(E)

E `M : U

(Pair)
E `M : K Top, N : K Top

E ` (M,N) : K Top

(Enc Part)
E `M : (K,H)KP(X)

E ` Enc (M) : (K,H)EK(X)

(Dec Part)
E `M : (K,H)KP(X)

E ` Dec(M) : (K,H)DK(X)

(Encrypt Trusted)
Tainted 6∈ K ∪H−1

E ` N : (K,H)EK(X), (M,L) ∈ X

E ` {|M|}N : Public(L)

(Encrypt Untrusted)
Tainted ∈ K ∪H−1 J = (J′−{Tainted})∪ (K−{Public})
E ` N : (K,H)EK(X), (M,L) ∈ X , M : J′Top

E ` {|M|}N : J Auth(L)

Left Rules, E, Ā ` B:

(Unsub)
fv(T )⊆ dom(E)
E, M : U ` A T ≤U

E, M : T ` A

(Split)

E, M : K Top, N : K Top ` A

E, (M,N) : K Top ` A



(Decrypt Trusted)
Tainted 6∈H ∪ J
E ` N : (K,H)DK(X) E,(M,L) ∈ X ` B

E, decrypt(M,N) : J Auth(L) ` B

(Decrypt Untrusted)
Tainted ∈ J E ` N : (K,H)DK(X) x 6∈ dom(E) x,E, (M,x) ∈ X ` B
(Tainted ∈H ∪K−1) ⇒ (x,E, M : J Top, x : Top ` (M,x) ∈ X)

E, decrypt(M,N) : J Top ` B

where decrypt(M,N)
∆
=

{

{|M|}Enc (L) if N = Dec(L)

{|M|}N−1 otherwise

Well-typed Processes, E ` P:

(Proc Out)

E ` N : Un, M : Un

E ` out N M

(Proc In)
~x∩dom(E) = /0
E ` N : Un ~x,E,M : Un ` Ā ~x,E, Ā ` P

E ` inp N {~x .M | Ā};P

(Proc New)
E,n : T ` P n 6∈ fn(E)

E ` new n:T ; P

(Proc Par)
E ` P E ` Q

E ` P |Q

(Proc Repl)
E ` P

E ` !P

(Proc Stop)
E ` �

E ` 0

(Proc Begin Many)
E, !begun(M) ` P

E ` begin!(M); P

(Proc End)
E ` !begun(M) E ` P

E ` end(M); P

Well-typed Computation States, ` Ā ::: P:

(State)
Ā nominal Ā ` Ā′ Ā′ ` P

` Ā ::: P
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