
A distributed object calculus

Alan Jeffrey
DePaul University

ajeffrey@cs.depaul.edu

December 1999
To appear in Proc. FOOL 2000

1 Introduction

Distributed object-oriented languages are becoming increasingly
accepted as network programming languages. The success of Java,
and the Java security model in particular, has made the study of
type systems for OO languages critical to the success of distributed
programming.

Abadi and Cardelli [1] have provided an excellent framework
for the study of object-based OO languages in the object calculus.
Gordon and Hankin [5] have shown how this work can be extended
to deal with concurrent languages, but to date there is no work on
a distributed semantics for the object calculus.

There have been many semantics for distributed calculi, notably
Cardelli and Gordon’s [4] ambient calculus, Fournet et al.’s [3] dis-
tributed join calculus, Hennessy and Riely’s [11, 12] Dπ, Yoshida
and Hennessy’s [15] Dλπ, Sewell’s [13] distributed π, and Vitek
and Castagna’s [14] Seal calculus. None of these languages are di-
rectly object-oriented, although there are strong parallels between
them and OO languages, using codings of OO into the π-calculus
such as [2, 6, 8, 9, 10].

In this paper, these two strands of research are brought together,
to provide a model for distributed object-based languages. In doing
so, two features of distributed programming become clear:

� the importance of separating serializable and non-serializable
data using types, and

� the use of located objects to model remote objects.

These features are not specific to OO languages: they will arise
in any distributed language with mutable state, for example any
system supporting RPC. In Java, serializable data is part of the per-
sistency API, and remote objects are implemented as stub-skeleton
pairs as part of RMI.

The main result of each part of this paper is a subject reduc-
tion result, which shows that well-typedness is preserved by reduc-
tion. This, together with type safety properties of the type system
mean that well-typed programs cannot violate the safety and secu-
rity policies of the network.

This paper starts by reviewing Gordon and Hankin’s concurrent
object calculus in Section 2.

The new material then starts in Section 3, where the distributed
object calculus is presented. We justify the use of serializable ob-
jects, and show how the type system can be used to ban object
references from leaving their home location.

Although the distributed object calculus is safe, it is not very
useful, since it does not allow object references to be transmitted
to remote locations. In Section 4 we develop a type system which
uses a serializable type

� �������
	��
τ for located objects, and show that

the resulting language is powerful enough to encode a distributed
π-calculus. There are two approaches which could be taken here:

� Static binding: provide a notion of ‘resource name’ which in-
cludes the home location of the resource: the resource can
then only be used at the resource’s home location. This cor-
responds to a type ‘ � l :

� ��������
 �������
τ
���

l � ’: a resource of type
τ which exists at one place on the network. We will call this
a located object type. Java supports static binding using stub-
skeleton pairs.

� Dynamic binding: provide a notion of ‘resource name’, and a
concept of resource usage that can take place anywhere on the
network. This corresponds to a type ‘ � l :

� ��������
 �������
τ
���

l � ’:
a resource of type τ which can be used anywhere on the net-
work. For example, the ambient calculus [4] can be regarded
as a calculus of dynamic resources, and Java supports dy-
namic binding using object registries.

In this paper, we shall investigate static binding, and leave dynamic
binding for future work.

In a trusted network, we can provide a static type system which
guarantees type safety. In the presence of attackers, however, we
need to use some run-time type-checking to ban malicious code. In
Section 5, we use a modification of Hennessy and Riely’s [12] run-
time typing to remove malicious code from untrusted sites. The
run-time type system presented here is much simpler than theirs,
but at the cost of requiring every distributed object to carry its type.

This paper is part of the SafetyNet project [7] to design and im-
plement a network programming language. Much of the material
discussed here has been implemented in SafetyNet, which has a
compiler to Java.

I would like to thank Andy Gordon, Matthew Hennessy, Andy
Moran, Tim Owen, James Riely, Ian Wakeman, the DePaul Foun-
dations of Programming Languages group, and the anonymous ref-
erees for comments and discussions about this paper and related
topics.

1



2 Concurrent object calculus

In this section, we present (with slightly different syntax) Gordon
and Hankin’s [5] concurrent object calculus. The main difference
is we use an explicit syntactic category of configurations, which
represents a computation running within a single location.

A configuration consists of a heap and a thread pool. The heap
defines a collection of object references denoted p �� O, and the
thread pool is modeled as a collection of expressions evaluating in
parallel:

p1 �� O1
���������

pm �� Om
�

E1
���������

En

Threads can contain private object references, denoted in the π-
calculus style as νp

�
C.

2.1 Syntax

We assume grammars for variables x � y � z, names p � q � r and labels
l.

We also assume some base values (to model integers, floating
point numbers, and so on) ranged over by b. We require at least the
base value 	 to represent the canonical value of unit type.

We introduce a grammar of values:

V � W :: 
 x�
p�
b

a grammar of objects:

O :: 
 � l1 
 M1 � � � � � ln 
 Mn 

a grammar of methods:

M :: 
 ςx
�
E

a grammar of expressions:

E � F � G :: 
 V� � 	��
x 
 E;F� � 	��

O�
V
�
l�

V
�
l � M� � � ����	

V� ��
 	
� ��� ��� �

E

and a grammar of configurations:

C :: 
 E�
p �� O� �

�
C1

�
C2�

νp
�
C

We shall view terms up to α-conversion.

We shall use syntax sugar to make examples more readable. Fol-
lowing Moggi’s monadic meta-language, we can extend the lan-
guage to allow expressions where only values are allowed, for ex-
ample E

�
l as short-hand for

� 	��
x 
 E;x

�
l.

We shall write E for the method ς
��� 
 � �

E.
We shall write E;F for

� 	��
x 
 E;F for fresh x.

2.2 Examples

We recall from Abadi and Cardelli [1] that there is a coding of the
recursive λ-calculus into the object calculus.

We recall from Gordon and Hankin [5] that there is a coding
of the asynchronous π-calculus into the concurrent object calculus
(which requires a primitive for locks, but we shall not discuss those
in this paper) using types for channels:

��� � �
τ 
 ��� 	�� � : τ � � � 
 �
	 : τ ��� 


� � ��� � � τ 
 ��� 	�� � : τ 
��� ��� � �
τ 
 � � � 
 �
	 : τ ��� 


We can use channels to simulate call-cc (in a rather inefficient man-
ner where we create a new thread every time call-cc is used):

Γ � k : τ ����� E : �
Γ � ��� � � ���

k
�
E : τ

defined:

��� � � ���
k
�
E 
 � 	��

l 
�� �"!$# � � � 
 � � ;� 	��
k 
 l

� � � 
 �
	 ;��� ��� �
E;

l
� � 	�� �

2.3 Reduction

We use a structural congruence on configurations, which allows us
to view configurations as a multiset of located threads. The struc-
tural congruence C % C & is the smallest congruence on configura-
tions satisfying the axioms in Figure 1.

The reduction precongruence C �� C & is the smallest precongru-
ence on configurations satisfying the axioms in Figure 2. Note
that the reduction rules have been organized so that there are no
evaluation contexts on expressions: reduction is only between con-
figurations. This makes proving properties about reduction much
simpler, since we do not have to consider let as an evaluation con-
text.

We define C � C & to be C %'�� % C & .

2.4 Type system

In this paper, for simplicity we shall not consider recursive types,
polymorphism and variance annotations. These should not pose
any technical difficulties, since the material in Abadi and Cardelli
should apply here.

We assume a grammar of base types ranged over by B. We re-
quire at least the base type 	 to model the unit type. In examples
we will use � to model the empty type: this is useful for modelling
methods such as asynchronous send which do not return values.

2



C1
� � % C1 C1

�
C2 % C2

�
C1 C1

� �
C2

�
C3 � % �

C1
�

C2 � � C3 C1
� �

νp
�
C2 � % νp

���
C1

�
C2 �

Figure 1: Structural congruence rules (where p is not free in C1)

� 	��
x 
 V ;E �� E �V � x 
 (Redn Let β)� 	��

y 
 � � 	��
x 
 E;F � ;G �� � 	��

x 
 E;
� � 	��

y 
 F ;G � (Redn Let Assoc)� 	��
x 
 � 	��

O;E �� νp
���

p �� O
� � 	��

x 
 p;E � (Redn New)

p �� � �l 
 �M � l 
 ςy
�
F 
 � � 	�� x 
 p

�
l;E �� p �� � �l 
 �M � l 
 ςy

�
F 
 � � 	�� y 
 F � p � y 
 ;F (Redn Access)

p �� � �l 
 �M � l 
 M 
 � � 	�� x 
 �
p
�
l � M & � ;E �� p �� � �l 
 �M � l 
 M & 
 � � 	�� x 
 p;E (Redn Override)

p �� O
� � 	��

x 
 � � ��� 	
p;E �� νq

���
p �� O

�
q �� O

� � 	��
x 
 q;E � (Redn Clone)� 	��

x 
 ��� ��� �
F ;E �� F

� � 	��
x 
�	 ;E (Redn Spawn)� 	��

x 
 ��
 	
;E �� �

(Redn Die)

Figure 2: Reduction rules

� �l : �τ � �l & : �τ & 
�� : � �l : �τ 
 (Subtype Object)

Figure 3: Subtyping rules

Γ � x : τ � x : τ
(Type Val Id)

Γ � V : τ1 τ1 � : τ2

Γ � V : τ2
(Type Val Subsum)

Figure 4: Type rules for values Γ � V : τ

Γ � M1 : τ � τ1
� � �

Γ � Mn : τ � τn

Γ � � l1 
 M1 � � � � � ln 
 Mn 
 : τ
(Type Object)

Γ � x : τ1
� E : τ2

Γ � ςx
�
E : τ1

� τ2
(Type Method)

Γ � E : τ1 Γ � x : τ1
� F : τ2

Γ � � 	��
x 
 E;F : τ2

(Type Exp Let)
Γ � O : σ

Γ � ��	��
O : σ

(Type Exp New)

Γ � V : τ
Γ � V

�
li : τi

(Type Exp Access)
Γ � V : τ Γ � M : τ � τi

Γ � V
�
li � M : τ

(Type Exp Override)

Γ � � 
 	
: σ

(Type Exp Die)
Γ � E : σ

Γ � ��� ��� �
E : 	 (Type Exp Spawn)

Γ � V : τ
Γ � � � ��� 	

V : τ
(Type Exp Clone)

Γ � E : τ1 τ1 � : τ2

Γ � E : τ2
(Type Exp Subsum)

Figure 5: Type rules for expressions Γ � E : σ, where τ 
 � l1 : τ1 � � � � � ln : τn 


Γ � O : τ
Γ � �

p �� O � :
�
p : τ � (Type Config Heap)

Γ � E : τ
Γ � E :

� � (Type Config Thread)

Γ � �
:
� � (Type Config Empty)

Γ � C1 : Γ1 Γ � C2 : Γ2

Γ � �
C1

�
C2 � :

�
Γ1 � Γ2 � (Type Config Concur)

Γ � p : τ � C :
�
Γ & � p : τ �

Γ � �
νp

�
C � : Γ & (Type Config Scope)

Figure 6: Type rules for configurations Γ � C : Γ &

3



We introduce a grammar of types (for distinct li):

τ :: 
 � l1 : τ1 � � � � � ln : τn 
�
B

and a grammar of type environments (for distinct xi):

Γ :: 
 x1 : τ1 � � � � � xn : τn

We shall view object types and type environments up to reordering.
The type judgments extend the judgments for base values b : B

by the rules in Figures 3–6.

2.5 Subject reduction

We can now show our first subject reduction result, from Gordon
and Hankin [5], that configuration typing is preserved by reduction:

Proposition 1 If C � C & and Γ � C : Γ then Γ � C & : Γ.

3 Distributed object calculus

We will now add a notion of location to the language, and allow
threads to migrate between locations. We do this by introducing
a notion of network, which is a collection of configurations each
running at a separate location:

L1 � �C1 
 
 ��������� Ln � �Cn 
 

In this paper, we are considering a very simple, fixed flat set of
locations, with no routing information, dynamic location creation
or hierarchy of locations. As far as the material in this section
is concerned, there are few technical difficulties with allowing a
richer notion of location, but this would complicate Section 5 quite
considerably, since we would not be able to partition locations into
good and bad as easily. We leave consideration of richer notions of
location as future work.

The main problem we will address in this section is that we want
to avoid configurations where an object at one location is being
accessed at another, for example:

K � � p �� � � � � 
 V 
 
 
 � L � � � 	�� x 
 p
�
�
� �

;E 
 

To ensure that each configuration can only access local state, we
use the following type rule for configurations:

Γ � C : Γ� L � �C 
 
 :
��	�� ��� � �

This type rule ensures that malformed networks such as the above
cannot be type-checked. Unfortunately, it is very easy to define
type systems where subject reduction does not hold, because well-
typed configurations can be reduced to malformed networks such
as the above.

3.1 Serializable types

In this paper, we use a type system based on dividing objects
into serializable objects (which can be sent across the network)
and non-serializable objects (which cannot). We will first justify
this decision, by introducing a number of unsafe type systems and
showing why they do not satisfy subject reduction.

First attempt Add a new expression
���

L
��� ��� �

E which will
execute the thread E at location L, with type:

Γ � V :
� ��������
 ���

Γ � E : τ
Γ � ���

V
��� ��� �

E : 	
and reduction rule:

L � � � 	�� x 
 ���
L & ��� ��� � E;F

�
C 
 
 � L & � �C & 
 


�� L � � � 	�� x 
 	 ;F
�
C 
 
 � L & � � E �

C & 
 

Unfortunately subject reduction fails:

� 	�� � ����� � 
 ��	�� � � � � 
 V 
 ;��� � ��� 	�� ��	 � 	 ��� ��� � �� 	��
x 
 � � ��� � �

�
� �

;E
�

This will spawn a remote thread at a remote location which will
attempt to access the local object

� ����� �
. Since the type system does

not allow access to non-local objects, subject reduction fails.

Second attempt The problem with the first attempt is the rule
for remote spawn, which allows the spawned thread to carry all its
local context with it, even pointers to objects which do not exist at
the remote location. One attempt to fix this is to only allow base
types to be sent to remote locations:

Γ � Γ & � V :
� � ������
 ���

Γ � E : τ
Γ � Γ & � ���

V
��� ��� �

E : 	 � Γ only contains base types

This type system does preserve subject reduction, but is very re-

strictive, since only base types can be carried between locations. In
particular, recursion is implemented using objects, so it is impossi-
ble in this type system to write a program such as:

� � � 
 λx :
� ��������
 ����� 
 � ���
��� � 	

x
�����

�	� � ��
 � � � ��
 	
� ��� � �

y � ys � � ���
y
��� ��� �

E;
� � � �

ys �
�

This program is intended to hop through a list of locations, per-
forming some computation E at each place. Unfortunately, since��� �

is not of base type, the remote spawn will not type check using
this type system.

Third attempt We introduce a new class of serializable objects
which can be sent across the network. We do this by adding a new
kind of value: � 	 � 
 � � � �l 
 �M 

with type: � 	 � 
 � � � �l : �τ 

We use essentially the same type rules for serializable objects, for
example the rule for creating new objects is:

Γ � O : � �l : �τ 

Γ � � 	 � 
 � � O :

� 	 � 
 � � � �l : �τ 

4



N1
� � % N1 N1

�
N2 % N2

�
N1 N1

� �
N2

�
N3 � % �

N1
�

N2 � � N3 N1
� �

νp
�
N2 � % νp

���
N1

�
N2 � L � � νp

�
N 
 
 % νp

�
L � �N 
 


Figure 7: Structural congruence for networks (where p is not free in N1)

L1 � �C1
� � 	��

x 
 ���
L2

��� ��� �
E;F 
 
 � L2 � �C2 
 
 �� L1 � �C1

� � 	��
x 
 	 ;F 
 
 � L2 � �C2

�
E 
 
 (Redn Remote Spawn)

L � �C � � 	��
x 
 � ����� � � � � �

;E 
 
 �� L � �C � � 	��
x 
 L;E 
 
 (Redn Localhost)� 	��

x 
 � 	 � 
 � � O �
l;E �� � 	��

x 
 F � � 	 � 
 � � O � y 
 ;E (Redn Serial Access)� 	��
x 
 � � 	 � 
 � � O �

l � M � ;E �� � 	��
x 
 � � 	 � 
 � � � �l 
 �M � l 
 M 
 � ;E (Redn Serial Update)

Figure 8: Reduction semantics (where O 
 � �l 
 �M � l 
 ςy
�
F 


� 	 � 
 � � � �l : �τ � �l & : �τ & 
�� :
� 	 � 
 � � � �l : �τ 
 (Subtype Serial)

Figure 9: Subtype rules

Σ � O : � �l : �τ 

Γ � Σ � � 	 � 
 � � O :

� 	 � 
 � � � �l : �τ 
 (Type Val Serial)

Figure 10: Type rules for values Γ � V : τ

Γ � Σ � V :
� ��������
 ���

Σ � E : σ
Γ � Σ � ���

V
��� ��� �

E : 	 (Type Exp Remote Spawn)
Γ � � ����� � � � � �

:
� ��������
 ��� (Type Exp Localhost)

Γ � V : τ
Γ � V

�
li : τi

(Type Exp Serial Access)
Γ � Σ � V : τ Σ � M : τ � τi

Γ � Σ � V
�
li � M : τ

(Type Exp Serial Override)

Figure 11: Type rules for expressions Γ � E : σ, where τ 
 � 	 � 
 � � � l1 : τ1 � � � � � ln : τn 


Γ � C : Γ� L � �C 
 
 :
� 	�� ��� � � (Type Network Located)

� N :
� 	�� ��� � �� νp

�
N :

��	�� ��� � � (Type Config Scope)

� �
:
� 	�� ��� � � (Type Network Empty)

� N1 :
� 	�� ��� � � � N2 :

��	�� ��� � �� �
N1

�
N2 � :

��	�� ��� � � (Type Network Concur)

Figure 12: Type rules for networks � N :
� 	�� ��� � �

We provide serializable objects with a semantics as non-imperative
objects (see Abadi and Cardelli [1] for details of imperative
vs. non-imperative objects). A type is serializable iff it is a base
type, or a serializable object type. The rule for remote spawn is
now:

Γ � Γ & � V :
� ��������
 ���

Γ � E : τ
Γ � Γ & � ���

V
��� ��� �

E : 	 � Γ only contains serializable types

Unfortunately, this still does not work, because objects are es-

sentially closures, and so have their own context. If we create an
object whose context is mutable, we can create an object whose

type is serializable but which still contains local pointers:

� 	�� � ����� � 
 � 	�� � � � � 
 V 
 ;� 	�� � � � � � 	 � 
 � 	 � 
 � � � � � � 
 � ����� � �
�
� � 
 ;��� � ��� 	�� ��	 � 	 ��� ��� � �� 	��

x 
 � � � � � 	 � � � � � ;E
�

We need to ensure that when we create an object which might be
sent across the network that not only is the object immutable, but
also the context each of its methods carries with it is immutable.

5



Final attempt The problem is the type rule for creating new ob-
jects, which allows serializable objects to carry pointers to non-
serializable objects in their closure. To stop this, we add a side-
condition to the formation rule for serializable objects:

Γ � O : � �l : �τ 

Γ � Γ & � � 	 � 
 � � O :

� 	 � 
 � � � �l : �τ 
 � Γ only contains serializable types

This system allows us to define recursive distributed code, and

preserves subject reduction.
This notion of serializable type is based on Java’s object per-

sistency API, but with one major change: Java allows imperative
objects to be serialized, which results in some implicit cloning. It is
difficult to tell from the source of a Java program using RMI when
an object is being cloned. In this paper, we avoid this problem by
only allowing non-imperative objects to be serialized.

3.2 Syntax

We assume a grammar of locations K and L, and that locations are
base values.

Extend the grammar of values with serializable objects:

V :: 
 �����
� � 	 � 
 � � O

Extend the grammar of expressions with remote spawning and
finding the current host:

E :: 
 �����
� ���

V
��� ��� �

E� � ����� � � � � �
Add a grammar of networks:

N :: 
 L � �C 
 
� �
�

N1
�

N2�
νp

�
N

We insist that in any network N1
�

N2 that the locations of N1 and
N2 are disjoint.

3.3 Reduction

Extend the reduction precongruence with the rules in Figure 7
and 8.

3.4 Type system

Add a new base type for locations
� � ������
 ���

, with L :
� ��������
 ���

, and
add a type for serializable objects (for distinct li):

τ :: 
 �����
� � 	 � 
 � � � l1 : τ1 � � � � � ln : τn 


A type is serializable if it is a base type or
� 	 � 
 � � ι. A context

x1 : σ1 � � � � � xn : σn is serializable if all of the σi are serializable. Let
Σ range over serializable contexts.

The type rules for the distributed mutable object calculus are
given in Figures 9–12.

3.5 Subject reduction

Proposition 2 If C � C & and Γ � C : Γ then Γ � C & : Γ.

4 Located object calculus

The distributed mutable object calculus is safe, but is not very use-
ful, since it does not allow distributed systems to communicate
across the network. A thread can start at one location and migrate
to another, but it cannot access any of the existing heap at its new
location, since mutable objects are not serializable. Newly arrived
threads can create new heap, but they cannot access any previously
existing heap. This is especially unfortunate, since threads can only
communicate via shared mutable objects, not by any other mecha-
nism.

In this section we propose adding located types to a distributed
object system, which correspond to well-known objects which can
be accessed via remote threads. They correspond to stub-skeleton
pairs in systems such as RPC or Java RMI.

Located objects are heap-allocated objects with a home location.
They can only be accessed directly from their home location, but
they are serializable, so we can program agents which migrate to
the home of the object, and then access it.

For simplicity, we could have made all mutable objects located,
but we believe this is not realistic: in practice creating a stub-
skeleton pair for an object is a fairly heavyweight operation, and
creating a pair for every object would add a tremendous overhead
to a language. Another possibility would be to create stub-skeleton
pairs for objects ‘on the fly’: whenever a heap-allocated object is
serialized, we make it a located object ‘behind the scenes’. This re-
moves the requirement to have a stub-skeleton pair for every object,
but makes it possible for a local object to become localized at any
time. We prefer to use a static approach, where we can analyze a
system statically to determine which objects may leave the current
location. Also, for security reasons, we may wish to have objects
which cannot be accessed except through well-known interfaces:
with located objects we can enforce this security requirement stat-
ically.

4.1 Syntax

Extend the language of values with located objects:

V :: 
 �����
� �

q : τ
���

L �
Extend the language of expressions with the ability to create new
located objects, and the ability to goto the home location of a lo-
cated object and read it:

E :: 
 �����
� � �������
	�� �

V : τ �� � � �
� � 	��
x 
 V ;E

4.2 Example

We can call a remote procedure or method:
� � �
�

V �V 
 � � �
� � 	��
x 
 V ;x �V

6



L � �C � � 	��
x 
 � �������
	�� �

O : τ � ;E 
 
 �� νq
�
L � �C �

q �� O
� � 	��

x 
 �
q : τ

���
L � ;E 
 
 (Redn Located New)

L1 � �C1
� � 	��

x 
 � � � �
� � 	��
y 
 �

q : τ
���

L2 � ;E � ;F 
 
 � L2 � �C2 
 
 �� L1 � �C1
� � 	��

x 
 	 ;F 
 
 � L2 � �C2
� � 	��

y 
 q;E 
 
 (Redn Located Access)

Figure 13: Reduction rules (where q does not occur free in C)

Γ � �
q : τ

���
L � :

� � �����
	��
τ

(Type Located Object)
Γ � V : τ

Γ � � �������
	�� �
V : τ � :

� �������
	��
τ

(Type Located New)

Figure 14: Type rules

� � �
� � 	��
x 
 V

�
l �V ;E 
 � � �
� � 	��

y 
 V ;
� 	��

x 
 y
�
l �V ;E

We implement ‘distributed call-cc’, with type:

Σ � k :
� �������
	�� �

τ ��� � � E : �
Σ � � 	�� � �
	���� � � ��� k

�
E : τ

� τ is serializable

by performing regular call-cc, and registering the return function:

� 	�� � �
	 ��� � � ��� k
�
E


 ��� � � ���
k & ���
� 	�� k 
 � � �����
	�� �

k & : τ ��� � ;E �
We can plug together remote calling and distributed call-cc to de-
fine remote method invocation, which is typed:

Γ � V :
� �������
	�� � � � � � l : �τ

� τ 
 Γ � �V : �τ
Γ � � 	�� � �
	 V

�
l �V : τ

� �τ � τ are serializable

and defined:

� 	 � � �
	 V
�
l �V 
 � 	 � � �
	���� � � ��� k

���
� � �
� � 	��

x 
 V
�
l �V ;

� � �
�
k x

�
With remote method invocation, we can, for example, code up
much of Sewell’s distributed π-calculus, by extending Gordon and
Hankin’s coding of the asynchronous π-calculus with global chan-
nels and process migration. In the following, let a, b and c range
over global channels:

νa
�
P 
 � 	��

a 
 � �������
	�� � � �"!$# � � � 
 � � :
��� � �

τ � ;P
� 
 � � ���
	 x

�
P 
 ���

x
��� ��� �

P;
��
 	

a � V � 
 � � �
�
a
� � � 
 �
	 V

a
�
x � � P 
 � 	��

x 
 � 	 � � �
	 a
� � 	�� � ;P

!a
�
x � � P 
 � 	�� �

� � � 
 �
� 	��

x 
�� 	�� � �
	 a
� � 	�� � ;��� ��� �

P;��� 
 � � � � �
�


 � � � �
We can also code up most of Sewell’s types as object types:

�
LL τ 
 ��� � �

τ

�
GG τ 
 � �������
	�� ��� � �

τ�
L � τ 
 � � � � � � τ�
G � τ 
 � �������
	�� � � ��� � � τ�

� L τ 
 ��� ��� � �
τ�

� G τ 
 � �������
	�� ��� � � � �
τ

However, we do not have a translation of Sewell’s
�

LG τ or
�

GL τ.
Also, Sewell uses subsumption to transform global channels to lo-
cal channels, and allows that subsumption to take place anywhere
on the network. In the located object calculus, global channels can
only be used locally at their home location, so we cannot use sub-
sumption to convert a global channel into a local one. Sewell’s
fine grained semantics for a

�
y � � P in distributed π gives the same

reductions as this translation: a new continuation channel k is cre-
ated, we migrate to the home of a, read locally on a, migrate back
to the home of k and send the result on k. Our syntax makes this
semantics explicit rather than implicit.

4.3 Reduction

Extend the reduction precongruence with rules in Figure 13.

4.4 Type system

Extend the type judgments with rules in Figure 14.

4.5 Subject reduction

Subject reduction does not hold! The problem is that sites only
know local type information, not global type information, so they
may have incorrect knowledge about the type of a located object.
The following configuration type-checks:

L � � q �� � 
 
 
 � K � � � � �
� � 	��
x 
 �

q :
��� � � 	 ��� L � ;x

� � � 
 �
	 	 
 

but after reduction can become:

L � � q �� � 
 � q
� � � 
 �
	 	 
 
 � K � � 	 
 


which does not type-check, since � 
 does not have a field
� � 
 �
	 . This

problem is especially severe in the presence of intruders, since ma-
licious code could try to subvert the type system to gain access to

7



system privileges. We need to find some way to enforce a con-
straint, which is that in (Redn Located Access) that at L2, q has
type τ.

We shall write C � q : τ whenever Γ � C : Γ and Γ : τ.
In a network N containing L � �C 
 
 , we say C & respects L iff for

every
�
q : τ

���
L � in C & we have C � q : τ.

In a network N containing L1 � �C1 
 
 , we say L1 respects L2 iff C1

respects L2.
A network N is locally respectful iff for every location L in N, L

respects L.
A network N is globally respectful iff for every locations L1 and

L2 in N, L1 respects L2.
There are (at least) two possible ways to force the subject reduc-

tion property of (Red Located Access): either add a side-condition
that q has the appropriate type to (Redn Located Access), or ensure
that the configuration is locally respectful.

Unfortunately, being locally respectful is not preserved by re-
duction: the culprit is remote spawning. There are again two pos-
sible fixes: either add a side-condition that E is well-registered at
L2 in (Redn Remote Spawn) and (Redn Located Access), or require
C to be globally well-registered.

Global respectfulness can be implemented using digital signa-
tures: each location is equipped with a public/private key pair, and
we implement

�
q : τ

���
L � by having L sign the object with its pri-

vate key. Any site can then implement (Type Located Object) by
checking the signature.

There is a trade-off here: digital signatures are expensive and re-
quire each location to have a public/private key pair, but they allow
type-checking to be done anywhere on the network, and require
no extra run-time checks. Resolving this engineering trade-off is
beyond the scope of this paper.

Proposition 3 If N � N & and � N :
��	�� ��� � � then:

1. If N is globally respectful then N & is globally respectful.

2. If N is locally respectful, and we add the side condition that E
is respectful at L2 in (Redn Remote Spawn) and (Redn Located
Access), then N & is locally-well registered.

3. If N & is locally respectful then � N & :
� 	�� ��� � � .

4. If we add the condition that C2
� q : τ in (Redn Located Ac-

cess) then � N & :
� 	�� ��� � � .

5 Subject reduction in the presence of in-
truders

We shall now give a brief account of type safety in the presence of
intruders, who are trying deliberately to subvert the type system.

Following Riely and Hennessy [12], we split the locations into
good locations G and bad locations B. We assume a notion of trust
between locations: the only requirement on the trust relation is that
good locations do not trust bad locations.

We add a side-condition to the rules for remote spawning:

1. Add the side-condition that either L2 trusts L1 or � E : τ to
(Redn Remote Spawn).

2. Add the side-condition that either L2 trusts L1 or � E � q � y 
 : τ
to (Redn Located Access).

Code from a trusted location is allowed to migrate without any
test, but code from an untrusted location is type-checked before it
is allowed to run. In this model of trust, communication is cheap
between sites in trusted space, and all the run-time testing is done
when code enters trusted space from untrusted space.

Note that these side-conditions are much simpler than the equiv-
alent rule in Riely and Hennessy, because their model allows for a
dynamic model of trust, and allows for sites to learn about located
objects at other sites.

A system is partially typed if we allow code at bad locations
to violate the type discipline. Bad locations can then try to infect
the network with badly typed code, and gain access to privileged
resources. The additional type rule for bad locations is:

� B � �C 
 
 :
��	�� ��� � � (Type Network Bad)

We weaken the requirements for respectfulness to allow bad loca-
tions to lie about their resource types. A configuration C is locally
trustworthy iff for every G in C, G respects G in C. A configura-
tion C is globally trustworthy iff for every G and L in C, L respects
G in C. Note that we require bad locations to respect good loca-
tions, which is why some form of authentication mechanism such
as digital signatures would be required in an implementation.

Proposition 4 If N � N & and � N :
� 	�� ��� � � then:

1. If N is globally trustworthy then N & is globally trustworthy.

2. If N is locally trustworthy, and we add the side condition that
E respects L2 in (Redn Remote Spawn) and (Redn Located
Access), then N & is locally trustworthy.

3. If N & is locally trustworthy then � N & :
� 	�� ��� � � .

4. If we add the condition that C2
� q : τ in (Redn Located Ac-

cess) then � N & :
��	�� ��� � � .

References
[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object
encodings. Information and Computation, 1999. To appear.

[3] C. Fournet, G. Gonthier, J.J. Levy, L. Marganget and D. Remy. A calculus of
mobile agents. In Proc. CONCUR 96, pages 406–421. Springer-Verlag, 1996.

[4] L. Cardelli and A.D. Gordon. Mobile ambients. In Proc. FOSSaCS 98, LNCS,
1998.

[5] A.D. Gordon and P.D. Hankin. A concurrent object calculus: Reduction and
typing. In Proc. HLCL 98, 1998‘.

[6] Hans Hüttel and Josva Kleist. Objects as mobile processes. In Proc. Mathe-
matical Foundations of Programming Semantics, 1996.

[7] A.S.A. Jeffrey and I. Wakeman. The safetynet project. Available electroni-
cally from http://www.cogs.susx.ac.uk/projects/safetynet/, 1998.

[8] C. Jones. A pi-calculus semantics for an object-based design notation. In Proc.
Concur 93, volume 715 of LNCS, pages 158–172. Springer-Verlag, 1993.

[9] J. Kleist and D. Sangiorgi. Imperative objects and mobile processes. In Proc.
IFIP Working Conference on Programming Concepts and Methods, 1998.

8



[10] B.C. Pierce and D.N. Turner. Concurrent objects in a process calculus. In
Proc. TPPP 94, volume 907 of LNCS, pages 187–215. Springer-Verlag, 1994.

[11] J. Riely and M. Hennessy. A typed language for distributed mobile processes.
In Proc. POPL 98. ACM Press, 1998.

[12] J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile
agents. In Proc. POPL 99. ACM Press, 1999.

[13] P. Sewell. Global/local subtyping and capability inference for a distributed
π-calculus. In Proc. ICALP 98, number 1443 in LNCS, pages 695–706.
Springer-Verlag, 1998.

[14] Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile com-
putations. In Proc. Workshop on Internet Programming Languages, 1999.

[15] N. Yoshida and M. Hennessy. Subtyping and locality in distributed higher
order processes. In Proc. Concur 99, 1999.

9


