
Efficient and Expressive Tree Filters

Michael Benedikt1 and Alan Jeffrey2

1 Computing Laboratory, Oxford University
2 Bell Labs, Alcatel-Lucent

Abstract. We investigate streaming evaluation of filters on XML doc-
uments, evaluated both at the root node and at an arbitrary node. Mo-
tivated by applications in protocol processing, we are interested in al-
gorithms that make one pass over the input, using space that is inde-
pendent of the data and polynomial in the filter. We deal with a logic
equivalent to the XPath language, and also an extension with an Until
operator. We introduce restricted sublanguages based on looking only at
“reversed” axes, and show that these allow polynomial space streaming
implementations. We further show that these fragments are expressively
complete. Our results make use of techniques developed for the study of
Linear Temporal Logic, applied to XML filtering.

1 Introduction

The eXtensible Markup Language (XML) is a common standard for data ex-
change on the Web. In a common scenario an application is required to manipu-
late an incoming XML document online, processing it as a stream of tags, using
limited memory. This can occur in XML-based subscription services: an applica-
tion registers for one or more XML feeds, and filters from within these the XML
data that is of interest. A very different sort of application is in monitoring XML-
based protocols; here the goal is to determine of the data as a whole (that is, the
protocol message) whether it should be forwarded for further processing. What
both scenarios have in common is the need for a flexible filtering description
mechanism and a stream processor that can enforce these filter descriptions.

In terms of the description mechanism, the typical assumption is that filtering
will be specified in some variant of the XPath language [25]. In this work we will
look at filters defined in several languages:

– HML, a logic equivalent in expressiveness to Navigational XPath – the frag-
ment of XPath in which only the tag structure of the document is utilized,
ignoring the attribute and PCDATA content.

– +HML, a fragment of HML which is equivalent in expressiveness to Positive
XPath, the subset of Navigational XPath without negation.

– Xuntil, an extension of HML equivalent in expressiveness to Marx’s [17, 18]
Conditional XPath, given by adding strong until to Navigational XPath.

Filters select a subset of the nodes in an XML document, for example, the
Positive XPath filters:

F1 = [child::A] F2 = [preceding-sibling::A] F3 = [following-sibling::A]

2 Michael Benedikt and Alan Jeffrey

select all nodes that have an A element as a child, left- or right-sibling.
In the context of streaming, we must consider what it means to evaluate

a filter. We will consider both root semantics and nodeset semantics. In root
semantics, the stream processor takes in a streamed XML document and at the
close of the stream returns true or false, depending on whether or not the filter
holds at the root. For example, on the stream given as:

S1 = 〈B〉〈C〉〈/C〉〈A〉〈/A〉〈D〉〈/D〉〈/B〉

the processor should return true for F1 and false for F2 and F3.
In the case of a query returning a set of nodes, we will consider the begin-tag

marking problem that produces an output stream marking the begin tags of the
selected nodes. For example, the output for F1, F2, F3 on input S1 is:

F1 : 〈B∗〉〈C〉〈/C〉〈A〉〈/A〉〈D〉〈/D〉〈/B〉
F2 : 〈B〉〈C〉〈/C〉〈A〉〈/A〉〈D∗〉〈/D〉〈/B〉
F3 : 〈B〉〈C∗〉〈/C〉〈A〉〈/A〉〈D〉〈/D〉〈/B〉

We will also consider the corresponding end-tag marking problem, with output:

F1 : 〈B〉〈C〉〈/C〉〈A〉〈/A〉〈D〉〈/D〉〈/B∗〉
F2 : 〈B〉〈C〉〈/C〉〈A〉〈/A〉〈D〉〈/D∗〉〈/B〉
F3 : 〈B〉〈C〉〈/C∗〉〈A〉〈/A〉〈D〉〈/D〉〈/B〉

Moreover, we are interested in zero-lookahead algorithms for the marking prob-
lem, that generate one token of output upon reading each token of input. Note
that there is no zero-lookahead algorithm for begin-tag marking of F1 or F3:

F1 : 〈B?〉〈C〉〈/C〉 · · ·
F3 : 〈B〉〈C?〉〈/C〉 · · ·

and no zero-lookahead algorithm for end-tag marking of F3:

F3 : 〈B〉〈C〉〈/C?〉 · · ·

We shall call filters for which zero-lookahead begin-tag or end-tag markings
exist begin-tag determined or end-tag determined. From a begin-tag marking
algorithm, it is trivial to produce an algorithm to output the selected nodeset in
constant additional space, as no buffering is required. From an end-tag marking
algorithm, the space required for buffering is proportional to the size of the
largest node to be output – in many applications this will be significantly smaller
than the whole input document.

There has been a significant amount of work on these problems within the
database community. The most common approach has been to compile expres-
sions into machines that use an unbounded amount of memory to keep track of
state. They may, for example, compile an expression into a deterministic push-
down automaton (DPDA)1. The use of unbounded memory results from the fact
1 For simple subsets of XPath, these DPDAs can be represented using a finite state

machine [12, 1, 6]. However, a stack is still needed at runtime to store the path from
the root to the current node being processed

Efficient and Expressive Tree Filters 3

that the set of streams that satisfy a given Navigational XPath expression, even
at a fixed node, is not necessarily regular [24].

In this work we are interested in algorithms that can be done in space and
per-token time that is bounded independently of the input tree, and depending
only polynomially on the expression and alphabet. By the results above, the re-
quirement that the space be independent of the input already requires some
restriction on target trees. One key observation is that many applications that
require stream-processing are concerned with content that is “data-oriented” [7];
in particular, it is common that the input data is un-nested, in the sense that
an element does not occur nested inside another element with the same tag. We
will restrict our attention to un-nested documents; equivalently, we assume that
our trees satisfy a “non-recursive DTD” – one in which the dependency relation
between tags is acyclic.

We will show that over un-nested trees Xuntil filters can be compiled into
bounded-space machines under the root semantics, but that the bound may be
exponential in the size of the formula. We will present a subset of the Xuntil

filters that can be implemented in space usage polynomial in the formula and
alphabet. We will also show that this subset is expressively complete for Xuntil

over un-nested trees. We will get similar results for +HML, and for determined
filters under nodeset semantics.

Our approach for getting space usage polynomial in the formula and alphabet
will be to compile filters into polynomial-sized finite state transducer networks.
This is a refinement of the approach of Olteanu [21] and Peng and Chawathe [22],
where XPath expressions are compiled into a pushdown transducer network –
consisting of pushdown automata that can output signals to other automata. A
more detailed discussion of related work can be found in Section 5.

In summary, our contributions are:

– For the root semantics over un-nested trees, we identify fragments of +HML
and Xuntil that are expressively complete, and have streaming implementa-
tions using time and space polynomial in the formula and alphabet.

– For the nodeset semantics over un-nested trees, we identify fragments of
+HML and Xuntil that can express all begin-tag (resp. end-tag) determined
queries, and have streaming begin-tag (resp. end-tag) marking implementa-
tions using both time and space polynomial in the formula and alphabet.

These results are proved for +HML and Xuntil, but are applicable to Positive
XPath and Conditional XPath.

Organization. Section 2 gives preliminaries and definitions. Sections 3 and 4
investigate streaming algorithms for boolean and nodeset queries respectively.
All proofs are given in Appendix A.

4 Michael Benedikt and Alan Jeffrey

2 Notation

2.1 Trees

XML documents consist of ordered labeled trees with additional data attached
at nodes, either as attributes or as leaf content (‘PCDATA’). In this work we
will be considering filtering specifications that only deal with the ordered tree
structure, so we can use a simple data model of an ordered tree:

Definition 1 (Ordered tree). An ordered tree T with labels Σ is a finite set
N together with a function λ ∈ N → Σ and two partial orders

down∗- ,
right∗- ⊆

(N ×N) such that:

–
right- ,

left- and
up- are partial functions N → N ,

–
down- = (

down- right∗-) = (
down- left∗-), and

– (
up∗- down∗-) = (N ×N),

where we write (for π ∈ {left, right, up, down}):

–
up- for

down−1
- and

left- for
right−1

- ,

– n
π+
- m whenever n

π∗- m and n 6= m, and

– n
π- m whenever n

π+
- m but not n

π+
- π+

- m.

Note that any ordered tree has a root node n0.

In many applications that require stream processing, the underlying documents
do not have repeated instances of a tag within any downward path. This is the
case, for example, of XML documents validated against a non-recursive DTD.
Most of the results of this paper will hold only for these “un-nested trees”.

Definition 2 (Un-nested tree). An ordered tree is un-nested whenever n
down+

- m
implies λ(n) 6= λ(m).

Stream processing will deal with the standard serialization of XML documents,
as a sequence of begin and end tags:

Definition 3 (Streamed tree). Define the alphabet of a streamed tree with
labels Σ as:

Tags(Σ) = {〈A〉, 〈/A〉 | A ∈ Σ}

For any ordered tree T with node labels Σ, define stream(T) ∈ (Tags(Σ))∗ as
stream(n0), given by:

stream(n) = 〈A〉 stream(n1) . . . stream(nk) 〈/A〉

where ∀i ≤ k . n
down- ni and /�left

n1
right- · · · right- nk /

right- and λ(n) = A.

Efficient and Expressive Tree Filters 5

2.2 Filtering Specifications

In this paper, we will consider specifications for nodeset queries using Marx’s [17]
Xuntil logic, which is a modal logic with a strong until operation. It extends
Linear Time Temporal Logic (LTL, [8]) by allowing more than one partial order
(LTL considers only one order of time). By restricting uses of until, we recover
Hennessy-Milner Logic (HML) [14] as a special case.

Definition 4 (Xuntil, HML and +HML). Let Xuntil over labels Σ be defined:

φ, ψ, χ ::= A | > | ⊥ | ¬φ | φ ∧ ψ | φ ∨ ψ | π(φ, ψ)

where π ranges over {left, right, up, down}, and A ranges over Σ. The satisfaction
relation for Xuntil is defined with the usual logical operations, together with:

– T, n � A whenever λ(n) = A, and

– T, n � π(φ, ψ) whenever there exists an ` such that n
π+
- ` and T, ` � φ

and for all m such that n
π+
- m

π+
- ` it holds that T,m � ψ.

We will write 〈π〉φ for π(φ,⊥) and 〈π+〉φ for π(φ,>). Let HML be the fragment
of Xuntil where all modalities are of the form 〈π〉φ or 〈π+〉φ. Let +HML be the
negation-free fragment of HML.

Marx [18] has shown that Conditional XPath filters (an extension of Naviga-
tional XPath with until) are equal in expressive power to Xuntil formulae, and
that these both are equal in expressive power to first-order logic over the axis
relations. Navigational XPath filters [4] are equal in expressive power to HML
formulae. Positive XPath filters (negation-free Navigational XPath filters) are
equal in expressive power to +HML formulae. An easy extension of Benedikt et
al.’s argument [4] shows that +HML has the same expressive power as positive
existential first-order logic over the axis relations.

We will now proceed to show results about fragments of Xuntil, knowing that
they can be applied to the appropriate fragment of Conditional XPath.

2.3 The Streaming Problem

A logical formula φ (in, for example, Xuntil) defines several streaming problems.
The root filtering problem is to determine, given T , whether or not φ holds

at the root. Gottlob and Koch [11] have shown that this can be done in time
linear in the combined sizes of φ and T , if one allows the tree T to be stored in
memory. In contrast, we want an algorithm that has limited access to T .

A root stream processor is a Turing machine TM with one input tape and
one working tape, such that TM can only move forward on its input tape. Such
a TM is a root streaming implementation of φ if TM accepts on input stream(T)
iff T satisfies φ at the root. The runtime space usage of such a TM on an input
s is the number of workspace tape elements used. The total space usage is the
runtime space usage plus the size of the TM. The per-token time usage of such
a TM on an input s is the number of steps taken, divided by |s|.

6 Michael Benedikt and Alan Jeffrey

In Section 3, we will show that every formula has a root streaming imple-
mentation with total space and per-token time that is independent of the tree.
Implementations which use polynomial total space and per-token time do not
exist for every formula, but we will find a fragment of Xuntil which does support
polynomial implementation, and moreover with no loss of expressive power.

We now turn to nodeset queries given by filters – that is to filters not re-
stricted to the root node. In main-memory processing, the entire set of subtrees
of nodes satisfying the filter would be returned. In a streaming setting, we may
be interested in an output stream that includes indicators of which nodes are
in the solution nodeset. We will consider adding these indicators to either the
begin tags or to the end tags.

Definition 5 (Streamed document tree with selected begin tags). For
any ordered tree T with node labels Σ, and any formula φ, define bstream(T, φ) ∈
(Tags(Σ)× 2)∗ as bstream(n0, φ), given by:

bstream(n, φ) = (〈A〉, b) bstream(n1, φ) . . .bstream(nk, φ) (〈/A〉,⊥)

where ∀i ≤ k . n
down- ni and /�left

n1
right- · · · right- nk /

right- and λ(n) = A
and T, n � φ↔ b (where 2 = {>,⊥}, the boolean constants)

The begin-tag filtering problem is, given as input φ and stream(T), to output
bstream(T, φ). We can similarly define the end-tag filtering problem, defining
the stream estream(T, φ) analogously to bstream above, but with booleans an-
notating end-tags.

A nodeset stream processor is a Turing machine TM with one read-only input
tape, one working tape, and one write-only output tape such that TM can only
move forward on its input tape, and only add symbols to the end of its output
tape. Such a processor has zero-lookahead if it produces exactly one output
symbol whenever it moves its head on the input tape. Such a processor TM is a
begin-tag streaming implementation of φ if TM outputs bstream(T, φ). We can
similarly talk about an end-tag streaming implementation. The notions of space
and per-token time efficiency in a processor are as before.

In Section 4, we will show that not every formula has a begin-tag or end-tag
streaming implementation with total space and per-token time that is indepen-
dent of the tree. Again, we will find a fragment of Xuntil which does admit efficient
implementations, with no loss of expressive power.

3 Filtering of Boolean Queries

We first show that every formula has a root streaming implementation with total
space and per-token time independent of the input tree.

Proposition 1. For every Xuntil formula φ over labels Σ there is a number k
and a root streaming implementation TMφ,Σ over un-nested ordered trees with
labels Σ using at most k total space and per-token time.

Efficient and Expressive Tree Filters 7

Even for simple queries, we may not be able to get space-efficient implementa-
tions. Consider the formulae φn over labels {A,B,C, T1, F1, . . . , Tn, Fn} defined:

φn = 〈down〉(A ∧ ψ1 ∧ · · · ∧ ψn)
ψi = (〈down〉Ti ∧ 〈right+〉(B ∧ 〈down〉Ti))

∨ (〈down〉Fi ∧ 〈right+〉(B ∧ 〈down〉Fi))

evaluated over trees with streaming representations of the form:

〈C〉〈A〉s1〈/A〉 · · · 〈A〉sk〈/A〉〈B〉s〈/B〉〈/C〉
where s, s1, . . . , sk ∈ {〈T1/〉, 〈F1/〉} × · · · × {〈Tn/〉, 〈Fn/〉}

It is clear that such a tree satisfies φn precisely when s ∈ {s1, . . . , sk}, and there
are 22n

such sets, and so there is no polynomial space implementation of +HML:

Proposition 2. There is no subexponential F such that every +HML formula φ
over labels Σ has a root streaming implementation TMφ,Σ over un-nested ordered
trees with labels Σ using at most F (|φ|, |Σ|) total space.

We must thus look for a sublanguage of Xuntil that has efficient implementations.
The notion of a subformula of a formula is as usual. A top-level subformula

is one which does not occur inside a subformula of the form π(φ, ψ).

Definition 6 (Backward Xuntil). Backward Xuntil is the fragment of Xuntil in
which:

– all occurrences of up are of the form up(φ, ψ), where φ and ψ have no top-
level occurrences of down, and

– all occurrences of right are of the form down(φ ∧ ¬〈right〉>, ψ).

Note that the restriction on right disallows examples such as those used in the
proof of Proposition 2, and that the restriction on up bans the similar formula
where 〈right+〉 is replaced by 〈up〉〈down〉. Also note that we cannot completely
ban right, as there is no right-free backward equivalent of 〈down〉(A∧¬〈right〉>)
(“my last child is an A”). Our first main result is:

Theorem 1. There is a polynomial P such that every backward Xuntil formula
φ over labels Σ has a root streaming implementation TMφ,Σ over un-nested
ordered trees with labels Σ using at most P (|φ|, |Σ|) total space and per-token
time. Furthermore, one can produce TMφ,Σ from φ and Σ in polynomial time.

The construction of TMφ,Σ is given by building an appropriate synchronous
transducer network, an acyclic collection of synchronous transducers [5] where
the output of one transducer is allowed as input to another. Transducers whose
input-output relation is a function are called sequential, and networks built from
sequential transducers generate deterministic automata, so can be executed in
polynomial space and per-token time.

The construction makes use of named Xuntil formulae, which require every
modality to specify the label of one of the nodes involved (for down and up, the
parent node is named, and for left and right, the parent of the context node is).

8 Michael Benedikt and Alan Jeffrey

Definition 7 (Named Xuntil). Named Xuntil is the fragment of Xuntil in which:

– all occurrences of down are of the form A ∧ down(φ, ψ), where A ∈ Σ
– all occurrences of up are of the form up(A ∧ φ, ψ),
– all occurrences of left are of the form 〈up〉A ∧ left(φ, ψ), and
– all occurrences of right are of the form 〈up〉A ∧ right(φ, ψ).

Theorem 2. Every Xuntil formula φ over labels Σ has an implementation TNφ,Σ

as a network of O(|φ| × |Σ|) synchronous transducers, each of which has O(|Σ|)
states. If φ is in named Xuntil, then TNφ,Σ contains O(|φ|) transducers. If φ is
in backward Xuntil, then TNφ,Σ is sequential. Furthermore, TNφ,Σ can be con-
structed in polynomial time.

What do we give up from staying within backward Xuntil? The next result shows
that, in terms of expressiveness over un-nested trees, we lose nothing, and in fact
we can be even more restrictive, and only require downward formulae:

Definition 8 (Downward Xuntil). Downward Xuntil is the fragment of Xuntil

in which:

– there are no occurrences of up, and
– there are no top-level occurrences of left or right.

Theorem 3. Every Xuntil formula φ has a backward downward Xuntil formula
ψ which agrees with φ on the root node of any un-nested ordered tree.

The proof makes use of an analog of Marx’s variant [17] of Gabbay’s Separation
Theorem [9] for ordered trees, showing that Xuntil formulas can be rewritten into
“strict backward”, “strict forward”, and “backward downward” formulae. For
formulae evaluated at the root node, we can then eliminate the strict backward
and forward components. A similar completeness result holds within positive
HML, but without any restriction on nesting:

Theorem 4. For every +HML formula φ there is a backward downward +HML
formula ψ which agrees with φ on the root node of any ordered tree.

This result is proven using a simpler argument, a variant of that used in [20]
and Theorem 5.1 of [4]. We translate +HML queries to logical formulas, and
then show that these formulas can be normalized to be of a special form. This
normal form is a variant of the “tree pattern queries” of [4]. Given a normalized
formula, we can apply root-equivalence, end-equivalence, or begin-equivalence
to the normalized formula, arriving at a logical formula in which all the bound
variables are restricted to lie in a certain relation to the free variable. Finally,
we translate the syntactic restrictions back into +HML, where they produce a
formula that is backward and downward. It is interesting that the analogous
completeness result does not hold for HML (or for Navigational XPath).

Theorem 5. The HML filter 〈down〉(B ∧ ¬〈right+〉A) is not equivalent to any
filter in backward HML.

Efficient and Expressive Tree Filters 9

The proof uses trees T and T ′ parameterized by a bound K:

stream(T) = 〈R〉(〈A/〉〈C/〉K−1〈B/〉〈C/〉K−1)K〈A/〉〈C/〉K−1〈/R〉
stream(T ′) = 〈R〉(〈A/〉〈C/〉K−1〈B/〉〈C/〉K−1)K〈/R〉

Clearly the formula 〈down〉(B ∧¬〈right+〉A) is false at the root of T and true at
the root of T ′. Using a bisimulation argument, we can show that no backward
formula with size bounded by K can distinguish T from T ′.

4 Filtering of Nodeset Queries

We now turn to nodeset queries, and begin with a negative result. Even with-
out requiring zero-lookahead, it is not always possible to implement filters (for
example 〈right+〉A) in space independent of the tree.

Proposition 3. There is a +HML formula φ over labels Σ such that for no k
is there a begin-tag or end-tag streaming implementation TM that uses at most
k total space over un-nested ordered trees with labels Σ.

We shall call the formulae which have zero-lookahead end-tag streaming imple-
mentations “end-tag determined”, and similarly for “begin-tag determined”.

Definition 9 (Determined formulae). For any tree T with node n ∈ T , the
subtrees btree(T, n) and etree(T, n) are such that:

n′ ∈ btree(T, n) whenever n
up∗- n′ or n

up∗- left+- down∗- n′ in T

n′ ∈ etree(T, n) whenever n′ ∈ btree(T, n) or n
down∗- n′ in T

A formula φ is end-tag determined whenever, for all n ∈ T and n′ ∈ T ′ with
etree(T, n) isomorphic to etree(T ′, n′), we have T, n � φ precisely when T ′, n′ �
φ. The begin-tag determined formulae are defined similarly.

It is easy to see that a filter has a zero-lookahead end-tag (resp. begin-tag)
streaming implementation precisely when it is end-tag (resp. begin-tag) deter-
mined. It is also easy to see that backward Xuntil formulae are end-tag deter-
mined, since they only look at the nodes in the end-tag preceding subtree of the
input node, and that strict backward Xuntil formulae are begin-tag determined:

Definition 10 (Strict backward Xuntil). A formula is in strict backward Xuntil

if it is in backward Xuntil and has no top-level occurrences of down.

Our transducer network results show that backward (resp. strict backward) Xuntil

formulae have efficient end-tag (resp. begin-tag) streaming implementations:

Theorem 6. There is a polynomial P such that every backward (resp. strict
backward) Xuntil formula φ over labels Σ has an end-tag (resp. begin-tag) stream-
ing implementation TMφ,Σ over un-nested ordered trees with labels Σ using at
most P (|φ|, |Σ|) total space and per-token time. Furthermore, one can produce
TMφ,Σ from φ and Σ in polynomial time.

10 Michael Benedikt and Alan Jeffrey

The notion of begin-tagged and end-tagged determined turns out to be decid-
able: convert a formula into a deterministic automaton with no sink states, then
check whether any state has transitions on both marked and unmarked variants
of the same tag. However, checking that a formula is determined cannot be done
efficiently; it can be shown, by reduction to the satisfiability problem for XPath
[3], that the problem is PSPACE-hard. We now show that working within back-
ward Xuntil does not restrict our ability to express determined queries, and in
fact we can be even more restrictive, requiring only oscillation-free formulae:

Definition 11 (Oscillation-free Xuntil). Oscillation-free Xuntil is the fragment
of Xuntil in which all occurrences of down contain no occurrences of up.

Theorem 7. Every end-tag (resp. begin-tag) determined Xuntil formula φ has a
backward (resp. strict backward) oscillation-free Xuntil formula ψ which agrees
with φ on any node of any un-nested ordered tree.

The proof is similar to that of Theorem 3. For positive HML, we can again get
a stronger completeness result:

Theorem 8. Every end-tag (resp. begin-tag) determined +HML formula φ has
an backward (resp. strict backward) oscillation-free +HML formula ψ which
agrees with φ on any node of any ordered tree.

This result also uses a rewriting argument, analogous to those of Benedikt et
al. [4] or Olteanu [20]. The analogous completeness results do not hold for HML
(for example, it is not true that end-tag determined HML formulas can be rewrit-
ten into backward HML) – the argument is along the lines of Theorem 5.

5 Related work

Much of the preceding work deals with XPath expressions rather than filters;
expressions are functions that take a node and return a nodeset: for example
descendant::A returns all A-tagged descendants of a given node. It is known
from Marx [19] that the expressiveness of Navigational XPath filters is the same
as that of Navigational XPath expressions evaluated at the root node. This
distinction between filters and expressions is what accounts for the emphasis on
reverse axes in our work, versus forward axes in the work of Olteanu [20].

As mentioned above, work on XPath filtering generally assumes that docu-
ments may have nested tags, and thus looks for streaming models that require an
unbounded stack. Bar-Yossef et al. [2] and Grohe et al. [13] prove lower-bounds
on the memory usage in streaming algorithms; for example Grohe et al. show
that any streaming algorithm for XPath on general XML documents requires
space at least proportional to the tree depth.

In contrast, there has been work on constant-space evaluation of constraints
expressed by DTDs and XML Schemas. Segoufin and Vianu [24] investigate
which DTDs can be validated in constant space on streams, and observes that a
DTD can be validated in constant space if all trees that satisfy it are un-nested.

Efficient and Expressive Tree Filters 11

Begin-tag and end-tag determined XPath filters have not previously been
investigated, although they have been studied in the context of XML Schemas
by Martens et al. [16] and Madhusadan et al. [15].

The two main components of our work: transducer networks and rewriting,
both appear in the work of Olteanu. His use of rewriting [20] is to eliminate
reverse axes within an XPath-like language over general trees. Our Theorem 4
is thus a variant of his result, and in Theorem 3 we show that this phenomena
extends to the much richer language Xuntil, provided that we restrict to un-
nested trees. Our Theorem 5 shows that this elimination cannot be done within
full Navigational XPath, even over un-nested trees. Although this appears to
contradict Corollary 5.2 of [20], the term “XPath” in that corollary is used to
refer to a language LGQ, which is closer in expressiveness to Positive XPath
rather than XPath. Our use of transducer networks extends Olteanu’s work
in [21], which works over general XML documents, and hence the networks are
DPDAs rather than DFAs. The networks are used for the forward fragment of
positive XPath. Our results show that the construction extends to the much
more expressive language Xuntil, and that it provides a finite state transducer
network when restricted to un-nested trees.

Our rewriting of Xuntil filters makes use of a separation result very similar
to Theorem 8 of Marx [17]. Marx’s result is over general trees, and does not
separate filters that look “to the left and up” from those that look “to the right
and up” – such a separation is needed for our result on un-nested trees, but
does not hold in general. Unfortunately, an error has been found in the proof of
Theorem 8 in [17] – Lemma 10 of that paper includes a distributivity property
(down(φ, ψ ∧ χ) = down(φ, ψ) ∧ down(φ, χ)) which is only true when

down-

is deterministic. As a result, his induction (in an un-numbered “final step” at
the end of Section 4) fails. Semantic separation has been shown, using Marx’s
expressive completeness result for Conditional XPath [18]. But this proof does
not imply syntactic separation for Xuntil.

Our completeness results for boolean queries can be seen as extensions to the
ordered tree setting of the well-known fact that LTL with only future operators
has the same expressiveness as LTL with both past and future, if one considers
only the initial node of a string. Transducer networks have been utilized several
times in the verification literature (e.g. Pnueli and Zaks [23]), but their use in
conjunction with reverse-direction fragments is, to our knowledge, new.

References

1. M. Altinel and M. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proc. 26th International Conference on Very
Large Data Bases (VLDB), pages 53–64, 2000.

2. Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the memory requirements of
XPath evaluation over XML streams. In Proc. 23rd ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), pages 177–188,
2004.

12 Michael Benedikt and Alan Jeffrey

3. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of
DTDs. In Proc. 24th ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS), 2005.

4. M. Benedikt, W. Fan, and G. Kuper. Structural properties of XPath fragments.
Theoretical Computer Science, 336(1):3–31, 2005.

5. J. Besterel and D. Perrin. Algorithms on words. In M. Lothaire, editor, Applied
Combinatorics on Words, chapter 1. Cambridge University Press, 2005.

6. C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient filtering of XML
documents with XPath expressions. In Proc. 18th IEEE International Conference
on Data Engineering (ICDE), 2002.

7. B. Choi. What are real DTDs like. In Proc. Fifth International Workshop on the
Web and Databases (WebDB), 2002.

8. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
9. D. Gabbay. Expressive functional completeness in tense logic. In U. Mönnich,

editor, Aspects of Philosophical Logic, pages 67–89, 1981.
10. D. Gabbay. Declarative past and imperative future: Executable temporal logic for

interactive systems. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Proc.
Colloquium on Temporal Logic in Specification, pages 67–89, 1989.

11. G. Gottlob and C. Koch. Monadic datalog and the expressive power of web infor-
mation extraction languages. Journal of the ACM, 51(1):74–113, 2004.

12. T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with
deterministic automata. In Proc. 9th International Conference on Database Theory
(ICDT), 2003.

13. M. Grohe, C. Koch, and N. Schweikardt. Tight lower bounds for query processing
on streaming and external memory data. In Proc. International Conference on
Automata, Languages and Programming (ICALP), 2005.

14. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32:137–161, 1985.

15. V. Kumar, P. Madhusadan, and M. Viswanathan. Visibly pushdown automata for
streaming XML. In WWW, 2007.

16. W. Martens, F. Neven, and T. Schwentick. Which XML schemas admit 1-pass
pre-order traversal. In Proc. 10th International Conference on Database Theory
(ICDT), 2005.

17. M. Marx. Conditional XPath, the first order complete XPath dialect. In Proc. 23rd
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), pages 13–22, 2004.

18. M. Marx. Conditional XPath. ACM Transactions on Database Systems, pages
929–959, 2005.

19. M. Marx. First order paths in ordered trees. In Proc. 10th International Conference
on Database Theory (ICDT), 2005.

20. D. Olteanu. Forward node-selecting queries over trees. ACM TODS, 32(1), 2007.
21. D. Olteanu. Streamed and progressive evaluation of XPath. IEEE Transactions

on Knowledge and Data Engineering, 19(7), July 2007.
22. F. Peng and S. Chawathe. XPath queries on streaming data. In Proc. 2003 ACM

SIGMOD International Conference on Management of Data (SIGMOD), 2003.
23. A. Pnueli and A. Zaks. PSL model checking and runtime verification via testers.

In Proc. International Symposium on Formal Methods (FM), 2006.
24. L. Segoufin and V. Vianu. Validating streaming XML documents. In Proc. 21st

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), 2002.

Efficient and Expressive Tree Filters 13

25. World Wide Web Consortium. XML path language (XPath) 2.0: W3C recommen-
dation, 2007. http://www.w3.org/TR/xpath20/.

A Detailed Proofs

A.1 Transducer Networks and Proofs of Efficiency

In this appendix, we give the formal definitions of transducer networks, and show
two results:

– Theorem 9, which shows how a transducer network can be built from an
Xuntil formula, and

– Proposition 5, which sketches how a streaming implementation can be built
from a transducer network.

From these we get:

– Theorem 2, which follows directly from Theorem 9,
– Theorem 6, which follows directly from Theorem 2 and Proposition 5,
– Theorem 1 which follows from Theorem 6 by taking the end-tag streaming

implementation, ignoring the output tape, and accepting whenever the last
output end mark is >, and

– Proposition 1, which follows from Theorem 9 by building a (possibly non-
sequential) transducer network, flattening it to a (possibly nondeterministic)
automaton, determinizing the automaton, and considering the automaton as
a Turing Machine. This construction has double-exponential blowup, but has
total space and per-token time independent of the input tree.

We begin with the formal definitions underlying the transducer networks that
witness our efficient implementations.

Definition 12 (Automaton). An automaton A over alphabet Σ is a quadru-
ple (Q, -, I, F) where Σ and Q are finite sets (the alphabet and state set
respectively), - ⊆ Q × Σ × Q (the transition relation), and I, F ⊆ Q (the
initial and final states respectively). Write q

`- q′ for (q, `, q′) ∈ -. For

s ∈ Σ∗, write q ===
s
⇒ q′ for the transitive reflexive closure of -, that is:

q ===
`1...`n⇒ q′ whenever q = q0

`1- · · · `n- qn = q′

The language induced by an automaton A is L(A) = {s | I 3 q ==
s
⇒ q′ ∈ F}. An

automaton is deterministic whenever the transition relation is a partial function
- : Q×Σ → Q and the first-move relation first = {(`, q′) | I 3 q `- q′} is

a partial function first : Σ → Q.

Definition 13 (Synchronous transducer). A synchronous transducer T over
input alphabet Σ and output alphabet ∆ is an automaton over alphabet Σ ×∆.

14 Michael Benedikt and Alan Jeffrey

Write q
`/k- q′ for (q, (`, k), q′) ∈ -. For s ∈ Σ∗ and t ∈ ∆∗, write q ==

s/t
⇒ q′

for the transitive reflexive closure of -, that is:

q =========
`1...`n/k1...kn⇒ q′ whenever q = q0

`1/k1- · · · `n/kn- qn = q′

The relation induced by a transducer T is R(T) = {(s, t) | I 3 q ===
s/t
⇒ q′ ∈ F}.

A transducer is sequential whenever the transition relation is a partial function
- : Q × Σ → ∆ × Q and the first-move relation is a partial function first :

Σ → ∆×Q.

Proposition 4. For any synchronous transducers T and T ′ we can construct
the synchronous transducers:

– id such that R(id) = {(s, s) | s ∈ Σ∗},
– T ; T ′ such that R(T ; T ′) = {(s, t) | (s, u) ∈ R(T), (u, t) ∈ R(T ′)}, and
– 〈T , T ′〉 such that R(〈T , T ′〉) = {(s, t) | (s, π∗1(t)) ∈ R(T), (s, π∗2(t)) ∈
R(T ′)}.

If T and T ′ are sequential, then so are id, T ; T ′ and 〈T , T ′〉.

Definition 14 (Synchronous transducer network). A synchronous trans-
ducer network with generators {T1, . . . , Tn} is a synchronous transducer definable
by:

N ::= Ti | N ;N | 〈N ,N〉

We shall write |N | for the number of transducers in N , given by |Ti| = 1 and
|N ;N ′| = |〈N ,N ′〉| = |N |+ |N ′|.

The significance of synchronous transducers is that they provide efficient stream-
ing implementations:

Proposition 5. Let N be a transducer network consisting of only sequential
transducers. Let q be the total number of states of any transducer in the network,
and let s the total number of input or output symbols of any transducer in the
network. Then the partial function induced by N can be implemented as a zero-
lookahead nodeset stream processor with total space and per-token time at most
polynomial in q, s and |N |.

Proof (sketch). We build a machine that simply runs the transducer network,
storing the vector of component states on the worktape. The runtime space
used is only the state of each component in the transducer network, and the
representation of the machine just needs to record the transition function of
each component. To get zero-lookahead, we precompute the output symbol for
each possible input symbol, so the output can take place immediately after the
input. ut

We now show the core of the efficiency results, which is that Xuntil formulae can
be implemented as polynomial-sized transducer networks:

Efficient and Expressive Tree Filters 15

Theorem 9. For any Xuntil formula φ over Σ, we can construct synchronous
transducer networks B[[φ]] and E [[φ]] such that:

– 〈id,B[[φ]]〉 induces a function which maps stream(T) to bstream(T, φ), and
– 〈id, E [[φ]]〉 induces a function which maps stream(T) to estream(T, φ).

Moreover:

– B[[φ]] and E [[φ]] contain O(|φ| × |Σ|) transducers, each with O(|Σ|) states,
input symbols and output symbols,

– if φ is in named Xuntil then B[[φ]] and E [[φ]] contain O(|φ|) transducers,
– if φ is in backward Xuntil and has no top-level uses of down then B[[φ]] is

sequential, and
– if φ is in backward Xuntil then E [[φ]] is sequential.

Proof. In giving descriptions of transducers, we will elide many no-op transitions.
Formally, we define the completion of a synchronous transducer T over input
alphabet Σ and output alphabet 2 by adding transitions:

q
`/⊥- q whenever @c, q′ . q `/c- q′ in T (` ∈ Σ)

We now show how to construct B[[φ]] in the case of named strict backward Xuntil:

– B[[φ∨ψ]] is defined to be 〈B[[φ]],B[[ψ]]〉;B[[∨]] where B[[∨]] the transducer with
transitions:

0
>,b/>- 0

b,>/>- 0
⊥,⊥/⊥-

where 0 is the initial and accepting state. We will write T1∨T2 as shorthand
for 〈T1, T2〉;B[[∨]]. The other boolean operations are defined similarly.

– B[[A]] is given by completing the transducer with transitions:

0
〈A〉/>- 0

where 0 is the initial and accepting state. E [[A]] is defined similarly.
– B[[〈up〉A∧left(φ, ψ)]] is defined to be 〈id, 〈E [[φ]], E [[ψ]]〉〉;B[[left, A]] where B[[left, A]]

is given by completing the transducer with transitions (for every B 6= A):

0
〈A〉,⊥,⊥/⊥- 1

1
〈/A〉,b,c/⊥- 0 1

〈B〉,⊥,⊥/⊥- B1

B1
〈/B〉,>,b/⊥- 2 B1

〈/B〉,⊥,b/⊥- 1
2

〈/A〉,b,c/⊥- 0 2
〈B〉,⊥,⊥/>- B2

B2
〈/B〉,⊥,⊥/⊥- 1 B2

〈/B〉,>,b/⊥- 2 B2
〈/B〉,b,>/⊥- 2

where 0 is the initial and accepting state.
– B[[up(A ∧ φ, ψ)]] is defined to be 〈id, 〈B[[φ]],B[[ψ]]〉〉;B[[up, A]] where B[[up, A]]

is given by completing the transducer with transitions (for every B 6= A):

0
〈A〉,>,b/⊥- 1

1
〈/A〉,⊥,⊥/⊥- 0 1

〈B〉,b,>/>- 1 1
〈B〉,b,⊥/>- B

B
〈/B〉,⊥,⊥/⊥- 1

where 0 is the initial and accepting state.

16 Michael Benedikt and Alan Jeffrey

We simultaneously define E [[φ]] in the case of named backward Xuntil; most cases
are similar to B[[φ]], but we now provide definitions for formulae with top-level
occurrences of down:

– E [[A∧down(φ, ψ)]] is defined to be 〈id, 〈E [[φ]], E [[ψ]]〉〉; E [[down, A]] where E [[down, A]]
is given by completing the transducer with transitions (for every B 6= A):

0
〈A〉,⊥,⊥/⊥- 1

1
〈/A〉,b,c/⊥- 0 1

〈/B〉,>,b/⊥- 2
2

〈/A〉,b,c/>- 0 2
〈/B〉,⊥,⊥/⊥- 1 2

〈B〉,⊥,⊥/⊥- B

B
〈/B〉,b,c/⊥- 2

where 0 is the initial and accepting state.
– E [[A∧down(φ∧¬〈right〉>, ψ)]] is defined to be 〈id, 〈E [[φ]], E [[ψ]]〉〉; E [[downlast, A]]

where E [[downlast, A]] is given by completing the transducer with transitions
(for every B 6= A):

0
〈A〉,⊥,⊥/⊥- 1

1
〈/A〉,b,c/⊥- 0 1

〈/B〉,>,b/⊥- 3
2

〈/A〉,b,c/>- 0 2
〈/B〉,⊥,⊥/⊥- 1 2

〈B〉,⊥,⊥/⊥- B

3
〈B〉,⊥,⊥/⊥- 1 3

〈/B〉,⊥,⊥/⊥- 1 3
〈/B〉,b,>/⊥- 2

B
〈/B〉,b,c/⊥- 2

where 0 is the initial and accepting state.

For named formulae that are not backward, we extend the definitions as follows:

– E [[〈up〉A ∧ right(φ, ψ)]] is defined to be 〈id, 〈B[[φ]],B[[ψ]]〉〉; E [[right, A]] where
E [[right, A]] is the transducer with transitions:

q
〈A〉,b,c/d- q′ in E [[right, A]] whenever q �〈/A〉,b,c/d

q′ in E [[left, A]]
q

〈/A〉,b,c/d- q′ in E [[right, A]] whenever q �〈A〉,b,c/d
q′ in E [[left, A]]

and the same initial and acceptor state as E [[left, A]]. B[[〈up〉A ∧ right(φ, ψ)]]
is defined similarly. Note that this transducer is not sequential.

– B[[A ∧ down(φ, ψ)]] is defined to be E [[A ∧ down(φ, ψ)]];Ω(A) where Ω(A) is
given by completing the transducer with transitions:

0
〈A〉,⊥/⊥- 1 0

〈A〉,⊥/>- 2
1

〈/A〉,>/⊥- 3 1
〈/A〉,⊥/⊥- 0

2
〈/A〉,>/⊥- 0 2

〈/A〉,⊥/⊥- 3

where 0 is the initial and accepting state. Note that this transducer is not
sequential, and that 3 is a sink state.

Finally, we extend the definitions to non-named formulae:

Efficient and Expressive Tree Filters 17

– B[[left(φ, ψ)]] is defined to be 〈id, 〈E [[φ]], E [[ψ]]〉〉;B[[left]] where we define:

B[[left]] = B[[left, A1]] ∨ · · · ∨ B[[left, An]]

for Σ = {A1, . . . , An}. The other modalities are defined similarly.

It is routine to verify that B[[φ]] and E [[φ]] satisfy the required properties. ut

A.2 Separation and Proofs of Completeness for Xuntil

We will work here towards the proofs of Theorem 3 and Theorem 7. These
results will all rely on the notion of separating into formulae that look in only
one direction. We will need to define a few more of these “single-time fragments”.

Definition 15 (Strict forward Xuntil). Forward Xuntil is the fragment of Xuntil

in which:

– all occurrences of up are of the form up(φ, ψ), where φ and ψ have no top-
level occurrences of down, and

– all occurrences of left are of the form down(φ ∧ ¬〈left〉>, ψ).

A formula is in strict forward Xuntil if it is in forward Xuntil and has no top-level
occurrences of down.

Strict forward formulas are those that only “look into the future”. We also need
formulas that look into the present:

Definition 16 (Stationary Xuntil). Stationary Xuntil is the fragment of Xuntil

in which there are no occurrences of any modalities.

Our main result towards the completeness theorems, Theorem 3 and Theorem
7, is a separation theorem.

Theorem 10. For every Xuntil formula φ over labels Σ, there is a Xuntil formula
ψ over labels Σ which agrees with φ on any node of any un-nested ordered tree
with labels Σ, such that ψ is a boolean combination of oscillation-free formulas
that are either strict backward, strict forward, or backward downward.

This result is inspired by a separation theorem stated by Marx in [17]. That
paper states a coarser separation, which does not distinguish strict backward
from strict forward. Such a distinction is not possible in the setting of Marx’s
paper, which works over general (not necessarily un-nested trees). In addition,
his argument contains a mistake – his Lemma 10 includes the distributivity
property:

down(φ, ψ ∧ χ) = down(φ, ψ) ∧ down(φ, χ)

which is only true when
down- is deterministic. As a result, his induction (in an

un-numbered “final step” at the end of Section 4) fails.
We do not know of a general solution to this problem, but in the case of

un-nested trees, we can show that formulae down(φ, ψ) are only needed in the
case where ψ is stationary and so contains no up modalities to pull out.

18 Michael Benedikt and Alan Jeffrey

π?(φ, ψ) = φ ∨ (ψ ∧ π(φ, ψ))

Fig. 1. Abbreviations used in the rewrite rules

π(φ ∨ φ′, ψ) = π(φ, ψ) ∨ π(φ′, ψ) (1)

up(φ ∧ down(ψ,ψ′), φ′) = up(left(down?(ψ,ψ′),>) ∧ up(φ, φ′ ∧ ψ′), φ′)
∨ left(down?(ψ,ψ′),>) ∧ up(φ, φ′ ∧ ψ′)
∨ up(right(down?(ψ,ψ′),>) ∧ up(φ, φ′ ∧ ψ′), φ′)
∨ right(down?(ψ,ψ′),>) ∧ up(φ, φ′ ∧ ψ′)
∨ up(ψ ∧ up(φ, φ′ ∧ ψ′), φ′)
∨ up(φ, φ′ ∧ ψ′) ∧ down?(ψ,ψ′)

(2)

down(φ ∧ up(ψ,ψ′), φ′) = down(ψ ∧ down(φ, φ′ ∧ ψ′), φ′)
∨ (down(φ, φ′ ∧ ψ′) ∧ up?(ψ,ψ′))

(3)

left(φ ∧ up(ψ,ψ′), φ′) = left(φ, φ′) ∧ up(ψ,ψ′) (4)

right(φ ∧ up(ψ,ψ′), φ′) = right(φ, φ′) ∧ up(ψ,ψ′) (5)

down(φ ∧ left(ψ,ψ′), φ′) = down(ψ ∧ right(φ, ψ′), φ′) (6)

Fig. 2. Rewrite rules used in separation

> = A1 ∨ · · · ∨An (7)

π(φ, ψ ∧ ψ′) = π(φ, ψ) ∧ π(φ, ψ′) (for π 6= down) (8)

left(φ, ψ) = left(φ, ψ) ∧ up(>,⊥) (9)

right(φ, ψ) = right(φ, ψ) ∧ up(>,⊥) (10)

up(A ∧ φ, ψ) = up(A ∧ φ,>) ∧ ¬up(up(A,>) ∧ ¬ψ,>) (11)

¬up(A ∧ φ, ψ) = up(A ∧ ¬φ, ψ) ∨ ¬up(A,ψ) (12)

A ∧ down(φ, ψ) = A ∧ down(φ ∧ up(A,ψ),>) (13)

down(φ ∧ ¬up(ψ,>), φ′) = down(φ, φ′ ∧ ¬ψ) ∧ ¬up(ψ,>) ∧ ¬ψ (14)

left(φ ∧ ¬up(ψ,ψ′), φ′) = left(φ, φ′) ∧ ¬up(ψ,ψ′) (15)

right(φ ∧ ¬up(ψ,ψ′), φ′) = right(φ, φ′) ∧ ¬up(ψ,ψ′) (16)

left(φ, φ′ ∨ up(ψ,ψ′)) = left(φ, φ′) ∨ (left(φ,>) ∧ up(ψ,ψ′)) (17)

left(φ, φ′ ∨ ¬up(ψ,ψ′)) = left(φ, φ′) ∨ (left(φ,>) ∧ ¬up(ψ,ψ′)) (18)

right(φ, φ′ ∨ up(ψ,ψ′)) = right(φ, φ′) ∨ (right(φ,>) ∧ up(ψ,ψ′)) (19)

right(φ, φ′ ∨ ¬up(ψ,ψ′)) = right(φ, φ′) ∨ (right(φ,>) ∧ ¬up(ψ,ψ′)) (20)

down(φ, ψ) = down(left?(φ,>) ∧ ¬right(>,⊥), ψ) (21)

down(φ, ψ) = down(right?(φ,>) ∧ ¬left(>,⊥), ψ) (22)

Fig. 3. Additional rewrite rules used in separation of Xuntil, where Σ = {A1, . . . , An}

Efficient and Expressive Tree Filters 19

Proof (of Theorem 10). We use the rewrite rules in Figures 2 and 3 plus the
usual De Morgan and distributive properties of boolean algebra, and the rules
needed to perform separation in LTL [10] (applied to left and right), to rewrite
φ.

Define a formula to be separated whenever it is a boolean combination of
oscillation-free formulae that are either strict backward, strict forward, or down-
ward. Define a formula to be vertically named whenever:

– all occurrences of down are of the form A ∧ down(φ, ψ), and
– all occurrences of up are of the form up(A ∧ φ, ψ).

Define a formula to be vertically separated whenever:

1. every occurrence of up or down is of the form π(φ, ψ) where ψ is stationary,
2. ever subformula of the form up(φ, ψ) has no top-level occurrences of down in
φ or ψ, and

3. every subformula of the form π(φ, ψ) with π 6= up has no occurrences of up
in φ or ψ.

The outline of the proof is:

I. First show that every formula can be rewritten to a named formula, and
moreover that this rewriting preserves properties 1–2.

II. Show that every downward formula satisfying property 1 can be rewritten
to a backward downward formula, and also to a forward downward formula.
This will be used in part IV.

III. Next, show that every named formula can be rewritten to a vertically named,
vertically separated formula. This will make use of part I.

IV. Finally, show that every vertically named, vertically separated formula can
be rewritten to a separated formula. This will make use of part II.

Given this outline, the final proof will proceed by applying part I to get a named
formula, then applying part III to get a vertically named, vertically separated
formula, and finally applying part IV to get a separated formula.

We first show I – i.e. that every Xuntil formula φ can be rewritten to a named
Xuntil formula φ′, and moreover that this rewriting preserves properties 1–2 in
the definition of vertically separated. This is a simple induction over φ, for which
the interesting cases are:

– If φ = up(ψ,ψ′) then by induction we can assume ψ and ψ′ to be named.
Then by Rules 1 and 7 we have:

φ = up(A1 ∧ ψ,ψ′) ∨ · · · ∨ up(An ∧ ψ,ψ′)

It is routine to check that this is named, and satisfies properties 1–2 whenever
φ does. The case of down is handled similarly.

– If φ = left(ψ,ψ′) then by induction we can assume ψ and ψ′ to be named.
Then by Rules 1, 9, and 7 we have:

φ = (〈up〉A1 ∧ left(ψ,ψ′)) ∨ · · · ∨ (〈up〉An ∧ left(∧ψ,ψ′))

20 Michael Benedikt and Alan Jeffrey

It is routine to check that this is named, and satisfies properties 1–2 whenever
φ does. The case of right is handled similarly.

We next show II – every downward Xuntil formula φ satisfying property 1 can be
rewritten to a formula in backward downward Xuntil (or dually, forward down-
ward Xuntil). This is an induction on φ, for which the interesting case is:

– If φ = down(ψ,ψ′) then, since φ satisfies property 1, we have that ψ′ is
stationary. We can regard ψ as an LTL formula with until on left and right,
and atomic properties which are downward formulae. We can then appeal
to separation of LTL to find a right-free χ over the same atomic properties
such that:

left?(ψ,>) ∧ ¬right(>,⊥) = χ ∧ ¬right(>,⊥)

By induction, we can find a formula χ′ equivalent to χ, where each down-
ward formula in χ has been replaced by an equivalent backward downward
formula. We then use Rule 21 to get:

φ = down(χ ∧ ¬right(>,⊥), ψ′)

as required.

We now turn to showing part III – every named Xuntil formula φ can be rewritten
to a vertically separated formula:

– We prove by induction on φ that every named Xuntil formula can be rewritten
to a formula satisfying property 1, for which the interesting cases are:
• If φ = up(A∧ψ,ψ′) then by induction we can assume ψ and ψ′ to satisfy

property 1. We then use Rule 11:

φ = up(A ∧ ψ,>) ∧ ¬up(up(A,>) ∧ ¬ψ′,>)

It is routine to check that this satisfies property 1.
• If φ = A ∧ down(ψ,ψ′) then by induction we can assume ψ and ψ′ to

satisfy property 1. We then use Rule 13:

φ = A ∧ down(ψ ∧ up(A,ψ′),>)

then use the previous case to rewrite up(A,ψ′).
In the process above, we may lose the property of being named, but we can
regain it by applying part II.

– We prove by induction on φ that every named Xuntil formula satisfying prop-
erty 1 can be rewritten to a formula satisfying properties 1 and 2, for which
the interesting case is when φ = up(A ∧ ψ,ψ′). By induction we can assume
ψ and ψ′ to satisfy properties 1 and 2. Since φ satisfies property 1, ψ′ is sta-
tionary, and so contains no occurrences of up. Without loss of generality, we
can assume ψ to be in disjunctive normal form, and we proceed by induction
on the number of occurrences of down in ψ:

Efficient and Expressive Tree Filters 21

• If ψ contains no top-level occurrences of down, then φ satisfies proper-
ties 1 and 2.

• If ψ = ψ′′ ∨ (ψ′′′ ∧ down(χ, χ′)) then we have by Rules 1 and 2:

φ = up(A ∧ ψ′′, ψ′)
∨ up(left(down?(χ, χ′),>) ∧ up(A ∧ ψ′′′, ψ′ ∧ χ′), ψ′)
∨ left(down?(χ, χ′),>) ∧ up(A ∧ ψ′′′, ψ′ ∧ χ′)
∨ up(right(down?(χ, χ′),>) ∧ up(A ∧ ψ′′′, ψ′ ∧ χ′), ψ′)
∨ right(down?(χ, χ′),>) ∧ up(A ∧ ψ′′′, ψ′ ∧ χ′)
∨ up(χ ∧ up(A ∧ ψ′′′, ψ′ ∧ χ′), ψ′)
∨ up(A ∧ ψ′′′, ψ′ ∧ χ′) ∧ down?(χ, χ′)

and we proceed by induction.
• If ψ = ψ′′ ∨ (ψ′′′ ∧ ¬down(χ, χ′)) then we have by Rules 1 and 12:

φ = up(A ∧ ψ′′, ψ′)
∨ up(A ∧ ψ′′′, ψ′) ∧ ¬up(A ∧ down(χ, χ′), ψ′)

and we proceed using the previous case.
In the process above, we may lose the property of being named, but we can
regain it by applying part II.

– We prove by induction on φ that every named Xuntil formula satisfying prop-
erties 1 and 2 can be rewritten to a vertically named, vertically separated
formula. This is similar to the previous induction, making use of Rules 3–5
for positive occurrences of up, and Rules 14–20 for negative occurrences.

This completes the proof of part III.
Finally, we show part IV – every vertically named, vertically separated Xuntil

formula φ can be rewritten to a separated formula. This is a simple induction
over φ, for which the interesting cases are:

– If φ = up(A∧ψ,ψ′) then by induction we can assume ψ and ψ′ are separated.
Since φ is vertically separated, we have that ψ′ is stationary. Without loss
of generality, we can assume ψ is in disjunctive normal form, and use rule 1
to distribute until through disjunction, so the interesting case is when:

φ = up(A ∧ ψleft ∧ ψright ∧ ψdown, ψ
′)

where ψleft is strict backward, ψright is strict forward, and ψdown is backward
downward. Since φ is vertically separated, ψdown must be stationary, and so
we use Rules 1 and 12 to get:

φ = up(A ∧ ψleft, ψ
′) ∧ up(A ∧ ψright, ψ

′) ∧ up(A ∧ ψdown, ψ
′)

which is separated, as required.
– If φ = A ∧ down(ψ,ψ′) then, since φ is vertically separated, we have that φ

contains no occurrences of up, and so φ is downward. By part II, downward
formulae can be rewritten to backward downward formulae.

22 Michael Benedikt and Alan Jeffrey

– If φ = left(ψ,ψ′) or right(ψ,ψ′) then, since φ is vertically separated, we can
regard φ as an LTL formula with until on left and right, and atomic properties
which are downward formulae. We can then appeal to separation of LTL to
find φ′ which is a boolean combination of:
• LTL formulae χ containing only until on left, with atomic properties

which are downward formulae. By part II we can rewrite those atomic
properties to be backward downward formulae, and hence rewrite χ to
be a boolean combination of formulae that are either strict backward or
downward.

• LTL formulae χ containing only until on right, which are handled sim-
ilarly, getting a boolean combination of formulae that are either strict
forward or forward.

This completes the proof of Theorem 10, modulo the verification that that the
rewrites in Figures 2 and 3 are valid for un-nested trees, which is routine. ut

Note that an alternative proof technique would be to use the fact that un-
nested trees with alphabet of size N have depth bounded by N , and that for
such trees until can be translated to 〈π〉:

π(φ, ψ) = π≤N (φ, ψ)

where we define:

π≤0(φ, ψ) = ⊥ π≤i+1(φ, ψ) = 〈π〉φ ∨ 〈π〉(ψ ∧ π≤i(φ, ψ))

The rewrite rules can then be specialized to 〈π〉. The reasons for using the proof
given here are:

– the use of naming, rather than bounded depth, fits better with the use of
naming in constructing transducer networks, and

– the rewrite rules given in Figures 2 and 3 make it clear where we are relying
on un-nested documents: Rules 11, 12 and 13 are the only ones which rely
on un-nested documents, and Rule 7 is the only one which relies on a fixed,
finite alphabet.

Theorem 3 follows from Theorem 10 and the proposition below, whose proof is
straightforward; it implies that if we consider formulas at the root, then we need
only the downward component in separation.

Proposition 6. If φ is in strict forward or strict backward Xuntil, then there is
a stationary formula ψ equivalent to φ at the root of any tree.

The proposition is straightforward; at the root we cannot go up, hence any
subformula of an oscillation-free strict forward or strict backward formula that
uses upward modalities will be equivalent to true or false.

We say that two formulas are begin-equivalent if they agree on any nodes that
are on the far bottom right of a tree: that is, nodes which have no children, no
right siblings, and whose ancestors all have no right siblings. We say that they
are end-equivalent if they agree on any nodes that are on the right of a tree: that

Efficient and Expressive Tree Filters 23

is, nodes which have no right siblings, and for whose ancestors all have no right
siblings.

Note that if two formulas are begin-tag determined, then begin-equivalence
implies equivalence over any node in any tree. Similarly, if two formulas are end-
tag determined, then end-equivalence implies equivalence. Note also that strict
backward formulas are clearly begin-tag determined, and backward formulas
are end-tag determined. Using this observation, Theorem 7 thus follows from
Theorem 10 and the following simple result, analogous to Proposition 6. It says
that the forward parts of a separated formula can be eliminated, assuming that
we are only interested in end-equivalence, and that the forward and downward
parts can be eliminated if we are only interested in begin-equivalence.

Proposition 7. Every Xuntil formula φ that is oscillation-free and strict forward
(resp. downward or strict forward) is end-equivalent (resp. begin-equivalent) to
an oscillation-free strict backward formula.

The proposition in the case of end-equivalence follows from the fact that for nodes
on the right of a tree, one can not make a rightward move from an ancestor. Hence
all but upward modalities within a strict forward formula can be eliminated, and
we are left with a strict backward formula; indeed, we are left with a formula that
uses only upward modalities. In the case of begin-equivalence, we additionally
note that for a node on the bottom right all modalities can be eliminated from
a downward formula.

A.3 Proofs of Completeness for +HML

For the results on +HML, Theorem 4, and Theorem 8, there is a simpler argu-
ment, a variant of that used in [20] and [4]. The argument below is particularly
close to that of Theorem 5.1 of [4], adapted to ordered trees. We translate +HML
to logical formulas, and then show that these formulas can be normalized to be
of a special form. This normal form is a variant of the “tree pattern queries” of
[4]. The ability to rewrite a +HML formula into the normal form can be thought
of as an analog of separation (Theorem 10) for +HML. Given a normalized for-
mula, we can apply root-equivalence, end-equivalence, or begin-equivalence to
the normalized formula, arriving at a logical formula in which all the bound
variables are restricted to lie in a certain relation to the free variable. Finally,
we translate the syntactic restrictions back into +HML.

We will now give more detail, leaving some of the proofs to the reader, since
they are similar to those in [4]. Let ∃+FO denote “positive existential first-
order logic”– the fragment of first-order logic built up using just ∧,∨,∃, over the
vocabulary with unary predicates A(x) for A ∈ Σ and binary “axis relations”
right(x, y), right+(x, y), down(x, y), down+(x, y) for the rightward and downward
axes. The atomic predicates above have the obvious interpretation in ordered
trees. Formalizing the semantics of HML within first-order logic, we see that
every +HML formula is equivalent to an ∃+FO formula, which can be assumed

24 Michael Benedikt and Alan Jeffrey

to be in prefix normal form. In particular, we can translate +HML formulas into
∃+FO formulas of the form

ρ(x0) = ∃x1 . . .∃xm

∨
i<n

φi(x0, x1, . . . , xm)

where φi is a conjunction of equalities, unary predicates, and axis relations men-
tioning x1 . . . xm and the free variable x0.

A positive atomic type (or just “type” for short) is a conjunction of atomic
formulas that is consistent and complete: that is, there is some tree T and nodes
n0 . . . nm in T that satisfy the conjunction, and such the conjunction contains
all atomic formulas that hold between n0 . . . nm. Note that if this holds for some
T and nodes n0 . . . nm, then it holds for all such T and n0 . . . nm

Given a type γ, and variables xi, xj we will say that xi is a descendant of
xj in γ if there is a conjunct of γ that asserts this, and similarly for the other
axis relations and unary predicates. A type γ is called lub-closed if whenever we
have distinct variables xi, xj that are not related by an axis relation, there are
variables xl and xm (not necessarily distinct from xi or from xj), such that xi

is a descendant of xl, xj is a descendant of xm, and xl is related to xm by one
of the sibling relations.

The following is easy to show:

Proposition 8. Every +HML formula ρ(x0) is equivalent to one of the form:

∃x1 . . .∃xm

∨
i<n

φi(x0, x1 . . . xn)

where each φi is a lub-closed type.

We now give the analogs of strict backward and backward in the setting of
logic. A type is forward-free if no variable xi is a right sibling of x0 and no variable
xi is a right sibling of a variable that is an ancestor of x0. It is downward-free if
no variable xi is a descendant of x0.

Proposition 9. Every ∃+FO formula ρ(x0) of the form

∃x1 . . .∃xm

∨
i<n

φi

is end-equivalent (resp. begin-equivalent) to one of the same form in which each
φi is forward-free (resp. forward-free and downward-free) Every formula of the
above form is root-equivalent to one where every variable is a descendant of x0

or equal to x0.

Proof. By the previous proposition, we can take each φi to be a lub-closed type.
The lub-closed property implies that every bound variable is either a descendant
of the free variable x0, equal to the free variable x0, an ancestor of x0, a descen-
dant of a left sibling of an ancestor of x0, or a descendant of a right sibling of an
ancestor of x0. But for end-equivalence, we restrict to trees on which there are no

Efficient and Expressive Tree Filters 25

nodes that are right siblings of an ancestor of x0, and thus we can eliminate any
type that includes these variables from the disjunction. The resulting formula
is forward-free. In the case of begin-equivalence, we can likewise eliminate types
that have variables that are either right siblings of an ancestor of x0 or below
x0.

Finally, we convert back into +HML:

Proposition 10. Every formula of the form

∃x1 . . .∃xm

∨
i<n

φi

where each φi is a forward-free (resp. forward-free and downward-free) type,
is equivalent to an oscillation-free formula in backwards +HML (resp. strict
backwards +HML).

Every formula in which every variable is a descendant of x0 or equal to x0

is equivalent to one in downwards +HML.

The proof of the proposition is by induction on the number of bound vari-
ables, and follows the argument for going from tree patterns into XPath in [4]
(Part 1. of Theorem 3.2).

Theorem 4, and Theorem 8, now follow from Proposition 8, Proposition 9,
and Proposition 10. In the case of Theorem 8, we use also the fact that for begin-
tag (resp. end-tag) determined queries, begin-equivalence (resp. end-equivalence)
implies equivalence at all nodes.

A.4 Other Proofs

The remaining results to prove are:

– Proposition 2, which follows from the example formulae φn in Section 3.
– Proposition 3, which follows from letting φ = 〈right+〉A, and considering

input documents of the form 〈C〉〈B/〉n〈A/〉〈/C〉, which can only produce
one token of the output (〈C〉,⊥)(〈B/〉,>)n(〈A/〉,⊥)(〈/C〉,⊥) before the 〈A〉
input is reached, and

– Theorem 5, which we prove below.

Our proof of Theorem 5 will use the following variant of the standard notion of
bisimulation:

Definition 17 (Stratified Bisimulation). Given two ordered trees T and T ′,
a stratified bisimulation over Π is a family of relations Ri ⊆ (N × N ′) : i ∈ ω
such that, for any (n, n′) ∈ Ri+1 and ` ∈ Π we have:

– λ(n) = λ(n′),
– for all n

`- m in T there exists n′
`- m′ in T ′ with (m,m′) ∈ Ri, and

– for all n′
`- m′ in T ′ there exists n

`- m in T with (m,m′) ∈ Ri.

26 Michael Benedikt and Alan Jeffrey

The connection of bisimulation to inexpressivity results is as follows:

Proposition 11. For any HML formula φ of size k, and for any ordered trees
T and T ′ with stratified bisimulation Ri : i ∈ ω over the modalities contained in
φ, we have (n, n′) ∈ Rk implies T, n � φ precisely when T ′, n′ � φ.

Theorem 5 follows immediately from the following:

Proposition 12. The HML formula 〈down〉(B ∧ ¬〈right+〉A) is not equivalent
to any formula in backward HML.

Proof. We will show something stronger: namely that the formula above is not
equivalent to any formula whose only use of the rightward axes is of the form
〈downlast〉φ, defined to be:

〈downlast〉φ = 〈down〉(φ ∧ ¬〈right〉>)

that is,
downlast- is the relation defined:

n′
downlast- m whenever n

down- m /
right-

Define the set of modalities Π as:

Π = {down, down+, left, left+, up, up+,downlast}

We will show that for any HML formula φ of size K containing only modalities in
Π we can find trees T and T ′ which are distinguished by 〈down〉(B∧¬〈right+〉A)
but not by φ, from which the result follows. The trees T and T ′ are given as:

stream(T) = 〈R〉(〈A/〉〈C/〉K−1〈B/〉〈C/〉K−1)K〈A/〉〈C/〉K−1〈/R〉
stream(T ′) = 〈R〉(〈A/〉〈C/〉K−1〈B/〉〈C/〉K−1)K〈/R〉

that is T is given by:

n0
down- n1

right- · · · right- n2K2+K

λ(n0) = R λ(n1, . . . , n2K2+K) = (ACK−1BCK−1)KACK−1

and T ′ is given by:

n′0
down- n′1

right- · · · right- n′2K2

λ(n′0) = R λ(n′1, . . . , n
′
2K2) = (ACK−1BCK−1)K

Clearly the formula 〈down〉(B ∧¬〈right+〉A) is false at the root of T and true at
the root of T ′. We will now construct a stratified bisimulation over Π containing
(n0, n

′
0) ∈ RK , and so from Proposition 11, φ cannot distinguish T from T ′. Our

stratified bisimulation is:

for all i > K Ri = ∅
for all i ≤ K Ri = {(nj , n

′
j) | j ≤ 2K2}

∪ {(n2K2+j , n
′
2K2+j−K) | i < j ≤ K}

∪ {(n2Kk+j , n
′
2Kk+j−2K) | i < k ≤ K, j ≤ K}

It is routine to verify that this satisfies the conditions of a stratified bisimulation,
and so the result holds. ut

