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Abstract

We present the first type and effect system for proving authenticity properties
of security protocols based on asymmetric cryptography. The most significant
new features of our type system are: (1) a separation of public types (for data
possibly sent to the opponent) from tainted types (for data possibly received from
the opponent) via a subtype relation; (2) trust effects, to guarantee that tainted data
does not, in fact, originate from the opponent; and (3) challenge/response types to
support a variety of idioms used to guarantee message freshness. We illustrate the
applicability of our system via protocol examples.

1 Motivation

In recent work [GJ03, GJ01], we propose a type-based methodology for checking au-
thenticity properties of security protocols. First, specify properties by annotating an
executable description of a protocol with correspondence assertions [WL93]. Second,
annotate the protocol with suitable types. Third, verify the assertions by running a type-
checker. A type-correct protocol is secure against a malicious opponent conforming to
the Dolev and Yao assumptions [DY83]; the opponent may eavesdrop, generate, and
replay messages, but can only encrypt or decrypt messages if it knows the appropri-
ate key. This methodology is promising because it requires no state-space exploration,
requires little interactive effort per protocol, and reduces verification to the familiar
edit/typecheck/debug cycle.

Still, our previous work applies only to symmetric-key cryptography and only to
one style of nonce handshake, a significant limitation. The goal of this paper is to
enrich our type and effect system so as to apply the methodology to a wider class of
protocols based on both symmetric and asymmetric cryptography. To do so, we need
to solve the following three problems.

�
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(1) Let us say data is tainted if it may have been generated by the opponent, oth-
erwise untainted, and public if it may be revealed to the opponent, otherwise
secret. Now, in symmetric protocols, data is either secret and untainted (because
it is sent encrypted, and the opponent is ignorant of the key) or it is both public
and tainted (because it is sent in the clear). In asymmetric protocols, the situ-
ation is subtler because of public keys: data may be both secret and tainted (if
sent encrypted with an honest agent’s public key) or public and untainted (if sent
encrypted with an honest agent’s private key). Our previous system [GJ01] has
one type,

���
, for public, tainted data, and every other type is both secret and un-

tainted. Here, we need to be more flexible; we use a subtype relation to represent
whether a type is tainted and whether it is public.

(2) Types can represent the degree of trust we place in data. In symmetric protocols,
the degree of trust, and hence the types of data, is fixed. On the other hand, in
asymmetric protocols, the degree of trust may increase over time as new infor-
mation arises, for example, from nonce challenges. We introduce trust effects to
model how the type of data may change over time.

(3) Our previous system supports a single format for proving freshness via nonce
handshakes: the challenge in the clear, the response encrypted. Asymmetric pro-
tocols may use other styles: both challenge and response encrypted; or the chal-
lenge encrypted, the response in the clear. To accommodate these other styles,
we introduce new challenge/response types.

In this model trusted agents have to communicate via an untrusted medium, where a
malicious opponent can eavesdrop messages, forge messages, establish sessions with
trusted agents, and hijack existing sessions. The trusted agents rely on a suite of crypto-
graphic algorithms, which are assumed to provide perfect integrity and confidentiality
properties.

1.1 Background

Many methodologies exist for verifying authenticity properties against the opponent
model of Dolev and Yao [DY83]. Verification via typechecking is one of only a few,
recent techniques that requires little interactive effort per protocol, while not bounding
protocol or opponent size. Other such techniques include automatic tools for strand
spaces [SBP01, THG99] and rank functions [HS00, Sch98]. Other effective approaches
include model-checking [Low96, MCJ97], which typically puts bounds on the protocol
and opponent, and techniques relying on theorem-proving [Bol96, Pau98] or epistemic
logics [BAN89, DMP01], which typically require lengthy expert interaction.

Woo and Lam’s correspondence assertions [WL93] are safety properties, specifying
what is known as injective agreement [Low97]. Given a description of the sequence
of messages exchanged by principals in a protocol, we annotate it with labelled events
marking the progress of each principal through the protocol. We divide these events
into two kinds, begin-events and end-events. Event labels typically indicate the names
of the principals involved and their roles in the protocol. For example, to specify an
authenticity property of a simple nonce handshake we decorate it with begin-events
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and end-events as follows.

Message 1 A � B : N
Event 1 B begins “B sends A message M”
Message 2 B � A :

�
M � N � K

Event 1 � A ends “B sends A message M”

A protocol is safe if in all protocol runs, every assertion of an end-event corresponds to
a distinct, earlier assertion of a begin-event with the same label. A protocol is robustly
safe if it is safe in the presence of any hostile opponent who can capture, modify, and
replay messages, but cannot forge assertions.

Our earlier work can typecheck the robust safety of protocols based on secure chan-
nels [GJ03], and on insecure channels protected by symmetric cryptography [GJ01].
These two papers are the only prior work on authenticity by typing. They build on
Abadi’s pioneering work [Aba99] on secrecy by typing for symmetric-key crypto-
graphic protocols. Abadi and Blanchet [AB03, AB02] extend Abadi’s original system
to establish secrecy properties for asymmetric protocols. The present paper is a par-
allel development for authenticity properties. Technically, it is not simply a routine
combination of previous papers [GJ01, AB03]. For example, to facilitate typecheck-
ing our formalism, each bound variable is annotated with a single type. A feature of
Abadi and Blanchet’s treatment of tainted data is that a bound variable may assume
an arbitrary number of types, depending on its context, and therefore they suppress
type annotations. Another work on types for asymmetric cryptography, though not for
authenticity, is Cervesato’s typed multiset rewriting [Cer01].

Abadi and Blanchet establish a logic programming formulation of one of their type
systems for secrecy properties, and hence obtain an automatic technique for estab-
lishing secrecy [AB02]. In recent work, Blanchet extends this logic programming
technique to also prove authenticity properties expressed as correspondence asser-
tions [Bla02].

Like earlier work on types for cryptographic protocols, we take a binary view of
the world as consisting of a system of honest protocol participants plus a dishonest
opponent. We leave a finer-grained analysis as future work.

1.2 Our Three Main Contributions

Separation of trust and secrecy. In a cryptographic protocol based on symmetric
cryptography, data is typically either secret and untainted, or public and tainted. For
example, consider the message:

A � B : A � �
M � KAB

(We write
�
M � KAB for the outcome of encrypting M using a symmetric algorithm with

key KAB.) The principal name A is public and tainted (since it is sent in plaintext) but
the payload M and the shared key KAB are secret and untainted (since they are never
sent in plaintext, and are known only to honest principals).

On the other hand, in a cryptographic protocol based on asymmetric cryptography,
secrecy and taintedness are independent. Data may be secret and tainted, or public and
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untainted. For example, if KB is B’s public key and K � 1
A is A’s private key, consider the

message:
A � B :

���
M

� � K � 1
A

� ���
N

� � KB

(We write
���
M

� � K � 1
A

for the outcome of encrypting M using an asymmetric algorithm

with private key K � 1
A , and

���
N

� � KB for the outcome of encrypting N with public key
KB.) Now, B considers:

� M is public (since the opponent knows KA and so can decrypt the ciphertext���
M

� � K � 1
A

) but untainted (since it is encrypted with A’s private key, and so must

have originated from the honest agent A).
� N is secret (since the opponent does not know K � 1

B so cannot decrypt the cipher-
text

���
B

� � KB) but tainted (since it is encrypted with B’s public key, and so could
have originated from a dishonest intruder).

Previous type systems [Aba99, GJ01] feature a type, here called
� �

, for all messages
known to the opponent. Here, to support asymmetric cryptography, we admit some
types that are public without being tainted, and others that are tainted without being
public. We relate these types to

� �
via a subtype relation. As usual, we say T is a

subtype of U , written T � : U , to mean that data of type T may be used in situations
expecting data of type U . A type T is public if T � :

���
, that is, it may be sent to the

opponent. A type T is tainted if
� �

� : T , that is, it may come from the opponent.
Our recognition of tainted types—as distinct from public types—has many paral-

lels in analyses of non-cryptographic aspects of security. The Perl programming lan-
guage [WCS96] can track at runtime whether or not scalar data is tainted, to catch
bugs in code dealing with untrusted inputs. An extension of the simply-typed λ-
calculus [ØP97] uses annotations on each type constructor to track whether or not
data can be trusted, either because it originates from or has been endorsed by an hon-
est participant. Similarly, an experimental extension [STFW01] of C qualifies types
as tainted or untainted to allow the static detection of issues with format strings. The
Secure Lambda Calculus [HR98] uses subtyping to track security levels. To the best
of our knowledge, the present paper is the first to use types to track both public and
tainted data in the presence of cryptography.

Dynamic trust. In asymmetric protocols, the degree of trust we place in tainted data
may increase as we receive new information. For example, consider the following vari-
ant of the Needham–Schroeder–Lowe [NS78, Low96] public-key protocol, extended to
include a key exchange initiated by A:

Message 1 A � B :
���
A � KAB � NA

� � KB

Message 2 B � A :
���
B � KAB � NA � NB

� � KA

Message 3 A � B :
���
NB

� � KB

After receiving Message 1, B regards the session key KAB as tainted; it may come from
A, but it may also come from the opponent, since the key KB is public. In Message 2, B
sends A a nonce NB, encrypted together with the tainted key KAB under KA, and hence
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hidden from the opponent. Now, A only replies with Message 3 if the session key it
receives in Message 2 matches the key it issued in Message 1. Therefore, on successful
receipt of the secret NB in Message 3, B trusts that KAB did not in fact come from the
opponent. So it is safe for B to send a secret message to A encrypted with the key KAB:

Message 4 B � A :
�
M � KAB

In this protocol, B’s trust in the session key KAB is dynamic in that it changes over time:
initially KAB is tainted, but after Message 3 it is known to be untainted.

We model dynamic trust by introducing trust effects, that allow the type of a nonce
to make assertions about the type of other data. In the typed form of our example, the
type of NB asserts that KAB has the type of keys known only to honest participants.

On the whole, symmetric key cryptographic protocols do not require dynamic trust:
data is either trusted or untrusted for the whole run of the protocol, and its trust sta-
tus does not change during a particular run. Over time, symmetric key cryptographic
protocols may downgrade their trust in data due to key-compromise or other long-term
attacks on the cryptosystem. Still, such attacks are outside our model, and are left for
future work.

Nonce handshake styles. Cryptographic protocols use nonce handshakes to establish
message freshness, and hence to thwart replay attacks. The type and effect system of
this paper supports three handshake idioms:

� Public Out Secret Home (POSH): the nonce goes out in the clear and returns
encrypted.

� Secret Out Public Home (SOPH): the nonce goes out encrypted and returns in
the clear.

� Secret Out Secret Home (SOSH): the nonce goes out encrypted and returns en-
crypted.

SOSH nonces are useful in asymmetric protocols, such as the protocol described above,
where if either NA or NB is learned by the opponent, the protocol can be compromised.
The novel feature of SOSH nonces in our type system is that they can be relied upon
for authenticity even when they are tainted (for example, when they are encrypted with
a public key) because we have two cases:

� If the nonce was generated by the opponent, then only the opponent can perform
the equality check at the end of the nonce handshake, so no honest agent ever
relies on the authenticity information carried by the nonce.

� If the nonce was generated by an honest agent, then the opponent never learns
of it (since the nonce is secret) and so it is safe for honest agents to rely on the
authenticity information carried by it.

In contrast, POSH and SOPH nonces cannot be relied upon when they are tainted. The
Needham–Schroeder–Lowe protocol relies on NA and NB being SOSH nonces, since
they are encrypted with public keys and hence tainted.
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Guttman and Thayer [GT02] propose authentication tests for analysing nonce us-
age. Their incoming tests apply to POSH and SOSH nonces, and their outgoing tests
apply to SOPH and SOSH nonces. Our previous work [GJ01] deals only with POSH
nonces.

1.3 Remainder of this Paper

Section 2 reviews our methodology for specifying authenticity properties of protocols.
Section 3 describes our new type and effect system, and describes its application to
some examples. Section 4 concludes. Appendix A contains example protocols. Ap-
pendix B defines the operational semantics of our calculus. Appendix C includes proofs
of correctness for our type system; a technical report [GJ02a] includes omitted details.

An abridged version of this paper appears in a conference proceedings [GJ02b].

Acknowledgements Thanks to Martı́n Abadi, Adriana Compagnoni, and Dusko Pav-
lovic for discussions related to this paper. The anonymous referees for Journal of
Computer Security made invaluable suggestions, especially as regards the introduction
of Section 3.

2 Authenticity Properties in Spi (Review)

We formalise our type and effect system in a version of the spi-calculus [AG99], a
concurrent language based on the π-calculus [Mil99] augmented with the Dolev–Yao
model of cryptography. Section 2.1 reviews the syntax and informal semantics of a
spi-calculus extended with correspondence assertions [WL93]. Section 2.2 shows how
to specify an example protocol. Later, we show it is robustly safe by typing.

2.1 A Calculus with Correspondence Assertions

First, here is the syntax of messages.

Names, Messages:

m � n � x � y � z name: variable, channel, nonce, key, key-pair
L � M � N :: � message

x name�
M � N � pair formation� ��� �

M � left injection� ��� �
M � right injection�

M � N symmetric encryption���
M

� � N asymmetric encryption
k
�
M � key-pair component

(where k either � �	�	��
��� or ��� ����
���� )

These messages are:
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� A message x is a name, representing a channel, nonce, symmetric key, or asym-
metric key-pair.

� A message
�
M � N � is a pair. From this primitive we can describe any finite record.

� Messages
� ��� �

M � and
� �� �

M � are tagged unions, differentiated by the distinct
tags

� ���
and

� ��
. With these primitives we can encode any finite tagged union.

� A message
�
M � N is the ciphertext obtained by encrypting the plaintext M with

the symmetric key N.
� A message

���
M

� � N is the ciphertext obtained by encrypting the plaintext M with
the asymmetric encryption key N.

� A message ��� ����
���� �
M � extracts the decryption key component from the key

pair M, and � �	�	��
��� �
M � extracts the encryption key component from the key

pair M.

An asymmetric key-pair p has two dual applications: public-key encryption and digital
signature. In the first, � �	�	��
��� �

p � is public and ��� �	��
���� �
p � is secret. In the second,

� �	�	��
��� �
p � is secret and ��� �	��
���� �

p � is public. For each key-pair, our type system
tracks whether the encryption or decryption key is public, but it makes no difference
to our syntax or operational semantics. (Hence, a single key-pair cannot be used both
for public-key encryption and digital signature; this is often regarded as an imprudent
practice, but nonetheless is beyond our formalism.)

We write fn
�
M � for the set of free names of the message M. We write M

�
x � N �

for the outcome of a capture-avoiding substitution of the message N for each free oc-
currence of the name x in the message M. Next, we give the syntax of processes. Each
bound name has a type annotation, written T or U . We postpone the syntax of types to
Section 3.

Processes:

O � P� Q � R :: � process
��� � M N output� ���

M
�
x:T � ;P input(x bound in P)� � � ��� � � �� M

�
x:T � ;P replicated input (x bound in P)

� ��� � � M
� � �

x:T � y:U � ;P pair splitting (x bound in U and P; y bound in P)
� �

� �	�
M

� � �
N � y:T � ;P pair matching (y bound in P)�

� � � M
� � � ��� � x:T � P

� � � ��� � y:U � Qunion case (x bound in P; y bound in Q)
 � �	��
���� M
� � �

x:T � N ;P symmetric decrypt (x bound in P)
 � �	��
���� M
� � ���

x:T
� � N � 1 ;P asymmetric decrypt (x bound in P)��� � �	� M

� � N;P nonce-checking ��� � � L;P begin-assertion
� ��
 L;P end-assertion
� ��� �

x:T � ;P name generation (x bound in P)
P

�
Q composition

� � � � inactivity
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The type annotations on bound names are used for typechecking but play no role at
runtime; they do not affect the operational behaviour of processes. In examples, for the
sake of brevity, we sometimes omit type annotations.

We write fn
�
P � for the set of free names of the process P. We write P

�
x � N �

for the outcome of a capture-avoiding substitution of the message N for each free oc-
currence of the name x in the process P. We identify processes up to the consistent
renaming of bound names, for example when y �� fn

�
P � , we equate

� ��� �
x:T � ;P with

� ��� �
y:T � ; � P �

x � y �	� .
Next, we give informal semantics for process behaviour and process safety; formal

definitions appear in Appendix B. These processes are:

� Processes � � � M N and
� ��

M
�
x:T � ;P are output and input, respectively, along

an asynchronous, unordered channel M. If an output ���
�

x N runs in parallel with
an input

� ���
x
�
y � ;P, the two can interact to leave the residual process P

�
y � N � .

� Process
� � � ��� � � ��

M
�
x:T � ;P is replicated input, which behaves like input, ex-

cept that each time an input of N is performed, the residual process P
�
y � N � is

spawned off to run concurrently with the original process
� � � ��� � � ��� M

�
x:T � ;P.

� A process �
��� � �

M
� � �

x:T � y:U � ;P splits the pair M into its two components. If M
is

�
N � L � , the process behaves as P

�
x � N � �

y � L � . Otherwise, it deadlocks, that
is, does nothing.

� A process � �
� �	�

M
� � �

N � y:U � ;P splits the pair M into its two components, and
checks that the first one is N. If M is

�
N � L � , the process behaves as P

�
y � L � .

Otherwise, it deadlocks.

The match construct is used in cases when a protocol expects a field to have a
particular value (for example, A may expect to see her own name in a message)
whereas the split construct is used in cases where the protocol does not know
the value of a field (for example, B may be prepared to communicate with any
principal with appropriate credentials, not just a particular principal A).

� A process
�
� � � M

� � � ��� � x:T � P
� � � ��� � y:U � Q checks the tagged union M. If M is� ��� �

L � , the process behaves as P
�
x � L � . If M is

� ��� �
N � it behaves as Q

�
y � N � .

Otherwise, it deadlocks.
� A process


 � ����
���� M
� � �

x:T � N ;P decrypts M using symmetric key N. If M is�
L � N , the process behaves as P

�
x � L � . Otherwise, it deadlocks. We assume

there is enough redundancy in the representation of ciphertexts to detect decryp-
tion failures.

� A process

 � ����
���� M

� � ���
x:T

� � N � 1 ;P decrypts M using asymmetric key N. If M
is

���
L

� ��������� 	�
��� K � and N is ��� ����
���� �
K � , then the process behaves as P

�
x � L � .

Otherwise, it deadlocks.
� A process

��� � ��� M
� � N;P checks the messages M and N are the same name

before executing P. If the equality test fails, the process deadlocks.
� A process

 ��� � � L;P autonomously asserts an begin-event labelled L, and then
behaves as P.
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� An process � � 
 L;P autonomously asserts an end-event labelled L, and then
behaves as P.

� A process
� ��� �

x:T � ;P generates a new name x, whose scope is P, and then runs
P. This abstractly represents nonce or key generation.

� A process P
�
Q runs processes P and Q in parallel.

� The process �
� � � is deadlocked.

Safety:

A process P is safe if and only if for every run of the process and for every L,
there is a distinct begin-event labelled L preceding every end-event labelled L.

We are mainly concerned not just with safety, but with robust safety, that is, safety
in the presence of an arbitrary hostile opponent. In the untyped spi-calculus [AG99],
the opponent is modelled by an arbitrary process. In our typed spi-calculus, we do
not consider completely arbitrary attacker processes, but restrict ourselves to opponent
processes that satisfy two mild conditions:

� Opponents cannot assert events: otherwise, no process would be robustly safe,
because of the opponent � � 
 x;.

� Opponents do not have access to trusted data, so any type occurring in the process
must be

� �
.

Opponents and Robust Safety:

A process P is assertion-free if and only if it contains no begin- or end-assertions.
A process P is untyped if and only if the only type occurring in P is

� �
.

An opponent O is an assertion-free untyped process O.
A process P is robustly safe if and only if P

�
O is safe for every opponent O.

2.2 Specifying an Example

We show how to program a simple cryptographic protocol in our formalism. This pro-
tocol is a version of Needham-Schroeder-Lowe [NS78, Low96] modified to illustrate
the various features of our type system. (The protocol is different from the version dis-
cussed in Section 1.) The protocol shares a session key KAB between participants A and
B, and uses this key to send a message M from A to B. The protocol should guarantee
the authenticity properties:

(1) A believes she shares the key KAB with B.

(2) B believes he shares the key KAB with A.

(3) B believes message M was sent by A.
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Sender
�
net � privateA � publicB � ∆�

� ��� �
keyAB � ;� ��� �
challengeA � ; ��� � � “A generates keyAB for B”;

��� � net
���

A � keyAB � challengeA
� � publicB

;� ��
net

�
ctext2 � challengeB2 � ;
 � �	��
��� ctext2

� � ���
B � keyAB � responseA � challengeB1

� � private � 1
A

;��� � �	� challengeA
� � responseA;

� ��
 “B received keyAB from A”;
� ��� �

msg � ;
 ��� � � “A sends msg to B”;
��� � net

�
challengeB1 � �

msg � challengeB2 � keyAB
� ;

Receiver
�
net � publicA � privateB � ∆�� � � ��� �� ���

net
�
ctext1 � ;
 � ����
���� ctext1� � ���

A � keyAB � challengeA
� � private � 1

B
;

� ��� �
challengeB1 � ;� ��� �
challengeB2 � ; ��� � � “B received keyAB from A”;

� � � net
� ���

B � keyAB � challengeA � challengeB1
� � publicA

� challengeB2 � ;� ���
net

�
responseB1 � ctext3 � ;�	� � ��� challengeB1

� � responseB1;
� � 
 “A generates keyAB for B”;

 � ����
���� ctext3

� � �
msg � responseB2 � keyAB

;�	� � ��� challengeB2
� � responseB2;

� � 
 “A sends msg to B”;

System
�
net � ∆�

� ��� �
pairA � ; � ���

�
pairB � ;

�
Sender

�
net � ��� ����
���� �

pairA � � � � ����
���� �
pairB � � �

Receiver
�
net � � � ����
���� � pairA � � ��� ����
���� �

pairB � � �

� � � net
� � �	�	��
���� �

pairA � � � �	�	��
��� �
pairB � ��

Figure 1: An example protocol with correspondence assertions
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We specify the protocol informally as follows:

Event 1 A begins “A generates KAB for B”
Message 1 A � B :

���
A � KAB � NA

� � KB

Event 2 B begins “B received KAB from A”
Message 2 B � A :

���
B � KAB � NA � NB1

� � KA � NB2

Event 2 � A ends “B received KAB from A”
Event 3 A begins “A sends M to B”
Message 3 A � B : NB1 � �

M � NB2 � KAB

Event 1 � B ends “A generates KAB for B”
Event 3 � B ends “A sends M to B”

The process Sender
�
net � privateA � publicB � defined in Figure 1 is the sender A, pa-

rameterized on net (the name of the public channel), privateA (A’s private key) and
publicB (B’s public key). It generates a fresh session key keyAB and a nonce challenge
challengeA, and then sends the ciphertext

���
A � keyAB � challengeA

� � publicB
on the public

net channel. It waits for the acknowledgement message, decrypts it to get the con-
tents

�
B � keyAB � responseA � challengeB1 � challengeB2 � and then checks that the outgoing

nonce challengeA was the same as the incoming nonce responseA. If it is, then it re-
sponds by sending the response to the nonce challenge challengeB1, together with the
ciphertext

�
msg � challengeB2 � keyAB

.
The process Receiver

�
net � publicA � privateB � defined in Figure 1 is the receiver

B, parameterized on net and matching keys publicA and privateB. It repeatedly re-
ceives a message on the public net channel and decrypts it with privateB to get the
plaintext of the form A � keyAB � challengeA. It responds by generating two nonce chal-
lenges challengeB1 (which is used to validate keyAB) and challengeB2 (which is used
to validate the message sent encrypted with the keyAB) and sending the ciphertext���

B � keyAB � challengeA � challengeB1
� � publicA

together with the nonce challengeB2. It re-
ceives back the response responseB1 together with a ciphertext, and checks that nonce
challengeB1 is the same as responseB1 (and so the session key keyAB can be trusted).
It then decrypts the ciphertext to get the plaintext msg together with the response
responseB2, and checks that challengeB2 is the same as responseB2 (and so the mes-
sage msg can be trusted).

Figure 1 is a spi-calculus version of the protocol, making use of syntax sugar de-
fined in Appendix A.4. The top-level process, System

�
net � generates two fresh key

pairs pairA and pairB, and places a single sender and a single receiver in parallel. We
publish the public encryption keys of A and B, to allow the attacker access to them. The
parameter net is a communications channel, on which the attacker may send or receive,
representing the untrusted network. For simplicity, Figure 1 includes just one sender
and one receiver; it is easy to extend the program to run multiple senders and receivers
in parallel.

Given the assertions embedded in the program, our formal specification is simply
the following:

Authenticity: The process System
�
net � is robustly safe.
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3 Typing Asymmetric Cryptographic Protocols

We now introduce the type-and-effect system used in statically verifying cryptographic
communication protocols. The key ideas are:

(1) In general, an effect provides an upper bound on the events of interest that a
process may engage in. Here, the events of interest are unmatched end-events,
and trust-events tracking the dynamic trust placed in messages.

(2) Just as effects characterize processes, types characterize messages. The types of
messages are related to the effects of processes because the type of a message
may carry a latent effect that justifies the recipient in performing an unmatched
event because it has already been matched in the sender.

(3) Principals that receive a nonce and retransmit it in transformed form are regarded
as performing a cast on the type of the nonce. Thus, one latent effect may be re-
ceived with the nonce and absorbed by the recipient, while another is associated
with the nonce and returned to its originator.

(4) The subtyping relation allows the type system to recognize properties of types,
especially to distinguish tainted and untainted messages, and public and private
messages.

Section 3.1 introduces the type and effect system. Section 3.2 describes how we type
messages. Section 3.3 explains the subtyping relation. Section 3.4 explains how we
ascribe effects to processes. In Section 3.5 we explain how to type the assertions in the
example of the previous section.

3.1 Environments and Judgments

The type and effect system is given as a series of judgments E � J , for example the
judgment E � T can be read as ‘in environment E we have that T is a type’.

Judgments E � J :

E ��� good environment
E � es good effect es
E � T good type T
E � T � : U subtyping
E � M : T good message M of type T
E � P : es good process P with effect es

Judgments are given in an environment that assigns types to the variables in scope. An
environment, E, takes the form x1:T1 ������� � xn:Tn, and we write dom

�
E � for

�
x1 ������� � xn � .

Environments:

D � E :: � environment
x1:T1 ������� � xn:Tn unordered set of entries

12



An environment, E, is well-formed environment, written E ��� , when the defined vari-
ables are distinct, and for each entry x:T , the type T is well-formed in E, as explained
below. As in our previous type system [GJ01], the type of a variable may contain
occurrences of the variable itself.

Rule for Environments:

(Env Good)(where E � x1:T1 ������� � xn:Tn)
E � Ti � i

� 1 � � n x1, . . . , xn distinct

E ���

3.2 Types for Messages

We give the syntax of types and explain when a message M has type T , written infor-
mally M : T . The challenge and response types for nonces are deferred to Section 3.4,
where they are discussed in the context of effects for processes.

Types:

S � T � U :: � type�
x:T � U � dependent pair type (x bound in U)

T � U sum type
���

data known to the opponent� � � top� �
�
� � 
�� � 
 � T � shared-key type� � 
�� � � � � T � asymmetric key-pair

k
� � 
 � T � encryption or decryption part

(where k either � �	�	��
��� or ��� ����
���� )

The free names fn
�
T � of a type T are defined in the usual way, where the only binder

is x being bound in U in the type
�
x:T � U � . (The free names in types are introduced

by challenge and response types, defined in Section 3.4.) We write T
�
x � M � for the

outcome of a capture-avoiding substitution of the message M for each free occurrence
of the name x in the type T .

Next, we informally explain the values described by each type. We say informally
that a type is public if messages of the type may flow to the opponent. Dually, we
say a type is tainted if messages from the opponent may flow into the type. Later, we
formalize these notions using the subtype relation.

� The type
�
x:T � U � describes a pair

�
M � N � where M : T and N : U . The scope of

the variable x consists of the type U . Type
�
x:T � U � is public just if T and U are

public, and tainted just if T and U are tainted.
� The type T � U describes a tagged message

� ��� �
M � where M : T or

� �� �
N � where

N : U . Type T � U is public just if T and U are public, and tainted just if T and
U are tainted.

13



� The type
� �

describes messages that may flow to or from the opponent, which
we model as an arbitrary process of the calculus. The type

���
is both public and

tainted.
� The type

� � � describes all well-typed messages; it is tainted but not public.
� The type

� �
�
� � 
�� � 
 � T � describes symmetric keys for encrypting messages of

type T ; it is public or tainted just if T is both public and tainted.
� The type

� � 
�� � � � � T � describes asymmetric key-pairs for encrypting or signing
messages of type T ; it is public or tainted just if T is both public and tainted.
The key-pair can be used for public-key cryptography just if T is tainted, and for
digital signatures just if T is public.

� The type � � ����
���� � � 
 � T � describes an encryption or signing key for messages
of type T ; it is public just if T is tainted, and it is tainted just if T is public.

� The type ��� ����
���� � � 
 � T � describes a decryption or verification key for messages
of type T ; it is public just if T is public, and it is tainted just if T it tainted.

In an environment E, a type T is well-formed, written E � T , if dom
�
E � includes all the

variables free in T . It may be a little surprising that this rule does not require each term
that occurs in a type to be well-formed, but just that all its free variables be in scope. In
fact, the only terms that can occur within a type are the labels of begin- or end-events
in an effect occurring within the type. We do not need to regulate or check the types of
these labels, as they are simply identifiers for events.

Rule for Types:

(Type)
fn
�
T � �

dom
�
E �

E � T

The formal message typing judgment takes the form E � M : T , read ‘in environment
E, message M has type T ’.

Our typing rules rely on a subtyping relation on types, written E � T � : U . Intu-
itively, this means that any message of type T also is of type U . We explain subtyping
in detail in the next section.

Typing Rules for Messages:

(Msg x)

E � � x:T � E � � � x : T

(Msg Subsum)
E � M : T E � T � : T �

E � M : T �
(Msg Pair)(where x �� dom

�
E � )

E � M : T E � N : U
�
x � M � E � x:T � U

E �
�
M � N � :

�
x:T � U �

(Msg Inl)
E � M : T E � U

E � � ��� �
M � : T � U

(Msg Inr)
E � T E � N : U

E � � �� �
N � : T � U
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(Msg Symm)
E � M : T E � N :

� �
�
� � 
 � � 
 � T �

E �
�
M � N :

� �

(Msg Part)
E � M :

� � 
�� � � � � T �
E � k

�
M � : k

� � 
 � T �

(Msg Asymm)
E � M : T
E � N : � �	�	��
��� � � 
 � T �

E �
���
M

� � N :
���

The type-rules are all syntax-directed, and so it is not hard to implement a top-down
typechecker for this type system.

3.3 The Subtyping Relation

The subtyping relation E � T � : T � means that messages of type T can be used in place
of a message of type T � . The environment E tracks the names in scope, and sometimes
is omitted in informal discussion.

The interaction of subtyping and dependent types can be quite subtle; our treatment
is based on that of Aspinall and Compagnoni [AC01], although our setting is much
simpler, due to the absence of higher-order types.

Earlier we gave an informal definition of public and tainted types. Formally, a
type’s relationship to the type

���
of data known to the opponent determines whether

it can flow to or from the opponent. We define a type T to be public if and only if
T � :

� �
. We define a type T to be tainted if and only if

� �
� : T .

The following tables of rules define the subtyping relation. Note that subtyping is a
preorder on types, not a partial order, since all of the types which are both tainted and
public are collapsed together, for example

��� � � � � :
� �

� :
��� � � � . Subtyping is

reflexive and transitive, and has a top element
� � � :

Basic Rules for Subtyping:

E � T ��� E � T � : T (Sub Refl)
E � S � : T � E � T � : U ��� E � S � : U (Sub Trans)
E � T ��� E � T � :

� � � (Sub Top)

Pair types
�
x:T � U � , sum types T � U and decryption key types ��� ����
���� � � 
 � T � are

covariant; encryption key types � � ����
���� � � 
 � T � are contravariant; symmetric keys� �
�
� � 
�� � 
 � T � and key pairs

� � 
�� � � � � T � are invariant. These variances correspond to
the usual subtyping rules for references or channels: encryption is a writing operation,
and so is contravariant, while decryption is a reading operation, and so is covariant.

Congruence Rules for Subtyping:

(Sub Pair)(where x �� dom
�
E � )

E � T � : T � E � x:T � U � : U � E � x:T � � U �
E �

�
x:T � U � � :

�
x:T � � U ���

(Sub Sum)
E � T � : T � E � U � : U �

E � T � U � : T � � U �
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(Sub Key Invar)
E � T � : T � E � T � � : T

E �
� �

�
� � 
 � � 
 � T � � :

� �
�
� � 
�� � 
 � T ���

(Sub Key Pair Invar)
E � T � : T � E � T � � : T

E � � � 
�� � � � � T � � :
� � 
 � � � � � T ���

(Sub Enc Contra)
E � T � � : T

E � � �	�	��
��� � � 
 � T � � : � �	�	��
��� � � 
 � T � �
(Sub Dec Co)

E � T � : T �
E � ��� �	��
��� � � 
 � T � � : ��� ����
���� � � 
 � T ���

A pair type
�
x:
��� � � � � contains only public data, so is itself public. Similarly, the

sum type
� � � ��� , the symmetric key type

� �
�
� � 
�� � 
 � ��� � , the asymmetric key type

k
� � 
 � ��� � , and the key pair type

� � 
 � � � � � � � � are all public types:

Subtyping Rules for Public Types:

E �
�
x:
� � � ��� � � :

���
(Public Pair)

E � ��� � ��� � :
� �

(Public Sum)
E �

� �
�
� � 
�� � 
 � ��� � � :

� �
(Public Shared Key)

E � � � 
 � � � � � ��� � � :
� �

(Public Keypair)
E � k

� � 
 � ��� � � :
���

(Public Key)

A pair type
�
x:
� � � ��� � contains only tainted data, so is itself tainted. Similarly, the

sum type
� � � ��� , the symmetric key type

� �
�
� � 
�� � 
 � ��� � , the asymmetric key type

k
� � 
 � ��� � , and the key pair type

� � 
 � � � � � � � � are all tainted types:

Subtyping Rules for Tainted Types:

E � ��� � :
�
x:
��� � � � � (Tainted Pair)

E � ��� � :
��� � � � (Tainted Sum)

E � ��� � :
� �

�
� � 
�� � 
 � ��� � (Tainted Shared Key)

E � ��� � :
� � 
 � � � � � ��� � (Tainted Keypair)

E � ��� � : k
� � 
 � ��� � (Tainted Key)

We end this section by discussing the two dual applications of key-pairs. We have the
following equivalences:

Proposition 1 Suppose that E � T and E � � . Then:

(1) T is tainted if and only if � �	�	��
���� � � 
 � T � is public if and only if ��� �	��
���� � � 
 � T �
is tainted.

(2) T is public if and only if � � ����
���� � � 
 � T � is tainted if and only if ��� �	��
���� � � 
 � T �
is public.

Proof See Appendix C.4. �
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The first case represents public-key applications, where the payload type T is tainted,
and the encryption key is public, so that anyone, including the opponent, can encrypt
messages. The second case represents digital signature applications, where the pay-
load type T is public, and the decryption key is public, so that anyone, including the
opponent, can check signatures.

If we attempt to use the same keypair of type
� � 
�� � � � � T � for both applications, T

is both public and tainted, and hence equivalent to
���

. This matches the common en-
gineering practice that keys used for both public-key and digital signature applications
are not to be trusted.

3.4 Effects for Processes

We write E � P : es to mean that the process P is well-typed in environment E, and that
the effect es is an upper bound on certain aspects of the behaviour P. An effect is a
multiset (that is, an unordered list) of atomic effects. These can take three forms:

� � � 
 L, used to track the unmatched end-events of a process;
� �	� � ��� � � �� � � N and

��� � �	� � � � �
�
� � N, used to track how often a nonce has been

used; and
� � � � � � M:T , a trust effect used to gain the trust information that data M really has

type T .

Overall, the goal when typechecking a protocol is to assign it the empty effect, for
then it has no unmatched end-events, and therefore is safe. This section explains the
intuitions behind the rules for assigning effects to processes.

The effect determined by our system is only a static approximation to the actual
unmatched end-events performed by a process. As with most properties addressed
by type systems, a completely accurate determination is undecidable in general. For
example, the following protocol (which generates a session key then just discards it) is
robustly safe, but is rejected by our system:

� ��� �
k � ; � �� net

�
c � ; 
 � �	��
���� c

� � �
x � k; � ��
 y;

Let e stand for an atomic effect, and let es stand for an effect, that is, a multiset�
e1 ������� � en � of atomic effects. We write es � es � for the multiset union of the two multi-

sets es and es � , that is, their concatenation. We write es � es � for the multiset subtraction
of es � from es, that is, the outcome of deleting an occurrence of each atomic effect in
es � from es. If an atomic effect does not occur in an effect, then deleting the atomic
effect leaves the effect unchanged.

The interesting part of the effect system for processes is how it handles nonce hand-
shakes. Each nonce handshake breaks down into several steps:

(1) Participant A creates a fresh nonce and sends it to B inside a message M.

(2) Participant B returns the nonce to A inside message N.

(3) Participant A checks that she received the same nonce as she sent. From this (and
some trust in the cryptography used to encrypt secret messages) she knows that
B must have been involved in the dialogue.
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(4) To avoid vulnerability to replay of messages containing the nonce, A subse-
quently discards the nonce and refuses to accept it again.

Our type system requires us to distinguish nonces which may be published to the un-
trusted agents (

� � �� � � nonces) from ones which may not (
� � � �

�
� � nonces). We let � be

either
� � �� � � or

� � � �
�
� � . We typecheck the above four steps as follows:

(1) A creates the nonce N as having type ��� � � � � � � � � es, where es is an effect, and
sends it to B.

(2) B casts the nonce to a new type ��� � � � � � � � fs, where fs is also an effect, and
returns it to A. In order to do this, B must ensure that the effect es � fs is justified.

(3) After receiving the newly cast nonce, A uses a name-check
��� � �	� N

� � N � ; to
check equality of the original nonce challenge with the new nonce response. If
this check succeeds, A can assume that the effect es � fs is justified.

(4) To guarantee that each nonce N is only checked once, we introduce a new atomic
effect

�	� � ��� � N, which is a pre-condition on each process
�	� � ��� N

� � N � ;. This
pre-condition can only be achieved by freshly generating the nonce N, which
ensures that each nonce is only ever checked once.

This four-phase process extends the treatment of POSH nonces in earlier work [GJ01],
and is sufficient to typecheck many symmetric key protocols. Asymmetric key proto-
cols, however, often have dynamic trust, where the trust in a piece of data may increase
over time. In our system, trust is given by knowing the type of data, so dynamic trust
is modelled by allowing the type of some data to change over time. We introduce two
new statements, which allow A to communicate to B that a piece of data M has type T :

(1) A knows that M has type T , and executes �
� � � � � � M:T ; which justifies a trust

effect
� � � � � M:T . A can then use the nonce mechanism described above to com-

municate this trust effect to B.

(2) B executes
� � � � � M

� � � x:T � ; which gives M type T by binding M to variable x of
type T . This requires a trust effect

� � � � � M:T .

In this fashion, type information can be exchanged between honest agents, using the
same mechanism as authenticity information. This is done without transmitting any
extra type information at runtime, and so the types are only used in the static analysis
of the protocol, and play no role at runtime.

Effects:

e � f :: � atomic effect
� ��
 L end-event labelled with message L��� � �	� � N name-check for a nonce N� � � � � M:T trust that a message M has type T

es � fs :: � effect�
e1 ������� � en � multiset of atomic effects
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Effects contain no name binders, so the free names fn
�
es � of an effect es are the free

names of the message and types they contain. We write es
�
x � M � for the outcome of

a capture-avoiding substitution of the message M for each free occurrence of the name
x in the effect es.

In an environment E, an effect es is well-formed, written E � es, if dom
�
E � includes

all the names free in es. As we already mentioned in our discussion of the rule (Type),
our type system does not regulate the types of the terms serving as event levels within
effects. These terms are simply event identifiers. Their types do not matter.

Rule for Effects:

(Effect)
fn
�
es � �

dom
�
E �

E � es

We extend the grammar of types to include nonce types. These come in two varieties:� � �� � � nonces (for SOPH and POSH nonce handshakes, which are public at some
points in their lifetime) and

� � � �
�
� � nonces (for SOSH nonce handshakes, which are

never public).

� POSH nonces are sent out with tainted public type
� � �� � � � � � � � � � � � � � , and re-

turn with untainted public type
� � �� � � � � � � � � � � es.

� SOPH nonces are sent out with untainted secret type
� � � � � � � � � � � � �� es (with

es �� � � ), and return with tainted public type
� � �� � � � � � � � � � � � � .

� SOSH nonces are send out with tainted secret type
� � � �

�
� � � � � � � � � � � es, and

return with tainted secret type
� � � �

�
� � � � � � � � � � fs.

In addition, we introduce challenge-response types � � � es fs, which can act as both
challenges and responses. These are only required for technical reasons in the proof of
correctness, and are not intended for use in user code. The ��� � es fs types are used
because nonces change type over time—a nonce of type � � � � � � � � �� es may be cast to
the type ��� � � � � � � � fs; in fact, we downcast to the new type � � � es fs, which is a
subtype of both the original type � � � � � � � � � � es and the new type � � � � � � � � � fs.

Nonce Types:

T � U :: � type
����� as in Section 3.2
� � � � � � � � �� es nonce challenge type
� � � � � � � � � es nonce response type
� � � es fs challenge-response type

� :: � privacy� � �� � � public� � � �
�
� � private

Subtyping Rules for Nonce Types:
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E � � � �� � � � � � � � � � �� � � � :
���

(Public Challenge
� � )

E � fs ��� E � � � �� � � � � � � � � � � fs � :
� �

(Public Response)
E � ��� � :

� � �� � � � � � � � � � �� � � (Tainted Public Challenge
� � )

E � ��� � :
� � �� � � � � � � � � � � � � (Tainted Public Response

� � )
E � es ��� E � � � � :

� � � �
�
� � � � � � � � � � � es (Tainted Private Challenge)

E � es ��� E � � � � :
� � � �

�
� � � � � � � � � � es (Tainted Private Response)

E � es � � fs � � es � es � � fs � fs �
��� E � � � � es � fs � � : � � � es fs

(Sub CR)

E � � � � es fs ��� E � � � � es fs � : � � � � � � � � � � es (Sub CR C)
E � � � � es fs ��� E � � � � es fs � : ��� � � � � � � � fs (Sub CR R)

We extend the grammar of processes to include nonce manipulation:

Processes Manipulating Nonces:

O � P� Q � R :: � process
� � � as in Section 2.1�
� �
�

M
� � �

x:T � ;P nonce-casting
�
� � � � � � M:T ;P witness testimony� � � � � M

� � � x:T � ;P trusted-casting

In a process
�
� �
�

M
� � �

x:T � ;P or
� � � � � M

� � � x:T � ;P, the name x is bound; its scope is
the process P.

� The process
�
� �
�

M
� � � x:T � ;P casts the message M to the type T , by binding the

variable x to M, and then running P. (This process can only be typed by our type
system if M has type � � � � � � � � �� es and T is of the form � � � � � � � � � es.)

� The process �
� � � � � � M:T ;P requires that M has type T . It justifies any number

of effects of the form
� � � � � M:T .

� The process
� � � � � M

� � � x:T � ;P casts the message M to the type T , by binding the
variable x to M, and then running P. (This process requires an effect

� � � � � M:T
to be justified: this allows type information to be communicated amongst honest
agents.)

These additional constructs add no expressive power at runtime; they are simply anno-
tations to help the typechecker. Therefore, it is convenient and harmless to forbid the
opponent from using these additional constructs. Similarly, the check construct adds
no expressive power as it may be mimicked by the match construct. We revise our
definition of an opponent as follows.

Revised Formulation of Opponent:

A process is unprivileged if and only if it contains no checks, casts, witnesses or trusts.
An opponent O is an assertion-free unprivileged untyped process O.
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We can now give rules which calculate the effect of a process. Most of the rules are
the same as [GJ01], so we only discuss the rules for asymmetric cryptography, nonce
challenges, and dynamic trust here.

The rule for asymmetric decryption is similar to the one for symmetric decryption
in [GJ01]: if M is a plaintext of type T and N is a decrypt key of type ��� �	��
��� � � 
 � T �
then we can decrypt a ciphertext of type

���
to reveal the plaintext of type T :

Rule for Asymmetric Cryptography:

(Proc Asymm) (where x �� dom
�
E ��� fn

�
es � )

E � M :
���

E � N : ��� ����
���� � � 
 � T � E � x:T � P : es

E � 
 � �	��
��� M
� � ���

x:T
� � N � 1 ;P : es

The rules for nonce types are similar to the rules from [GJ01], except that they support
SOPH and POSH nonces as well as POSH nonces:

Rules for Challenges and Responses:

(Proc Cast) (where x �� dom
�
E ��� fn

�
fs � )

E � M : � � � � � � � � � � esC E � esR E � x: � � � � � � � � � esR � P : fs

E � �
� �
�

M
� � �

x: ��� � � � � � � � esR � ;P : esC � esR � fs

(Proc Check)
E � M : � � � � � � � � � � esC E � N : � � � � � � � � � esR E � P : fs

E � �	� � ��� M
� � N;P :

�
fs � �

esC � esR � � � � ��� � �	� � M �
(Proc Challenge) (where x �� dom

�
E ��� fn

�
es � � ��� � ��� � x � � )

E � fs E � x: � � � � � � � � �� fs � P : es

E � � ��� �
x: � � � � � � � � �� fs � ;P : es � � �	� � ��� � x �

The rules for trust effects are new in this paper. A process �
� � � � � � M:T ;P requires that

message M has type T , and allows the process P to use the trust effect
� � � � � M:T many

times; A process
� � � � � M

� � � x:T � ;P makes use of the trust effect
� � � � � M:T to use M

with type T :

Rules for Witness Testimony and Trusted-Casting:

(Proc Witness)
E � M : T E � P : es � � � � � � � M:T ������� � � � � � � M:T �

E � �
� � � � � � M:T ;P : es

(Proc Trust) (where x �� dom
�
E ��� fn

�
es � )

E � M :
� � � E � T E � x:T � P : es

E � � � � � � M
� � � x:T � ;P : es � � � � � � � M:T �

The remaining rules are the same as in [GJ01], so we repeat them without comment.
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Basic Rules for Processes:

(Proc Subsum)
E � P : es E � fs

E � P : es � fs

(Proc Output Un)
E � M :

���
E � N :

���

E � ��� � M N :
� �

(Proc Input Un) (where y �� dom
�
E ��� fn

�
es � )

E � M :
���

E � y:
��� � P : es

E � � ��
M

�
y:
��� � ;P : es

(Proc Repeat Input Un) (where y �� dom
�
E � )

E � M :
���

E � y:
��� � P :

� �
E � � � � � � � � �� M

�
y:
��� � ;P :

� �
(Proc Par)
E � P : es E � Q : fs

E � P
�
Q : es � fs

(Proc Stop)

E � � � � � :
� �

(Proc Res) (where x �� dom
�
E ��� fn

�
es � )

E � x:T � P : es E � T
T is

���
or

� � 
 � � � � � U � or
� �

�
� � 
�� � 
 � U �

E � � ��� �
x:T � ;P : es

Rules for Processes Manipulating Products and Sums:

(Proc Split) (where x � y �� dom
�
E ��� fn

�
es � and x �� y)

E � M :
�
x:T � U � E � x:T � y:U � P : es

E � � ��� � � M
� � �

x:T � y:U � ;P : es

(Proc Match) (where y �� dom
�
E ��� fn

�
es � )

E � M :
�
x:T � U � E � N : T E � y:U

�
x � N � � P : es

E � � �
� ���

M
� � �

N � y:U
�
x � N � � ;P : es

(Proc Case) (where x �� dom
�
E ��� fn

�
es � and y �� dom

�
E ��� fn

�
fs � )

E � M : T � U E � x:T � P : es E � y:U � Q : fs

E � �
� � � M

� � � ��� � x:T � P
� � � ��� � y:U � Q : es � fs

Rules for Cryptography:

(Proc Symm) (where x �� dom
�
E ��� fn

�
es � )

E � M :
���

E � N :
� �

�
� � 
�� � 
 � T � E � x:T � P : es

E � 
 � ����
���� M
� � �

x:T � N ;P : es
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Rules for Begins and Ends:

(Proc Begin)
E � L :

� � � E � P : es

E �  ��� � � L;P : es � � � � 
 L �

(Proc End)
E � L :

� � � E � P : es

E � � ��
 L;P : es � � � � 
 L �

Rules for Witness Testimony and Trusted-Casting:

(Proc Witness)
E � M : T E � P : es � � � � � � � M:T ������� � � � � � � M:T �

E � �
� � � � � � M:T ;P : es

(Proc Trust) (where x �� dom
�
E ��� fn

�
es � )

E � M :
� � � E � T E � x:T � P : es

E � � � � � � M
� � � x:T � ;P : es � � � � � � � M:T �

The type-and-effect rules for processes E � P : es rely on some multiset algebra, which
we define here for unordered sequences

�
x1 ������� � xn � for some grammar ranged over by x.

Multiset Algebra xs � xs � , xs � xs � , xs � xs � , x
�

xs, xs � xs � :
�
x1 ������� � xm � � �

y1 ������� � yn � ∆� �
x1 ������� � xm � y1 ������� � yn �

xs � xs � if and only if xs � xs � �	� xs � for some xs � �
xs � xs � ∆� the smallest xs � � such that xs � xs � � � xs �
x
�

xs if and only if
�
x � � xs

xs � xs � ∆� the smallest xs � � such that xs � xs � � and xs � � xs � �

Finally, we state the safety theorem for this type system. The proof depends on iden-
tifying a suitable runtime invariant and showing it is preserved by the operational se-
mantics.

Theorem 1 (Robust Safety) If x1:
� � ������� � xn:

� � � P :
� � then P is robustly safe.

Proof Given in Appendix C.8. �

3.5 Typing the Example

We now show that the process System
�
net � has empty effect, and so by Theorem 1

(Robust Safety) is robustly safe. We give other examples in Appendix A, including an
example using signed certificates.

The protocol uses two nonce handshakes to agree on a session key between A and
B, and then an additional nonce handshake to communicate the message M from A to
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Sender
�
net :

��� � privateA : ��� �	��
��� � A
�
A � � publicB : � �	�	��
��� � B

�
B � � ∆�

� ��� �
keyAB :

�
AB

�
A � B � � ;

� � Effect:
� �� ��� �

challengeA : � A
�
A � B � keyAB � � ;

� � Effect:
� ��� � ��� � � � �

�
� � challengeA � ��� � � “A generates keyAB for B”;

��� � net
���
A � keyAB � challengeA

� � publicB
;� ��

net
�
ctext2 :

� � � challengeB2 : � B2 � ;
 � �	��
��� ctext2
� � ���

B � keyAB � responseA : � A � challengeB1 : � B1
�
A � B � keyAB � � � private � 1

A
;

� � Effect:
� ��� � ��� � � � �

�
� � challengeA � � � 
 “A generates keyAB for B” ���� � ��� challengeA

� � responseA;
� � Effect:

� � ��
 “B received keyAB from A” � � � 
 “A generates keyAB for B”�
� ��
 “B received keyAB from A”;
� ��� �

msg :
�
�

�� � � 
 � ;

� � Effect:
� � ��
 “A generates keyAB for B” � ��� � � “A sends msg to B”;

� � Effect:
� � ��
 “A generates keyAB for B” � � ��
 “A sends msg to B” �

�
� � � � � � keyAB:

�
AB

�
A � B � ;

� � Effect:
� � ��
 “A generates keyAB for B” �� � � � � keyAB:

�
AB

�
A � B � � � ��
 “A sends msg to B” ��

� �
�

challengeB1
� � �

responseB1 : � B1 � ;
� � Effect:

� � ��
 “A sends msg to B” ��
� �
�

challengeB2
� � �

responseB2 : � B2
�
A � B � msg � � ;

� � Effect:
� �

��� � net
�
responseB1 � �

msg � responseB2 � keyAB
� ;

Figure 2: Proof that the sender is robustly safe
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Receiver
�
net :

� � � publicA : � �	�	��
���� � A
�
A � � privateB : ��� ����
���� � B

�
B � � ∆�� � � � � �� ��

net
�
ctext1 :

��� � ;
 � �	��
��� ctext1
� � ���

A � untrusted :
� � � � challengeA : � A

�
A � B � keyAB �

� � private � 1
B

;

� � Effect:
� �� ��� �

challengeB1 : � B1
�
A � B � keyAB � � ;

� � Effect:
� ��� � �	� � � �� � � challengeB1 �� ��� �

challengeB2 : � B2 � ;
� � Effect:

� ��� � �	� � � �� � � challengeB1 � �	� � ��� � � � � � challengeB2 � ��� � � “B received untrusted from A”;
� � Effect:

� � ��
 “B received untrusted from A” ���� � �	� � � �� � � challengeB1 � �	� � ��� � � � � � challengeB2 ��
� �
�

challengeA
� � �

responseA : � A � ;��� � net
���

B � untrusted � challengeA � challengeB1
� � publicA

� challengeB2;� ��
net

�
responseB1 : � B1 � ctext3 :

��� � ;
� � Effect:

� ��� � �	� � � �� � � challengeB1 � �	� � ��� � � � � � challengeB2 ���� � �	� challengeB1
� � responseB1;

� � Effect:
� � ��
 “A generates untrusted for B” �� � � � � untrusted:

�
AB

�
A � B � � �	� � ��� � � �� � � challengeB2 �

� ��
 “A generates untrusted for B”;
� � Effect:

� � � � � � untrusted:
�

AB
�
A � B � � �	� � ��� � � �� � � challengeB2 �� � � � � untrusted

� � � keyAB :
�

AB
�
A � B � � ;
 � �	��
��� ctext3

� � �
msg :

�
�

� � � 
 � responseB2 : � B2

�
A � B � msg � � keyAB

;
� � Effect:

� ��� � �	� � � �� � � challengeB2 ���� � �	� challengeB2
� � responseB2;

� � Effect:
� � ��
 “A sends msg to B” �

� ��
 “A sends msg to B”;

Figure 3: Proof that the receiver is robustly safe
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B:
Event 1 A begins “A generates KAB for B”
Message 1 A � B :

���
A � KAB � NA

� � KB

Event 2 B begins “B received KAB from A”
Message 2 B � A :

���
B � KAB � NA � NB1

� � KA � NB2

Event 2 � A ends “B received KAB from A”
Event 3 A begins “A sends M to B”
Message 3 A � B : NB1 � �

M � NB2 � KAB

Event 1 � B ends “A generates KAB for B”
Event 3 � B ends “A sends M to B”

Each nonce has two types: one type when it is used as a nonce challenge, and one for
when it is used as a response. The types for NA are:

� A
�
a � b � k � � � � � �

�
� � � � � � � � � � � � � � 
 �

“a generates k for b” � �
� A � � � � �

�
� � � � � � � � � � � �

The types for NB1 are:

� B1
�
a � b � k � � � � �� � � � � � � � � � � � � � ��
 �

“b received k from a” � � � � � � � k:
�

AB
�
a � b � �

� B1 � � � � � � � � � � � � � � � �
The types for NB2 are:

� B2 � � � �� � � � � � � � � � � � � �
� B2

�
a � b � m � � � � �� � � � � � � � � � � � � � 
 �

“a sends m to b” � �
Keys have only one type, giving the type of the plaintext encrypted with the key. The
type for KAB is:

�
AB

�
a � b � � � �

�
� � 
 � � 
 � m:

�
�

�� � � 
 � r: � B2

�
a � b � m � �

The type for KA is:
�

A
�
a � � � � 
 � b:

� � � �	� � �
�
� � k:

� � � � rA: � A � cB1: � B1
�
a � b � k � �

The type for KB is:
�

B
�
b � � � � 
 � a:

� � � � � � �
�
� � k:

� � � � cA: � A
�
a � b � k � �

In these messages, the session key k is communicated at an untrusted type
� � � ; only

after Message 3 can the participants can agree on the trusted type for the key.
We can then check that the encryption keys for each of the participants is public:

� The types
� � � �	� � �

�
�
,
� � � , � A and � B1

�
a � b � k � are all tainted, so the record type�

b:
� � � �	� � �

�
� � k:

� � � � rA: � A � cB1: � B1
�
a � b � k � � is tainted, so the encryption key

type � �	�	��
��� � A
�
a � is public.

� The types
� � � �	� � �

�
�
,
� � � and � A

�
a � b � k � are all tainted, so the record type�

a:
� � � �	� � �

�
� � k:

� � � � cA: � A
�
a � b � k � � is tainted, so the encryption key type

� �	�	��
���� � B
�
b � is public.
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In Figures 2 and 3, we annotate the participants in the protocol with types and appropri-
ate casts, to ensure that the protocol is robustly safe. When we typecheck the receiver,
we cannot initially trust the session key, so we have to give it type

� � � rather than key
type. It is only once Message 3 has arrived that we know that the key is really from A
and not fabricated by an intruder, at which point we can cast it to keyAB :

�
AB

�
A � B � .

This is justified by the trust effect
� � � � � keyAB :

�
AB

�
A � B � which is communicated as

part of nonce challenge challengeB1.

4 Conclusions and Further Work

This paper presents a type and effect system for asymmetric cryptographic protocols.
The main new ideas are (1) to identify the separate notions of public and tainted types,
defined formally via subtyping; (2) to formalize the way nonces increase the degree of
trust in data via trust effects; and (3) to support different styles of nonce handshake via
challenge/response types. Examples show how to model common features of asym-
metric protocols such as key exchange and the use of signed certificates.

Gordon and Pucella [GP02] apply the formalism of this paper to the design of some
application-level security abstractions for XML web services. They design and imple-
ment mechanisms for authenticity and confidentiality for a web service, and formalize
the abstract guarantees within a typed object calculus. By giving a semantics for this
calculus within the typed spi-calculus of this paper, they reduce the correctness of the
design to establishing robust safety for certain processes. By showing that well-typed
object calculus programs map to well-typed spi-calculus processes, robust safety fol-
lows by Theorem 1 (Robust Safety) of this paper.

The long-term aims of all the work on typing cryptographic protocols are to find
secrecy and authenticity types that are as compellingly intuitive as BAN formulas, are
easy to typecheck, have a precise semantics, and support a wide range of cryptographic
transforms and protocol idioms. This paper represents solid progress towards these
goals.

Still, several limitations remain to be addressed. Our types for encryption give
every ciphertext type

���
, so we cannot model some forms of nested cryptography

such as “sign-then-encrypt” or “encrypt-then-sign”. Our attacker model assumes that
every opponent is completely untrusted: they only have access to data of type

���
; this

does not model attacks where opponents are partially trusted (for example, M may
have a public key KM which is trusted to give authenticity information about M but
not about A or B). Also, the attacker model does not support key-compromise attacks.
Our encryption model does not include other encryption technologies such as hashing,
Diffie–Hellman key exchange, and constructing keys from pass phrases.
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A Other Examples

A.1 Abbreviations Used in Examples

In these examples, we make use of the following syntax sugar:

� Dependent record types
�
x1:T1 ������� � xn:Tn � , rather than just pairs.

� Tagged union types
�
� 1

�
T1 � ������� �

� n
�
Tn � � rather than just binary choice T � U .

� Strings “a1 ����� an” used in correspondence assertions.
� A public, tainted type

� � � � � � �
�
�
for principal names.

We show in Section A.4 that these constructs can be derived from our base language.

A.2 Authentication using Certificates

A simple authentication protocol using certificates is the ISO Public Key Two-Pass
Unilateral Authentication Protocol described by Clark and Jacob [CJ97]. In this pro-
tocol, a principal A sends a certificate for her public key KA together with a message
encrypted with her private key K � 1

A to principal B. The certificate is encrypted with
the private key K � 1

CA of a certificate authority CA. The protocol, simplified to remove
messages unrelated to authenticity, is:

Message 1 B � A : NB

Event 1 A begins “A sending M to B”
Message 2 A � B :

���
A � KA

� � K � 1
CA

� ���
M � B � NB

� � K � 1
A

Event 1 � B ends “A sending M to B”

Translating the protocol into the spi-calculus with correspondence assertions is routine,
but we have to provide types for the participants. The type of A’s key is (for any public
type

�
�

�� � � 
 ):

�
A
�
a :

� � � �	� � �
�
� � � � � 
 � msg :

�
�

� � � 
 � b :

� � � �	� � �
�
� �

n :
� � �� � � � � � � � � � � � � � 
 “a sending msg to b”� �

The type of the certificate authority CA’s key is:

�
CA � � � 
 � a :

� � � �	� � �
�
� � kA :

�
A
�
a � �

We can then check that the participants’ public keys are public:

� The plaintext of type
�

A
�
a � is public so ��� �	��
��� � A

�
a � is public (this depends

on the
�
�

�� � � 
 type being public ).

� The plaintext of type
�

CA is public, so ��� �	��
��� � CA is public.

It is then routine to verify that this protocol typechecks and is effect-free, and so is
robustly safe.
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A.3 Needham–Schroeder–Lowe

The full Needham–Schroeder–Lowe [NS78, Low96] protocol makes use of a certifi-
cate authority S which validates the public keys KA and KB of principals A and B, by
encrypting the public keys with private encryption key K � 1

S . A and B use S to find each
others public keys, then use two SOSH nonce handshakes to establish contact:

Message 1 A � S : A � B
Message 2 S � A :

���
B � KB

� � K � 1
S

Event 1 A begins “A contacting B”
Message 3 A � B :

���
msg3

�
A � NA � � � KB

Event 2 B begins “B contacted by A”
Message 4 B � S : B � A
Message 5 S � B :

���
A � KA

� � K � 1
S

Message 6 B � A :
���
msg6

�
B � NA � NB � � � KA

Event 2 � A ends “B contacted by A”
Message 7 A � B :

���
msg7

�
NB � � � KB

Event 1 � B ends “A contacting B”

Translating the protocol into the spi-calculus with correspondence assertions is routine,
but we have to provide types for the participants. The type of A and B’s keys is:

�
P
�
p :

� � � � � � �
�
� � � � � 
 �

msg3
�
q :

� � � �	� � �
�
� �

nQ :
� � � �

�
� � � � � � � � � � � � � ��
 “p contacted by q” � ��

msg6
�
q :

� � � � � � �
�
� � nP :

� � � �
�
� � � � � � � � � � � � �

nQ :
� � � �

�
� � � � � � � � � � � � � ��
 “p contacting q” � ��

msg7
� � � � �

�
� � � � � � � � � � � � �

�
The type of S’s key is:

�
S � � � 
 � p :

� � � � � � �
�
� � kP :

�
P
�
p � �

We can then check that the participants’ public keys are public:
� The plaintext of type

�
P
�
p � is tainted, so � �	�	��
���� � P

�
p � is public (this depends

on private nonce types being tainted).
� The plaintext of type

�
S is public, so ��� �	��
��� � S is public.

We omit the details, but it is routine to verify that the protocol can be typed-checked
with empty effect, and so is robustly safe. In the type for msg6 we require q’s name to
be present, otherwise the type for msg6 is not well-formed; this is the basis of Lowe’s
attack on the original Needham–Schroeder public key protocol.

A.4 Abbreviations Used in Examples

We shall now show that the abbreviations we used in our examples can be defined in
our type system. We made use of types for dependent records and tagged unions.
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Syntax Sugar for Use in Types:

T � U :: � type
����� as in Sections 3.2 and 3.4�
x1:T1 ������� � xn:Tn � dependent record�
� 1

�
T1 � � ����� �

� n
�
Tn � � tagged union

We allowed the construction of messages of record or tagged union type:

Syntax Sugar for Use in Messages:

L � M � N :: � message
� � � as in Section 2.1�
M1 ������� � Mn � record
� i
�
M � tagged union

“ai ����� an” string

In processes, we can make use of pattern-matching:

Syntax Sugar for Use in Processes:

O � P� Q � R :: � process
� � � as in Sections 2.1 and 3.4
� �

� �	�
M

� � X ;P pattern match
��� � M N;P output with residual� ���

M
�
X � ;P pattern matching input
 � �	��
���� M

� � �
X � N;P pattern matching symmetric decrypt
 � �	��
���� M

� � ���
X

� � N � 1;P pattern matching asymmetric decrypt

where X ranges over a grammar of patterns:

Patterns:

X � Y � Z :: � patterns
x:T variable
M constant�
Y1 ������� � Yn � 1 � Xn � tuple
� i
�
X � tagged union�

X � M symmetric ciphertext���
X

� � M � 1 asymmetric ciphertext

We will now give definitions for each of these extensions, beginning with types.

Abbreviations for Types:
�
x1:T1 ������� � xn:Tn � ∆� �

x1:T1 � � x2:T2 � � ����� � xn � 1:Tn � 1 � Tn � ����� � � ��
� 1
�
T1 � ������� �

� n
�
Tn � � ∆� �

T1 �
�
T2 �

� ����� �
Tn � 1 � Tn � ����� � � �

The translations of messages are similarly straightforward.
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Abbreviations for Messages:
�
M1 ������� � Mn � ∆� �

M1 � � M2 � � ����� � Mn � 1 � Mn � ����� � � �
� i
�
M � ∆� � �

i � n
�
M �� �

1 � 1
�
M � ∆� M� �

1 � n
�

1
�
M � ∆� � ��� �

M �� �
i

�
1 � n

�
1
�
M � ∆� � ��� � � �

i � n
�
M � �

“a1 ����� an”
∆� �

a1 ������� � an �

We write ��� � x
�
M � ;P as a simple shorthand for � �

�
x M

�
P:

Abbreviation ��� � M N;P:

��� � M N;P
∆� � ��� � M N � �

P

We define pattern-matching as:

Abbreviations for Pattern Matching:
� ���

M
�
X � ;P

∆� � ���
M

�
x � ; � �

� ���
x
� � X ;P


 � �	��
���� M
� � �

X � N ;P
∆� 
 � �	��
��� M

� � �
x � N; � �

� ���
x
� � X ;P


 � �	��
���� M
� � ���

X
� � N � 1 ;P

∆� 
 � �	��
���� M
� � ���

x
� � N � 1 ; � �

� �	�
x
� � X ;P

� �
� �	�

M
� � x:T ;P

∆� P
�
x � M �

� �
� �	�

M
� � �

X � ;P
∆� � �

� ���
M

� � X ;P
� �

� �	�
M

� � �
N � X1 ������� � Xn � ;P

∆� � �
� �	�

M
� � �

N � y � ; � �
� ���

y
� � �

X1 ������� � Xn � ;P
� �

� �	�
M

� � �
X0 � X1 ������� � Xn � ;P

∆�
� �� � � M

� � �
x � y � ; � �

� ���
x
� � X0; � �

� ���
y
� � �

X1 ������� � Xn � ;P
� �

� �	�
M

� � � �
1 � 1

�
X � ;P

∆� � �
� ���

M
� � X ;P

� �
� �	�

M
� � � �

1 � n
�

1
�
X � ;P

∆� �
� � � M

� � � �� � x � � �
� �	�

x
� � X ;P

� � � ��� � x � � � � �
� �

� �	�
M

� � � �
i

�
1 � n

�
1
�
X � ;P

∆� �
� � � M

� � � �� � x � � � � � � � � �� � x � � �
� ���

x
� � � �

i � n
�
X � ;P

� �
� �	�

M
� � �

X � NP;
∆� 
 � �	��
��� M

� � �
x � N ; � �

� ���
x
� � X ;P

� �
� �	�

M
� � ���

X
� � N � 1P;

∆� 
 � �	��
���� M
� � ���

x
� � N � 1; � �

� �	�
x
� � X ;P

� �
� �	�

M
� � N;P

∆� � �
� ��� �

M � M � � � �
N � x � ;P

Thus we have demonstrated that our core language is powerful enough to describe the
examples in this section.

B Operational Semantics and Safety

Processes include correspondence assertion events
 ��� � � L and � � 
 L which describe

the authenticity properties expected of the protocol. We take a new approach to for-
malizing correspondence assertions via a tuple space metaphor. Informally, we regard
these events as analogous to

� � � and � � � in a fictitious secure tuple space similar to
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Linda [CG89]. When a
 ��� � � L event takes place, we add L to the secure tuple space.

When an � ��
 L event takes place, we remove L from the tuple space: a violation of the
security requirements of the protocol have taken place if L is not present. In reality, this
tuple space does not exist, so we need the type system to ensure that every � ��
 L event
is guaranteed to succeed. In an implementation of a typechecked protocol,

 ��� � � L and
� ��
 L events can be implemented as no-ops, since the type checker guarantees that the
� ��
 L will succeed.

We define a state As of a protocol to be a tuple space (that is, a multiset of tuples
which have been begun but not ended) and a thread pool (that is, a multiset of executing
threads).

States:

A � B � C :: � activity
L tuple labelled L
P process P

Ls :: � �
L1 ������� � Ln � tuple space: multiset of tuples

Ps � Qs :: � �
P1 ������� � Pn � thread pool: multiset of processes

As � Bs � Cs :: � Ls � Ps state: tuple space plus thread pool

We define the operational semantics of a state by giving a reduction relation As � Bs
meaning ‘in state As the program can perform one step of computation and become
state Bs’.

State Transitions:� ��� � x M � � � � ��
x
�
y:T � ;P � � As � �

P
�
y � M � � � As (Trans I/O)� ��� � x M � � � � � � ��� � � ��� x

�
y:T � ;P � � As ��

P
�
y � M � � � � � � � ��� � � ��� x

�
y:T � ;P � � As

(Trans Repl I/O)

x �� fn
�
As � � � � ��� �

x:T � ;P � � As � �
P � � As (Trans New)�

P
�
Q � � As � �

P � � �
Q � � As (Trans Par)� � � � � � � As � As (Trans Stop)� � ��� � � � M � N � � � �

x:T � y:U � ;P � � As � �
P

�
x � M � �

y � N � � � As (Trans Split)� � �
� ��� �

M � N � � � �
M � y:U � ;P � � As � �

P
�
y � N � � � As (Trans Match)� �

� � � � �� �
M � � � � ��� � x:T � P

� � � ��� � y:U � Q � � As � �
P

�
x � M � � � As (Trans Inl)� �

� � � � �� �
N � � � � ��� � x:T � P

� � � �� � y:U � Q � � As � �
Q

�
y � N � � � As (Trans Inr)� 
 � �	��
��� �

M � N
� � �

x:T � N ;P � � As � �
P

�
x � M � � � As (Trans Symm)� 
 � �	��
��� ���

M
� ��������� 	�
��  N �

� � ���
x:T

� ����� � � 	 
 �  N � � 1 ;P � � As ��
P

�
x � M � � � As

(Trans Asymm)

�  ��� � � L;P � � As � �
L � � �

P � � As (Trans Begin)�
L � � � � ��
 L;P � � As � �

P � � As (Trans End)� ��� � ��� x
� � x;P � � As � �

P � � As (Trans Check)� �
� �
�

x
� � �

y:T � ;P � � As � �
P

�
y � x � � � As (Trans Cast)�

�
� � � � � � M:T ;P � � As � �

P � � As (Trans Witness)� � � � � � M
� � � x:T � ;P � � As � �

P
�
x � M � � � As (Trans Trust)
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The rule (Trans New) makes use of α-conversion to ensure that x is always fresh.

Reachability As � As � :
(Reach Refl)

As � As

(Reach Trans)
As � As � As � � As � �

As � As � �

An error state is one where an � ��
 L event is encountered without a matching tuple L
in the tuple space.

Error States and Safety:

A state is an error if and only if it has the form
� � ��
 L;P � � As where L �� As.

A process P is safe if and only if there is no error state As such that
�
P � � As.

C Properties of the Type System

Some details omitted from this appendix are in a technical report [GJ02a].

C.1 Basics

Proposition 2 (Free Names)

(1) If E � T � : U then fn
�
T ��� fn

�
U � �

dom
�
E � .

(2) If E � M : T then fn
�
M ��� fn

�
T � �

dom
�
E � .

(3) If E � P : es then fn
�
P ��� fn

�
es � �

dom
�
E � .

Lemma 3 If E ��� and x �� dom
�
E � and E � T then E � x:T � � .

Lemma 4 If E � es and es � � es then E � es � .
Lemma 5 If E � es and E � es � then E � es � es � .
Lemma 6 If E � T � : U then E � T and E � U.

Lemma 7 If E ��� and E � M : T then E � T .

We give a single proof of the following substitutivity and weakening properties.

Lemma 8 (Substitutivity) If E � x:T � J and E � x:T � � and E
�
x � M � � M : T then

E
�
x � M � � J

�
x � M � .

Lemma 9 (Weakening) If E � J and E � E � ��� then E � E � � J .

Proof Lemmas 8 (Substitutivity) and 9 (Weakening) following by proving the fol-
lowing statements in order:
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(1) Weakening for any J not of the form P : es.

By induction on the derivation of the judgment E � J . There is no appeal to
substitutivity.

(2) Substitutivity for any J not of the form P : es.

By induction on the derivation of the judgment E � x:T � J . We appeal to state-
ment (1) in the cases involving bound variables, that is, the rules (Msg Pair),
(Sub Pair).

(3) Substitutivity for any J of the form P : es.

By induction on the derivation of the judgment E � x:T � P : es. We appeal to state-
ment (1) in the cases involving bound variables, such as (Proc Match). Moreover,
we appeal to statement (2) in case (Proc Match).

Notice that we rely on (Proc Subsum) in the cases using multiset subtraction,
since the inequality es

�
x � M � � fs

�
x � M � �

�
es � fs � �

x � M � may be a strict
inclusion.

(4) Weakening for any J of the form P : es.

By induction on the derivation of the judgment E � P : es. We appeal to statement
(2) in the case of (Proc Match). �

Lemma 10 (Strengthening) If E � � and E � x:T � J and x �� dom
�
E � � fn

�
J � then

E � J .

Proof An induction on the proof of E � x:T � J , making use of Lemma 6 for the case
of rule (Sub Pair); Lemma 7 for the cases of rules (Msg Pair), (Proc Split), (Proc Case),
(Proc Symm) and (Proc Asymm); and Lemmas 7 and 8 (Substitutivity) for the case of
rule (Proc Match). Any case which introduces a bound variable uses Lemma 3. �

Lemma 11 (Bound Weakening) If E � x:T � J and E � x:T � T � � : T then E � x:T � � J .

Proof We prove the following cases in order: when J is of the form U , of the form
es, of the form U � : U � , of the form M : U , and then finally of the form P : es. We
prove each case by induction on the derivation of the judgment E � x:T � J . �

C.2 Opponent Typability

In this section, we show that any opponent process can be typed in an environment
assigning the

���
type to each of its free variables.

Derived Rules for Messages of Type
���

:

(Msg Pair Un)
E � M :

���
E � N :

���

E �
�
M � N � :

���

(Msg Inl Un)
E � M :

� �

E � � ��� �
M � :

� �

(Msg Inr Un)
E � N :

� �

E � � �� �
N � :

� �

(Msg Symm Un)
E � M :

���
E � N :

���

E �
�
M � N :

���

(Msg Part Un)
E � M :

���

E � k
�
M � :

���

(Msg Asymm Un)
E � M :

� �
E � N :

���

E �
���
M

� � N :
� �
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Lemma 12 The rules in the table above are derivable.

Lemma 13 If message M and environment E satisfy E � x :
���

for each x
�

fn
�
M � ,

then E � M :
���

.

Proof By structural induction on the message M, and appeal to the rules (Env Good),
and all of the derived rules in the table above: (Msg Pair Un), (Msg Inl Un), (Msg Inr
Un), (Msg Asymm Un), (Msg Part Un). �

Derived Rules for Processes Manipulating
� �

:

(Proc Split Un)
E � M :

���
E � x:

��� � y:
� � � P :

� �
E � � ��� � � M

� � �
x:
��� � y:

� � � ;P :
� �

(Proc Match Un)(where y �� dom
�
E � )

E � M :
���

E � N :
���

E � y:
� � � P :

� �
E � � �

� �	�
M

� � �
N � y:

� � � ;P :
� �

(Proc Case Un) (where x �� dom
�
E � and y �� dom

�
E � )

E � M :
���

E � x:
��� � P :

� � E � y:
��� � Q :

� �
E � �

� � � M
� � � ��� � x:

��� � P
� � � ��� � y:

� � � Q :
� �

(Proc Symm Un)(where x �� dom
�
E � )

E � M :
���

E � N :
���

E � x:
� � � P :

� �
E � 
 � ����
���� M

� � �
x:
��� � N ;P :

� �
(Proc Asymm Un)(where x �� dom

�
E � )

E � M :
���

E � N :
���

E � x:
� � � P :

� �
E � 
 � �	��
��� M

� � ���
x:
� � � � N � 1 ;P :

� �

Lemma 14 The rules in the table above are derivable.

Lemma 15 (Opponent Typability) If process O is an opponent, that is, an assertion-
free untyped unprivileged process, and the environment E satisfies E � x :

���
for each

x
�

fn
�
O � , then E � O :

� � .
Proof By structural induction on the process O, with appeal to the primitive rules
(Proc Output Un), (Proc Input Un), (Proc Repeat Input Un), (Proc Res), (Proc Par),
(Proc Stop), and all of the derived rules in the table above: (Proc Split Un), (Proc
Match Un), (Proc Case Un), and (Proc Asymm Un). �

C.3 Algorithmic Formulation of Subtyping

We now present an alternative view of subtyping, which is designed to be easier to
implement and to reason about. The problem with the existing definition is that it
includes the rule (Sub Trans), which makes inductive proofs about subtyping difficult.
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We present an algorithmic variant of subtyping, which does not require a transitivity
rule, and then show it equivalent to the existing definition.

The algorithmic definition is based around two additional kinds of types: public
types and tainted types. These have associated judgments E � Tainted

�
T � and E �

Public
�
T � .

Public and Tainted Types:

(Tainted Top)

E � Tainted
� � � � �

(Public Un)

E � Public
� ��� �

(Tainted Un)

E � Tainted
� � � �

(Public Pair)
E � Public

�
T � E � x:T � Public

�
U �

E � Public
� �

x:T � U � �

(Tainted Pair)(where E � x:T � U)
E � Tainted

�
T � E � x:

��� � Tainted
�
U �

E � Tainted
� �

x:T � U � �
(Public Sum)
E � Public

�
T � E � Public

�
U �

E � Public
�
T � U �

(Tainted Sum)
E � Tainted

�
T � E � Tainted

�
U �

E � Tainted
�
T � U �

Cryptographic Keys:

(Public Shared)
E � Public

�
T � E � Tainted

�
T �

E � Public
� � �

�
� � 
�� � 
 � T � �

(Tainted Shared)
E � Public

�
T � E � Tainted

�
T �

E � Tainted
� � �

�
� � 
�� � 
 � T � �

(Public Keypair)
E � Public

�
T � E � Tainted

�
T �

E � Public
� � � 
 � � � � � T � �

(Tainted Keypair)
E � Public

�
T � E � Tainted

�
T �

E � Tainted
� � � 
�� � � � � T � �

(Public Enc)
E � Tainted

�
T �

E � Public
� � �	�	��
���� � � 
 � T � �

(Tainted Enc)
E � Public

�
T �

E � Tainted
� � �	�	��
��� � � 
 � T � �

(Public Dec)
E � Public

�
T �

E � Public
� ��� �	��
��� � � 
 � T � �

(Tainted Dec)
E � Tainted

�
T �

E � Tainted
� ��� ����
���� � � 
 � T � �

Nonce Challenge and Responses:

(Public Challenge
� � )

E � Public
� � � � � � � � � � � � � � � � � �

(Public Response)
E � es

E � Public
� � � � � � � � � � � � � � es �

(Tainted Public Challenge
� � )

E � Tainted
� � � �� � � � � � � � � � � � � � �

(Tainted Public Response
� � )

E � Tainted
� � � �� � � � � � � � � � � � � �
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(Tainted Private Challenge)
E � es

E � Tainted
� � � � �

�
� � � � � � � � � � � es �

(Tainted Private Response)
E � es

E � Tainted
� � � � �

�
� � � � � � � � � � es �

(Public CR)
E � es E � fs

E � Public
� � � � � � � � es fs �

Algorithmic Formulation of Subtyping:

(Sub Public Tainted)
E � Public

�
T � E � Tainted

�
T ���

E � T � : T �

(Sub Top)
E � T

E � T � :
� � �

(Sub CR C Algo)
E � es � fs es � es �

E � � � � es fs � : � � � � � � � � � � es �

(Sub CR R Algo)
E � es � fs fs � fs �

E � � � � es fs � : � � � � � � � � � fs �

Congruence Rules:

(Sub Pair)(where x �� dom
�
E � )

E � T � : T � E � x:T � U � : U � E � x:T � � U �
E �

�
x:T � U � � :

�
x:T � � U ���

(Sub Sum)
E � T � : T � E � U � : U �

E � T � U � : T � � U �
(Sub Key Invar)

E � T � : T � E � T � � : T

E �
� �

�
� � 
 � � 
 � T � � :

� �
�
� � 
�� � 
 � T � �

(Sub Key Pair Invar)
E � T � : T � E � T � � : T

E � � � 
�� � � � � T � � :
� � 
 � � � � � T ���

(Sub Enc Contra)
E � T � � : T

E � � �	�	��
��� � � 
 � T � � : � �	�	��
��� � � 
 � T � �
(Sub Dec Co)

E � T � : T �
E � ��� �	��
��� � � 
 � T � � : ��� ����
���� � � 
 � T ���
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(Sub Challenge)
E � es

E � � � � � � � � � �� es � : � � � � � � � � � � es

(Sub Response)
E � fs

E � � � � � � � � � � fs � : � � � � � � � � � fs

(Sub CR)
E � es � � fs � es � es � fs � fs �

E � � � � es � fs � � : � � � es fs

Lemma 16 (Environmental Freedom) In the algorithmic formulation of subtyping:

(1) If E � Public
�
T � and dom

�
E � �

dom
�
E ��� then E � � Public

�
T � .

(2) If E � Tainted
�
T � and dom

�
E � �

dom
�
E ��� then E � � Tainted

�
T � .

(3) If E � T � : U and dom
�
E � �

dom
�
E � � then E � � T � : U.

Proof By a simultaneous induction on the derivation of the first judgment in each
case. �

Lemma 17 (Public Down/Tainted Up) In the algorithmic formulation of subtyping:

(1) If E � Public
�
T � and E � T � � : T then E � Public

�
T ��� .

(2) If E � Tainted
�
T � and E � T � : T � then E � Tainted

�
T � � .

Proof By a simultaneous induction on the derivation of the first judgment in each
case. �

Lemma 18 (Public Tainted) In the algorithmic formulation of subtyping:

(1) E � Public
�
T � if and only if E � T � :

���
.

(2) E � Tainted
�
T � if and only if E � � � � : T .

Proof We give the details for part (1); part (2) follows by a symmetric argument.
Assume E � Public

�
T � . Since E � Tainted

� � � � , by (Tainted Un), we get E � T � :
� �

by (Sub Public Tainted). For the reverse direction, assume E � T � :
� �

. We have E
� Public

� ��� � , by (Public Un), so E � Public
�
T � by Lemma 17 (Public Down/Tainted

Up)(1). �

Lemma 19 (Algo Trans) In the algorithmic formulation of subtyping, the judgments
E � T � : T � and E � T � � : T � � imply E � T � : T � � .
Proof By induction on the derivation of E � T � : T � . �

Proposition 20 The two formulations of E � T � : T � are equivalent.

Proof Let ALGO and ORIG be the sets of sentences of the form E � T � : T � gener-
ated by the algorithmic and original formulations, respectively.

We can derive each of the original rules using the algorithmic rules. Since ORIG is
the least set to satisfy the original rules, ORIG

�
ALGO.

Next, we establish the following intermediate results:
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(1) If E � Tainted
�
T � then E � ��� � : T derivable in the original system.

(2) If E � Public
�
T � then E � T � :

� �
derivable in the original system.

The proofs are by induction on the derivations of E � Tainted
�
T � and E � Public

�
T � .

Now, we can derive each of the algorithmic rules using the original rules.

� To derive (Sub Public Tainted), we need to show that E � T � : T � is derivable
in the original system if E � Public

�
T � and E � Tainted

�
T � � . By the results (1)

and (2) proved above, we have E � T � :
� �

and E � ��� � : T � , in the original
system. By (Sub Trans), we get E � T � : T � in the original system.

� Rule (Sub CR C Algo) follows from (Sub CR) and (Sub CR C). Rule (Sub CR R
Algo) follows from (Sub CR) and (Sub CR R). Rules (Sub Challenge) and (Sub
Response) follow from (Sub Refl).

� Rules (Sub Top), (Sub Sum), (Sub Key Invar), (Sub Key Pair Invar), (Sub Enc
Contra), (Sub Dec Co), and (Sub CR) are shared between both definitions.

Since ALGO is the least set to satisfy the algorithmic rules, ALGO
�

ORIG. �

C.4 Properties of Subtyping

This section collects some properties of the subtype relation needed in our proof of type
preservation. The proofs rely on the algorithmic formulation of subtyping presented in
the previous section. Proposition 1 from Section 3.3 is equivalent to the following two
propositions.

Proposition 21 (Public Key) Suppose that E � T and E � � . Then the following are
equivalent:

(1) E � � � � : T ,

(2) E � � �	�	��
��� � � 
 � T � � :
���

, and

(3) E � � � � : ��� ����
���� � � 
 � T � .
Proof

(1) � (2) By (Sub Enc Contra) and (Public Key), we get:

E � � �	�	��
���� � � 
 � T � � : � �	�	��
��� � � 
 � � � � � :
���

(2) � (1) By Lemma 18 (Public Tainted), E � Public
� � � ����
���� � � 
 � T � � , which itself

can only be derived by (Public Enc) from E � Tainted
�
T � . Hence (1) follows by

Lemma 18 (Public Tainted).

(1) � (3) By (Public Key) and (Sub Dec Co), we get:

E � ��� �	��
���� � � 
 � T � � : ��� �	��
��� � � 
 � � � � � :
���

(3) � (1) By Lemma 18 (Public Tainted), E � Tainted
� ��� �	��
���� � � 
 � T � � , which itself

can only be derived by (Tainted Dec) from E � Tainted
�
T � . Hence (1) follows

by Lemma 18 (Public Tainted). �
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Proposition 22 (Digital Signature) Suppose that E � T and E � � . Then the following
are equivalent:

(1) E � T � :
� �

,

(2) E � � � � : � �	�	��
��� � � 
 � T � , and

(3) E � ��� �	��
��� � � 
 � T � � :
���

.

Proof Similar to the proof of Proposition 21 (Public Key). �

Lemma 23 (Pair Inversion) If E �
�
x:T � � U � � � :

�
x:T � U � then E � T � � : T and E � x:T �

� U � � : U.

Lemma 24 (Sum Inversion) If E � T � � U � � : T � U then both E � T � � : T and
E � U � � : U.

Lemma 25 (Key Inversion)

(1) If E � � �	�	��
���� � � 
 � T � � : � �	�	��
��� � � 
 � T ��� then E � T � � : T .

(2) If E � ��� �	��
��� � � 
 � T � � : ��� �	��
��� � � 
 � T ��� then E � T � : T � .

C.5 Properties of Message Typing

This section collects some properties of the message typing relation needed in our proof
of type preservation.

Lemma 26 (Symm Key Match) If we have E � � and E � M :
� �

�
� � 
 � � 
 � T1 � and

E � M :
� �

�
� � 
 � � 
 � T2 � then both E � T1 � : T2 and E � T2 � : T1.

Proof By inspection of the type rules for messages, E � M :
� �

�
� � 
�� � 
 � T � implies

that M is a variable, with E � E � � M:U � E � � , and E � U � :
� �

�
� � 
�� � 
 � T1 � . Since this

may be derived via (Sub Public Tainted) or (Sub Key Invar), there are two possibilities.

(A) E � Public
�
U � , E � Public

�
T1 � , and E � Tainted

�
T1 � .

(B) U � � �
�
� � 
 � � 
 � U1 � , E � U1 � : T1, and E � T1 � : U1.

Now, given E � � the variables listed in E are distinct, so E � M :
� �

�
� � 
 � � 
 � T2 � further

implies that E � U � :
� �

�
� � 
�� � 
 � T2 � . We have two further possibilities:

(C) E � Public
�
U � , E � Public

�
T2 � , and E � Tainted

�
T2 � .

(D) U � � �
�
� � 
 � � 
 � U2 � , E � U2 � : T2, and E � T2 � : U2.

Overall, there are four combinations to consider. In combinations (AC), (AD), and
(BC), we can show that both E � Public

�
T2 � and E � Tainted

�
T1 � , and hence that

E � T2 � : T1 via (Sub Public Tainted). In combination (BD), we have that U1 � U2,
and E � T2 � : T1 follows by transitivity of subtyping. The converse, E � T1 � : T2,
follows by symmetric considerations. �

Lemma 27 (Keypair Match) If E � � , E � M :
� � 
 � � � � � T1 � , and E � M :

� � 
�� � � � � T2 �
then both E � T1 � : T2 and E � T2 � : T1.

Lemma 28 (Asymm Key Match) If we have E � � � ����
���� �
N � : � �	�	��
���� � � 
 � T � and

E � ��� �	��
��� �
N � : ��� ����
���� � � 
 � U � then E � T � : U.
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C.6 End-events, Trust-events, Check-events

We are now almost ready to prove the type preservation result which is the core of
the robust safety result. Before we do so, however, we need to analyse the notion of
effect. Since our type system contains a notion of latent effect in the nonce types,
we must consider all of the effects an effect multiset might have. For example, in
the environment x: ��� �

� � � 
 L � � � , the effect
�	� � ��� � x allows not only the side-effect��� � �	� � x but also the latent effect � ��
 L. For this reason, we define the closure of an

effect given an environment to be the multiset of possible effects given by including all
of the latent effects of any checked nonces. For example:

closure
�
x: � � �

� � ��
 L � � � � � ��� � ��� � x � � � �	� � ��� � x � � � 
 L �
The function closure

�
E � es � is partial, since some multisets contain ‘nonce cycles’ such

as:

closure
�
x: � � �

� � ��
 L � �	� � ��� � x � � � � � �	� � ��� � x � �
� � � � 
 L � �	� � ��� � x � � closure

�
x: � � �

� � � 
 L � ��� � �	� � x � � � � � ��� � �	� � x � �
� � � � 
 L � �	� � ��� � x � � � 
 L � ��� � �	� � x � �

closure
�
x: � � �

� � � 
 L � ��� � ��� � x � � � � � ��� � �	� � x � �
� �����

For nonce acyclic multisets, the closure function is well-defined.

The Closure of an Effect Given an Environment closure
�
E � es � :

closure
�
E � � � ��
 L � � ∆� � � ��
 L �

closure
�
E � � ��� � ��� � x � � ∆�

� � �	� � ��� � x � � closure
�
E � es � fs � if E

�
x � � � � � es fs�

otherwise

closure
�
E � � � � � � � M:T � � ∆� � � � � � � M:T �

closure
�
E � es � fs � ∆� closure

�
E � es � � closure

�
E � fs �

closure
�
E � � � � ∆� � �

Next, we define three properties of an effect es paired with an environment E. First, the
pair

�
E � es � is trust-proper if every trust effect

� � � � � M:T in its closure is legitimate with
respect to the environment E. Second, the pair

�
E � es � is check-proper if its closure

is well-defined, is nonce-linear (that is, has no duplicate name-check effects), and is
check-typed (that is, the names being checked have suitable types). Third, the pair�
E � es � is end-proper for a message multiset Ls if Ls dominates the multiset of labels

of end-events in the closure of
�
E � es � . These three properties are part of the invariant

guaranteed by the type system.

Trust-Proper Environment/Effect Pairs:

Let
�
E � es � be trust-proper if and only if

for every
� � � � � � M:T � � closure

�
E � es � we have E � M:T .
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Check-Proper Environment/Effect Pairs:

Let
�
E � es � be check-proper if and only if

(1) closure
�
E � es � is well-defined,

(2) closure
�
E � es � is nonce-linear, that is,

there is no x such that
� �	� � ��� � x � �	� � ��� � x � � closure

�
E � es � ,

(3)
�
E � es � is check-typed, that is,

��� � �	� � x
�

closure
�
E � es � implies either

E
�
x � � � � � � � � � � �� esC for some esC, or E

�
x � � � � � esC esR for some esC, esR.

End-Proper Environment/Effect Pairs:

Let
�
E � es � be end-proper for Ls if and only if

�
L

� � ��
 L � closure
�
E � es � � � Ls.

Lemma 29 If:

(1) T � � � � �
es �C �

�
es �R �

(2) T � � � � � �
esC � es �C �

�
esR � es �R �

(3) es � es � � esC � esR

(4)
�
E � x:T � es � is check-proper

then closure
�
E � x:T � � es ��� � closure

�
E � x:T � es � .

Proof First we use a routine induction to show that if
�	� � ��� � x �� closure

�
E � x:T � fs �

then closure
�
E � x:T � � fs � � closure

�
E � x:T � fs � .

Next, we show the main result by induction on the definition of closure
�
E � x:T� � es ��� .

The only interesting case is when es � � � ��� � �	� � x � . We have:

closure
�
E � x:T � es � � closure

�
E � x:T � � ��� � �	� � x � � esC � esR �

� closure
�
E � x:T � esC � esR � es �C � es �R � �

� �	� � ��� � x �
Since

�
E � x:T � es � is check-proper, this means that:

��� � ��� � x �� closure
�
E � x:T � esC � esR � es �C � es �R �

Thus, we can use the previous induction to show that:

closure
�
E � x:T � � es � � � closure

�
E � x:T � � � ��� � ��� � x � �

� closure
�
E � x:T � � esC � es �C � esR � es �R � �

� ��� � ��� � x �
� closure

�
E � x:T � esC � es �C � esR � es �R � � � �	� � ��� � x �

� closure
�
E � x:T � � ��� � ��� � x � � esC � esR �

� closure
�
E � x:T � es �

The other cases are routine. �
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C.7 Type Preservation

In this section, we define the invariant on computation states induced by the type sys-
tem. We prove it is preserved by state transitions. Let a nominal type be one that is
either

� �
, � � � � � � � � � � es,

� � 
 � � � � � T � , � � � � � 
 � � 
 � T � , or a challenge-response type
� � � es � fs � . Let a nominal environment E be one where E

�
x � is nominal for every

x
�

dom
�
E � .

Good State:

(State)(where es � es1 �
����� � esn)

E ���
E � es�

E � es � is trust-proper�
E � es � is check-proper�

E � es � is end-proper for Ls
E is nominal

E � P1 : es1
�����

E � Pn : esn

E �
�
P1 � � ����� � �

Pn � � Ls : es

Theorem 2 (Type Preservation) If E � As : es and As � As � then we can find E � and
es � such that E � � As � : es � .
Proof For any x � fn

�
As ��� � fn

�
As � , if E � E � � x:T � E � � then we can use Lemmas 9

(Weakening) and 8 (Substitutivity) to get that
�
E � � y:T � E � � �

y � x � � As and so without
loss of generality, we can assume that x �� dom

�
E � .

The proof proceeds by a case analysis of the derivation of the state transition
As � As � . We only show the most interesting case of the proof.

(Trans Cast) � �
� �
�

x
� � �

y:U � ;P � � Ps � Ls � �
P

�
y � x � � � Ps � Ls

We have E � As : es so es � es1 � es2 with E � �
� �
�

x
� � �

y:U � ;P : es1 and
E � Ps : es2. Only (Proc Cast) can derive E � �

� �
�

x
� � �

y:U � ;P : es1 so es1 �
esC � esR � es �1 and U � � � � � � � � � � esR with E � x : � � � � � � � � � � esC and E �
y: � � � � � � � � � esR � P : es �1 and y �� dom

�
E ��� fn

�
es �1 � .

The judgment E � x : � � � � � � � � �� esC must have come from an application
E0 � x:T � x:T of (Msg x), with E � E0 � x:T , followed by a number of subsumption
steps implying that E � T � : � � � � � � � � �� esC by transitivity.

Assume that we can find a nominal type T� such that E � � T � � : T and E � � T � � :
� � � � � � � � � esR and closure

�
E � � es ��� � closure

�
E � es � , where we let E � � E0 � x:T �

and es �� es �1 � es2.

Then:

� Since E � � and E � T � � : T , it follows by Lemma 11 (Bound Weakening)
that E � ��� .
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� Since
�
E � es � is trust-proper and closure

�
E � � es ��� � closure

�
E � es � , it follows

that
�
E � � es � � is trust-proper.

� Since
�
E � es � is check-proper and closure

�
E � � es � � � closure

�
E � es � , it fol-

lows that
�
E � � es ��� is check-proper.

� Since
�
E � es � is end-proper for Ls and closure

�
E � � es � � � closure

�
E � es � it

follows that
�
E � � es � � is end-proper for Ls.

� Since E is nominal and T � is nominal, it follows that E � is nominal.
� Since E � y: � � � � � � � � � esR � P : es �1 we have by Lemmas 8 (Substitutivity)

and 11 (Bound Weakening) that E � � P
�
y � x � : es �1. Since E � Ps : es2 we

have by Lemma 11 (Bound Weakening) that E � � Ps : es2.

So we have found E � and es � such that E � � As � : es � , as required.

All that remains is to find an appropriate T� . We proceed by case analysis of the
rule used to derive E � T � : � � � � � � � � �� esC:

(1) (Sub Challenge): T � � � � � � � � � �� esC. Let T � ∆� � � � esC esR, which is
nominal, and satisfies both E � T� � : ��� � � � � � � � � esC and also E � T � � :
� � � � � � � � � esR. We can calculate, using Lemma 29:

closure
�
E � � es � � � closure

�
E0 � x: � � � esC esR � es �1 � es2 �

� closure
�
E0 � x: � � �

� � � � � esC � esR � es �1 � es2 �
� closure

�
E0 � x: � � �

� � � � � es1 � es2 �
� closure

�
E0 � x: � � � � � � � � �� esC � es1 � es2 �

� closure
�
E � es �

(2) (Sub CR C Algo): T � � � � es �C es �R. Let T � ∆� � � � �
esC � es �C �

�
esR � es �R � ,

which is nominal, and satisfies both E � T� � : � � � � � � � � � � esC and also
E � T � � : � � � � � � � � � esR. We can calculate, using Lemma 29:

closure
�
E � � es � �

� closure
�
E0 � x: � � �

�
esC � es �C �

�
esR � es �R � � es �1 � es2 �

� closure
�
E0 � x: � � � es �C es �R � esC � esR � es �1 � es2 �

� closure
�
E0 � x: � � � es �C es �R � es1 � es2 �

� closure
�
E � es �

(3) (Sub Public Tainted), where � � � � � �
�
� � . This means that we have both E

� Public
�
T � and E � Tainted

�
� � � � � � � � � � esC � . Let T � ∆� T and E � � E,

then use (Sub Public Tainted) again to derive E � � T � � : � � � � � � � � � esR.

(4) (Sub Public Tainted), where � � � � �� � � . This means we have E � Public
�
T �

and E � Tainted
�
� � � � � � � � � � esC � , and so esC � � � . From the definition of

a public type, and the requirement that T is nominal, there are these cases
to consider:
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(a) T � � � �� � � � � es �C es �R. Let T � ∆� � � �� � � � � �
esC � es �C �

�
esR � es �R � ,

which is nominal, and satisfies both E � T� � :
� � �� � � � � es �C es �R

and also E � T � � :
� � �� � � � � � � � � � � esR, and we can calculate, using

Lemma 29:

closure
�
E � � es � �

� closure
�
E0 � x: � � �

�
esC � es �C �

�
esR � es �R � � es �1 � es2 �

� closure
�
E0 � x: � � � es �C es �R � esC � esR � es �1 � es2 �

� closure
�
E0 � x: � � � es �C es �R � es1 � es2 �

� closure
�
E � es �

(b) T � ���
. Let T � ∆� � � �� � � � � � � esR, which is nominal, and satisfies

both E � T � � :
���

and also E � T � � :
� � � � � � � � � � � � � esR, and we

can calculate, using Lemma 29:

closure
�
E � � es � � � closure

�
E0 � x: � � � esC esR � es �1 � es2 �

� closure
�
E0 � x: � � �

� � � � � esC � esR � es �1 � es2 �
� closure

�
E0 � x: � � �

� � � � � es1 � es2 �
� closure

�
E0 � x:

� � � es1 � es2 �
� closure

�
E � es �

(c) T � � � � � � � � � � � � � � � � � , which uses a similar argument.

(d) T � � �
�
� � 
 � � 
 � ��� � , which uses a similar argument.

(e) T � � � 
�� � � � � � � � , which uses a similar argument. �

The theorem justifies the intended meaning of an effect of a process: it is an upper
bound on the end-events that may be performed by the process.

C.8 Safety and Robust Safety

Our main application of Theorem 2 (Type Preservation) is to establish safety and robust
safety properties of well-typed processes.

Lemma 30 If E � As : es and As � As � then there are E � and es � such that E � � Ps � : es � .
Proof An induction on the derivation of As � As � , making use of Theorem 2 (Type
Preservation). �

Theorem 3 (Safety) If x1:
��� ������� � xn:

��� � P :
� � then P is safe.

Proof Consider an arbitrary state As such that
�
P � � As. Let As � Ps � Ls, and let

E � x1:
��� ������� � xn:

���
. We have by (State), E �

�
P � :

� � and so by Lemma 30, we can
find E� and es � such that E � � As : es � . Then if Ps � � � ��
 L;P � � � Ps � , we must have
� ��
 L

�
es � and so L

�
Ls. Thus, As is not an error state, and so P is safe. �
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Proof of Theorem 1 (Robust Safety) If x1:
��� ������� � xn:

��� � P :
� � then P is robustly

safe.

Proof Consider any opponent O. Suppose fn
�
O � � �

x1 ������� � xn � � �
y1 ������� � ym � . Let

E � x1:
� � ������� � xn:

� �
, y1:

��� ������� � ym:
���

. By Lemma 15 (Opponent Typability), we
have E � O :

� � . By Lemma 9 (Weakening), E � P :
� � . By (Proc Par), E � P

�
O :

� � . By
Theorem 3 (Safety), P

�
O is safe. �
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