
J. Functional Programming 1 (1): 1–000, January 1993 c
�

1993 Cambridge University Press 1

A Theory of Weak Bisimulation for Core CML

WILLIAM FERREIRA†

Computing Laboratory
University of Cambridge

MATTHEW HENNESSY AND ALAN JEFFREY‡

School of Cognitive and Computing Sciences
University of Sussex

Abstract

Concurrent ML (CML) is an extension of Standard ML of New Jersey with concurrent features
similar to those of process algebra. In this paper, we build upon John Reppy’s reduction semantics for
CML by constructing a compositional operational semantics for a fragment of CML, based on higher-
order process algebra. Using the operational semantics we generalise the notion of weak bisimulation
equivalence to build a semantic theory of CML. We give some small examples of proofs about CML
expressions, and show that our semantics corresponds to Reppy’s up to weak first-order bisimulation.

1 Introduction

There have been various attempts to extend standard programming languages with con-
current or distributed features, (Giacalone et al., 1989; Holmström, 1983; Nikhil, 1990).
Concurrent ML (CML) (Reppy, 1991a; Reppy, 1992; Panangaden & Reppy, 1996) is a
practical and elegant example. The language Standard ML is extended with two new type
constructors, one for generating communication channels, and the other for delayed com-
putations, and a new function for spawning concurrent threads of computation. Thus
the language has all the functional and higher-order features of ML, but in addition pro-
grams also have the ability to communicate with each other by transmitting values along
communication channels.

In (Reppy, 1992), a reduction style operational semantics is given for a subset of CML
called λcv, which may be viewed as a concurrent version of the call-by-value λ-calculus
of (Plotkin, 1975). Reppy’s semantics gives reduction rules for whole programs, not for
program fragments. It is not compositional, in that the semantics of a program is not defined
in terms of the semantics of its subterms. Reppy’s semantics is designed to prove properties
about programs (for example type safety), and not about program fragments (for example
equational reasoning).

In this paper we construct a compositional operational semantics in terms of a labelled

† William Ferreira was funded by a CASE studentship from British Telecom.
‡ This work is carried out in the context of EC BRA 7166 CONCUR 2.

2 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

transition system, for a core subset of CML which we call µCML. This semantics not only
describes the evaluation steps of programs, as in (Reppy, 1992), but also their communi-
cation potentials in terms of their ability to input and output values along communication
channels. This semantics extends the semantics of higher-order processes (Thomsen, 1995)
with types and first-class functions.

We then proceed to demonstrate the usefulness of this semantics by using it to define a
version of weak bisimulation, (Milner, 1989), suitable for µCML. We prove that, modulo
the usual problems associated with the choice operator of CCS, our chosen equivalence
is preserved by all µCML contexts and therefore may be used as the basis for reasoning
about CML programs. In this paper we do not investigate in detail the resulting theory
but confine ourselves to pointing out some of its salient features; for example standard
identities one would expect of a call-by-value λ-calculus are given and we also show that
certain algebraic laws common to process algebras, (Milner, 1989), hold.

We now explain in more detail the contents of the remainder of the paper.

In Section 2 we describe µCML, a monomorphically typed core subset of CML, which
nonetheless includes base types for channel names, booleans and integers, and type con-
structors for pairs, functions, and delayed computations which are known as events. µCML
also includes a selection of the constructs and constants for manipulating event types, such
as ���������
	�� � and ��
�

� �� for constructing basic events for sending and receiving values,� ����� for combining delayed computations, ���������� for selecting between delayed compu-
tations, and a function �
��� � � for launching new concurrent threads of computation within
a program. The major omission is that µCML has no facility for generating new channel
names. However we believe that this can be remedied by using techniques common to the
π-calculus, (Milner, 1991; Milner et al., 1992; Sangiorgi, 1992).

In the remainder of this section we present the operational semantics of µCML in terms
of a labelled transition system. In order to describe all possible states which can arise dur-
ing the computation of a well-typed µCML program we need to extend the language. This
extension is twofold. The first consists in adding the constants of event type used by Reppy
in (Reppy, 1992) to define λcv, i.e. constants to denote certain delayed computations. This
extended language, which we call µCMLcv, essentially coincides with the λcv, the lan-
guage used in (Reppy, 1992), except for the omissions cited above. However to obtain a
compositional semantics we make further extensions to µCMLcv. We add a parallel oper-
ator �� , commonly used in process algebras, which allows us to use programs in place of
the multisets of programs of (Reppy, 1992).

The final addition is more subtle; we include in µCMLcv expressions which correspond
to the ������� ed versions of Reppy’s constants for representing delayed computations. Thus
the labelled transition system uses as states programs from a language which we call
µCML � . This language is a superset of µCMLcv, which is our version of Reppy’s λcv,
which in turn is a superset of µCML, our mini-version of CML. The following diagram

A Theory of Weak Bisimulation for Core CML 3

indicates the relationships between these languages:

µCML � µCMLcv � λcv

CML

�
µCML �

�

In Section 3 we discuss semantic equivalences defined on the labelled transition of Sec-
tion 2. We demonstrate the inadequacies of the obvious adaptations of strong and weak
bisimulation equivalence, (Milner, 1989), and then consider adaptations of higher-order
and irreflexive bisimulations from (Thomsen, 1995). Finally we suggest a new variation
called hereditary bisimulation equivalence which overcomes some of the problems en-
countered with using higher-order and irreflexive bisimulations.

In Section 4 we show that hereditary bisimulation is preserved by all µCML contexts. This
is an application of the proof method originally suggested in (Howe, 1989) but the proof is
further complicated by the fact that hereditary bisimulations are defined in terms of pairs
of relations satisfying mutually dependent properties.

In Section 5 we briefly discuss the resulting algebraic theory of µCML expressions. This
paper is intended only to lay the foundations of this theory and so here we simply indicate
that our theory extends both that of call-by-value λ-calculus (Plotkin, 1975) and process
algebras (Milner, 1989).

In Section 6 we show that, up to weak bisimulation equivalence, our semantics coincides
with the reduction semantics for λcv presented in (Reppy, 1992). This technical result ap-
plies only to the common sub-language, namely µCMLcv.

In Section 7 we briefly consider other approaches to the semantics of CML and related
languages and we end with some suggestions for further work.

2 The Language

In this section we introduce our language µCML, a subset of Concurrent ML (Reppy,
1991a; Reppy, 1992; Panangaden & Reppy, 1996). We describe the syntax, including a
typing system, and an operational semantics in terms of a labelled transition system.

Unfortunately, there is not enough space in this paper to provide an introduction to pro-
gramming in CML: see (Panangaden & Reppy, 1996) for a discussion of the design and
philosophy of CML.

The type expressions for our language are given by:

A :: � ����� � ��� ����� � � ��� � A ������� �
A 	 A

�
A � A

�
A ������

Thus we have three base types, ����� � , � ����� and � ��� ; the latter two are simply examples of
useful base types and one could easily include more. These types are closed under four con-
structors: pairing, function space, and the less common ������� and ������� type constructors.

4 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

Our language may be viewed as a typed λ-calculus augmented with the type constructors
A ������� for communication channels sending and receiving data of type A, and A ������� for
constructing delayed computations of type A.

Let ChanA be a type-indexed family of disjoint sets of channel names, ranged over by k,
and let Var denote a set of variables ranged over by x, y and z. The expressions of µCML
are given by the following abstract syntax:

e � f � g � Exp :: � v
�
ce

� � � e ������ e �� � e
���

e � e � � � �� x � e � � e
�
ee

v � w �
Val :: � ��� � x �	� � y
 e � � x � ��� �� � � � � � � k ��� � � 0 �

1
������

c � Const :: � � � � � �
��� � ����� � 	 � �
�
� �� � ��������� 	 � � � �� �

� ��

� ��������� � �
��� � � � � ����� � � ����� � ������� � � � � �
���
The main syntactic category is that of Exp which look very much like the set of expressions
for an applied call-by-value version of the λ-calculus. There are the usual pairing, let-
binding and branching constructors, and two forms of application: the application of one
expression to another, ee, the application of a constant to an expression, ce.

There is also a syntactic category of value expressions Val, used in giving a semantics to
call-by-value functions and communicate-by-value channels. They are restricted in form:
either a variable, a recursively defined function, ��� � x ��� � y
 e � , or a predefined literal
value for the base types. We will use some syntax sugar, writing � � y
 e for ��� � x ��� � y

e � when x does not occur in e, and e; f for � �� x � e � � f when x does not occur in f .

Finally there are a small collection of constant functions. These consist of a representa-
tive sample of constants for manipulating objects of base type, ��������	 � � � � �� , which could
easily be extended, the projection functions � � � and �
��� , together with the set of constants
for manipulating delayed computations taken directly from (Reppy, 1992):

� ��������� 	 � � and ��
�
 � �� , for constructing delayed computations which can send and
receive values,� ��������� , for constructing alternatives between delayed computations,� � ��� � � , for spawning new computational threads,� ������� , for launching delayed computations,� � ����� , for combining delayed computations,� ������� , for a delayed computation which always deadlocks, and� � � � � ��� , for a delayed computation which immediately terminates with a value.

Note that there is no method for generating channel names other than using the predefined
set of names ChanA.

There are two constructs in the language which bind occurrences of variables, � �� x �
e1 � � e2 where free occurrences of x in e2 are bound and ��� � x ��� � y
 e � where free oc-
currences of both x and y in e are bound. We will not dwell on the precise definitions of
free and bound variables but simply use f v

�
e � to denote the set of variables which have

free occurrences in e. If f v
�
e � � /0 then e is said to be a closed expression, which we

sometimes refer to as a program. We also use the standard notation of e � v � x � to denote
the substitution of the value v for all free occurrences of x in e where bound names may
be changed in order to avoid the capture of free variables in v. (Since we are modelling a

A Theory of Weak Bisimulation for Core CML 5

�����
: A � B � A

���
	������� �
: A ��� 	�� � A ��� ��� �������������

: A � B � B
��� � �� �� : A ��� 	�� � A

�������
	����

:
���� � ���� � ���� ������ ��� : A

��� ���� � A
������� � A

�������
� ��! :

���� � ���� � ���� ��"�	�#$�
: %�� ��� � �&� ��� �(' �&� ��� �

! ��) :
���� � ���� ��*����+! #$�
	�"

: A
��� ���� �,% A � B

' � B
�������

��-�� � : A
������� � A

�������
: � ��� � � A

�������
	 ! #.	�-� : A � A

�������

Figure 1a. Type rules for µCML constant functions

Γ / x : A 0 x : A
Γ 0 y : B

Γ / x : A 0 y : B

1
x 23 y4

Γ 0 �5� � � : *����6! Γ 0 �7	 ! ��� : *����+! Γ 0 k : A ��� 	��
1
k 8 ChanA 4

Γ 09% ' : � ��� � Γ 0 n :
���� Γ / x : A � B / y : A 0 e : B

Γ 0;:6<�% x 3 ���
y = e

'
: A � B

Γ 0 e : A
Γ 0 ce : B

1
c : A � B4 Γ 0 e : A � B Γ 0 f : A

Γ 0 e f : B
Γ 0 e : A Γ 0 f : B

Γ 09% e / f
'

: A � B

Γ 0 e : *����6! Γ 0 f : A Γ 0 g : A
Γ 0 � �

e
� � ��� f

� ! ��� g : A
Γ 0 e : A Γ / x : A 0 f : B

Γ 0>! ��� x 3 e
���

f : B

Figure 1b. Type rules for µCML expressions.

call-by-value language, we have limited substitution to values e � v � x� rather than the more
general e � f � x� . In order to model alpha-conversion, we have therefore included variables
as possible values.)

We now examine briefly the type system for this language. The types for the constant
functions of the language are given in Figure 1a; this is in agreement with the typing
rules given in (Reppy, 1992) for λcv. Note that many of the constants (such as ����� ��� :
A ��������	 A ������� � A �������) have a family of types.

This assignment of types to constant functions is used to infer types for arbitrary ex-
pressions in the standard way, using a type inference system. A typing judgement Γ ? e : A
consists of a type assignment Γ, an expression e and a type A such that f v

�
e �A@CB x1 ��D�D�D � xn E .

A type assignment is a sequence of the form x1 : t1 ��D�D�D � xn : tn, where each ti is a type. Intu-
itively a type judgement should be read as “in the type assignment Γ the expression e has
type A”. The type inference system is given in Figure 1b and is straightforward. There are
two structural rules, literals are assigned their natural types while the types of functional
values are inferred using a minor modification of the standard rule for functional abstrac-
tions. The remaining constructs are also handled using standard inference rules, (Gunter,
1992).

We now turn our attention to the operational semantics. In (Reppy, 1992; Berry et al.,
1992) a reduction semantics is given to λcv and since µCMLcv is a subset of λcv, this induces
a reduction semantics for µCMLcv; this is discussed in full in Section 6. The judgements in

6 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

this reduction semantics are of the form:

C τ� � C
�

where C � C �
are configurations which combine a closed expression with a run-time envi-

ronment necessary for its evaluation, and τ is Milner’s notation for a silent action. However
this semantics is not compositional as the reductions of an expression can not be deduced
directly from the reductions of it constituent components. Here we give a compositional
operational semantics with four kinds of judgements:

� e τ� � e
�
, representing a one step evaluation or reduction,� e

�
v� � e

�
, representing the production of the value v, with a side effect e

�
,� e k?x� � e

�
, representing the potential to input a value x along the channel k, and� e k!v� � e

�
, representing the output of the value v along the channel k.

These are formally defined in Figure 2, but we first give an informal overview. In order
to define these relations we introduce extra syntactic constructs. These are introduced as
required in the overview but are summarized in Figure 3.

The rules for one step evaluation or reduction have much in common with those for a
standard call-by-value λ-calculus. But in addition a closed expression e of type A should
evaluate to a value of type A and it is this production of values which is the subject of the
second kind of judgement. However µCML expressions can spawn subprocesses before
returning a value, so we have to allow expressions to continue evaluation even after they
have returned a result. For example in the expression:

� ��� � � � � � � �
 � ����� � ���������
	�� � � 0 � a � � � ; ������� � ��
�
 � �� a �
one possible reduction is (where τ��
 indicates a sequence of τ-reductions):

�
��� � � � � � � ��
 ������� � ��������� 	 � � � 0 � a � � � ; ������� � ��
�
 � �� a � τ��
 a?1� � �
1� � a!0� �

where the process returns the value 1 before outputting 0. For this reason we need a reduc-
tion e

�
v� � e

�
rather than the more usual termination e � v. The following diagram illustrates

all of the possible transitions from this expression:

� ��� � � � � � � ��
 � ����� � ���������
	�� � � 0 � a � � � ; � ����� � ��
�

� �� a �
�τ� ��

�� � � �
a!0 � � � �

τ 	� �a?v� �
�� � � �
a!0

�a?v� �
�

v� �
� 0�

�� � � �
a!0

�
�

v�
When giving an operational semantics to a language with side-effects there are two stan-
dard approaches to retaining the information necessary to interpret them. The first, used for
example in (Berry et al., 1992; Reppy, 1992), is to define a notion of state or configuration;
these contain the program being evaluated together with auxiliary state information, and the

A Theory of Weak Bisimulation for Core CML 7

judgements of the operational semantics apply to these configurations. The second, more
common in work on process algebras, (Bergstra & Klop, 1985; Milner, 1989), extends the
syntax of the language being interpreted to encompass configurations. We choose the latter
approach and one extra construct we add to the language is a parallel operator, e �� f . This
has the same operational rules as in CCS, allowing reduction of both processes:

e α� � e
�

e �� f α� � e
� �� f

f α� � f
�

e �� f α� � e �� f
�

and communication between the processes:

e k!v� � e
�

f k?x� � f
�

e �� f τ� � e
� �� f

� � v � x �
e k?x� � e

�
f k!v� � f

�
e �� f τ� � e

� � v � x� �� f
�

The assymetry is introduced by termination (a feature missing from CCS). A CML process
has a main thread of control, and only the main thread can return a value. By convention,
we write the main thread on the right, so the rule is:

f
�

v� � f
�

e �� f
�

v� � e �� f
�

There is no corresponding symmetric rule. For example:
� � �� 1

�
1� � � � �� Λ

� � �� 1 �
������ � � Λ �� 1

Since the only difference between concurrent processes is which term can return a value,
concurrency is associative and symmetric on the left, so e �� f �� g is bisimilar to f �� e �� g.
In general, we can regard n � 1 processes in parallel:

e1 �� ����� �� en �� f

as being a multiset of spawned threads e1 � ����� � en plus one main thread of control f , corre-
sponding to the use of multi-sets in the reduction semantics of (Berry et al., 1992; Reppy,
1992).

Concurrent processes are generated using the constant application � ��� � � e. A first at-
tempt to write the semantics for �
��� � � e would be the rule:

�
��� � � � � � y
 e � τ� � � � � y
 e � � � �� � �
One step in the evaluation of �
��� � � � � � y
 e � leads to two expressions running in parallel,
one being the spawned function application

� � � y
 e � � � and the other the default value� � which results from every application of �
��� � � . However, this rule for �
��� � � e is not
general enough. Firstly, it ignores the fact that the expression e may need to perform some
computation before returning a function, which is captured by instantiating the static rule
for constant application as:

e α� � e
�

�
��� � � e α� � �
��� � � e
�

Secondly, e may have spawned some concurrent processes before returning a function, and
these should carry on evaluation, so we use the silent rule for constant application:

e
�

v� � e
�

� ��� � � e τ� � e
� �� v

� � �� � �

8 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

The well-typedness of the operational semantics will ensure that v is a function of the
appropriate type, ����� � � ����� � .

With this method of representing newly created computation threads more of the rules
corresponding to β-reduction in a call-by-value λ-calculus may now be given. To evaluate
an application expression e f , first e is evaluated to a value of functional form and then the
evaluation of f is initiated. This is represented by the rules:

e α� � e
�

e f α� � e
�

f
e

� �����
y � g

�� � � � � � � e
�

e f τ� � e
� �� � � y � f � � g

(In fact we use a slightly more complicated version of the latter rule as functions are al-
lowed to be recursive.) Continuing with the evaluation of e f , we now evaluate f to a value
which is then substituted into g for y. This is represented by the two rules:

f τ� � f
�

� �� x � f � � g τ� � � �� x � f
� � � g

f
�

v� � f
�

� �� x � f � � g τ� � f
� �� g � v � x �

The evaluation of the application expression c f is similar; f is evaluated to a value and
then the constant c is applied to the resulting value. This is represented by the two rules

f τ� � f
�

c f τ� � c f
� f

�
v� � f

�
c f τ� � f

� �� δ
�
c � v �

Here, borrowing the notation of (Reppy, 1992), we use the function δ to represent the effect
of applying the constant c to the value v. This effect depends on the constant in question and
we have already seen one instance of this rule, for the constant � ��� � � , which result from
the fact that δ

� �
��� � � � v � � v
� � �� � � . The definition of δ for all constants in the language is

given in Figure 2f. For the constants associated with the base types this is self-explanatory;
the others will be explained below as the constant in question is considered. Note that
because of the introduction of �� into the language we can treat all constants uniformly,
unlike (Reppy, 1992) where �
��� � � and � ����� have to considered in a special manner.

In order to implement the standard left-to-right evaluation of pairs of expressions we
introduce a new value

�
v � w � representing a pair which has been fully evaluated. Then to

evaluate
�
e � f � :

� first allow e to evaluate:
e α� � e

�
�
e � f � α� � �

e
� � f �� then when it terminates, start the evaluation of f :

e
�

v� � e
�

�
e � f � τ� � e

� �� � �� x � f � � � v � x �
These value pairs may then be used by being applied to functions of type A 	 B. For example
the following inferences result from the definition of the function δ for the constants � ���
and 	 � � :

e
���

v� w 	� � � � e
�

� ��� e τ� � e
� �� v

e
�
�

m � n 	� � � � � e
�

	 � � e τ� � e
� �� m � n

D
It remains to explain how delayed computations, i.e. programs of type A ������� , are han-
dled. It is important to realise that expressions of type A ������� represent potential rather
than actual computations and this potential can only be activated by an application of the

A Theory of Weak Bisimulation for Core CML 9

e α� � e
�

ce α� � ce
� e α� � e

�
e f α� � e

�
f

e α� � e
�

% e / f
' α� � % e � / f

'
e α� � e

�
� �

e
� � ��� f

� ! ��� g α� � � �
e
� � � ��� f

� ! ��� g
e α� � e

�
! ��� x 3 e

���
f α� � ! ��� x 3 e

� ���
f

e α� � e
�

e
�� f α� � e

� �� f
f α� � f

�
e
�� f α� � e

�� f
� f � v� � f

�
e
�� f � v� � e

�� f
�

Figure 2a. Operational semantics: static rules

ge1
α� � e

ge1 � ge2
α� � e

ge2
α� � e

ge1 � ge2
α� � e

ge α� � e
ge = v α� � ve

Figure 2b. Operational semantics: dynamic rules

e � v� � e
�

ce τ� � e
� �� δ % c / v '

e �����
	������ � e
�

� �
e
� � ��� f

� ! ��� g τ� � e
� �� f

e �
����� �

������ � e
�

� �
e
� � ��� f

� ! ��� g τ� � e
� �� g

e � v� � e
�

% e / f
' τ� � e

� ���! ��� x 3 f
�����

v/ x �
e � v� � e

�
e f τ� � e

� ���! ��� y 3 f
���

g
1
v � x 4

1
v 3 :+<+% x 3 ���

y = g
' 4

e � v� � e
�

! ��� x 3 e
���

f τ� � e
� �� f

1
v � x 4

e k!v� � e
�

f k?x� � f
�

e
�� f τ� � e

� �� f
� 1

v � x4
e k?x� � e

�
f k!v� � f

�
e
�� f τ� � e

� 1
v � x 4 �� f

�

Figure 2c. Operational semantics: silent rules

v � v� � Λ k!v k!v� � % ' k? k?x� � x Av τ� � v

Figure 2d. Operational semantics: axioms

a :: 3 k!v � k?x α :: 3 a � τ l :: 3 α � � v

Figure 2e. Operational semantics: grammar of labels

δ % ����� / � v / w � ' 3 v δ % ���� / � v/ w � ' 3 w
δ % 	 ��� / � m / n � ' 3 m � n δ % � ��! / � m / n � ' 3 m � n
δ %�! ��) / � m / n � ' 3 m � n

δ % ���
	������� � / � k / v � ' 3 1
k!v4 δ % ��� � �� �� / k ' 3 1

k?4
δ %������� ��� / � 1 ge1 4�/ 1 ge2 4�� ' 3 1

ge1 � ge2 4 δ % #$� 	�" / � 1 ge4�/ v � ' 3 1
ge = v4

δ % ���� ��� /7% '�' 3 1
Λ 4 δ % 	 ! #.	�-� / v ' 3 1

Av4
δ % ��"�	5# � / v ' 3 v % ' �� % ' δ % ��-�� �/ 1 ge4 ' 3 ge

Figure 2f. Operational semantics:reduction of constants

10 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

e / f / g 8 Exp :: 3 v � ce � � � e
� � ��� e

� ! ��� e � % e / e ' �! ��� x 3 e
���

e � ee

v/ w 8 Val :: 3 :+<�% x 3 ���
y = e

' � x � ��� � � � �7	 ! ��� � k �% ' � 0 � 1 �������
c 8 Const :: 3 ����� � ���� � 	���� � � ��! � ! ��) � ���
	������� � � ��� � �� ��

�������� ��� � ��"�	�#$� � ��-�� � � # �
	�" � ������� � 	 ! #.	�-�

Figure 3a. Syntax of µCML

v/ w 8 Val :: 3 ������� � v/ v ��� 1 ge4
ge 8 GExp :: 3 v!v � v? � ge = v � ge � ge � Λ � Av

Figure 3b. Syntax of µCMLcv

e / f / g 8 Exp :: 3 ������� ge � e �� e

Figure 3c. Syntax of µCML
�

constant ������� , of type A ������ � A. Thus for example the expression ��
�

� �� k is of type
A ������� and represents a delayed computation which has the potential to receive a value
of type A along the channel k. The expression � ����� � ��
�

� �� k � can actually receive such a
value v along channel k, or more accurately can evaluate to such a value, provided some
other computation thread can send the value along channel k.

The semantics of � ����� is handled by introducinga new constructor for values. For certain
kinds of expressions ge of type A, which we call guarded expressions, let � ge� be a value
of type A ������� ; this represents a delayed computation which when launched initiates a
new computation thread which evaluates the expression ge. Then the expression ������� � ge�
reduces in one step to the expression ge. More generally the evaluation of the expression
� ����� e proceeds as follows:

� First evaluate e until it can produce a value:

e τ� � e
�

� ����� e τ� � � ����� e
�

� then launch the resulting delayed computation:

e
���

ge �� � � e
�

� ����� e τ� � e
� �� ge

Note that here, as always, the production of a value may have as a side-effect the generation
of a new computation thread e

�
and this is launched concurrently with the delayed compu-

tation ge. Also both of these rules are instances of more general rules already considered.
The first is obtained from the rule for the evaluation of applications of the form ce and the
second by defining δ

� � �������� ge� � to be ge.
The precise syntax for guarded expressions will emerge by considering what types of

values of the form � e� can result from the evaluation of expressions of type ������� from
the basic language µCML. The constant ��
�

� �� is of type A ������� � A ������� and therefore

A Theory of Weak Bisimulation for Core CML 11

the evaluation of the expression ��
�
 � �� e proceeds by first evaluating e to a value of type
A ������� until it returns a value k, and then returning a delayed computation consisting of an
event which can receive any value of type A on the channel k. To represent this event we
extend the syntax further by letting k? be a guarded expression for any k and A, with the
associated rule:

e
�

k� � e
�

��
�
� �� e τ� � e
� �� � k?�

The construct ��������� 	 � � is handled in a similar manner, using guarded expressions of the
form k!v:

e
���

k � v 	� � � � e
�

��������� 	 � � e τ� � e
� �� � k!v�

It is these two new expressions k? and k!v which perform communication between compu-
tation threads. Formally k!v is of type ����� � and we have the axiom:

k!v k!v� � � �
Intuitively this may be read as k!v evaluates in one step to the expression

� � and this evalu-
ation has as a side effect the transmission of the value v to the channel k. The semantics we
consider for input is the late semantics, where the reduction rule binds a new variable x:

k? k?x� � x

Therefore in general input moves are of the form e k?x� � f where ? e : B and x : A ? f : B.
Communication can now be modelled as in CCS by the simultaneous occurrence of input
and output actions:

e k?x� � e
�

f k!v� � f
�

e �� f τ� � e
� � v � x � �� f

�
There remain four constructs for delayed computations to be explained. The first, ������� of
type ����� � � A ������� , is handled by the introduction of the guarded expression Λ, represent-
ing a deadlocked evaluation, together with the inference rule:

e
� � �� � � e

�
������� e τ� � e

� �� �Λ �
obtained, once more, by defining δ

� ��������� � � � to be � Λ� .
The constant � ����� is of type A ������� 	 � A � B � � B ������� . The evaluation of � ����� e

proceeds in the standard way by evaluating e until it produces a value, which must be of
the form

� � ge � � v � , where ge is a guarded expression of type A and v has type A � B. Then the
evaluation of � ����� e continues by the construction of the new delayed computation � ge

v� . Bearing in mind the fact that the production of values can generate new computation
threads, this is formally represented by the inference rule:

e
� � �

ge� � v 	� � � � � e
�

� ����� e τ� � e
� �� � ge
 v�

The guarded expression ge
 v is a wrapper which applies v to the result of evaluating ge:
ge α� � e

ge
 v α� � ve

The � � � � ��� construct, of type A � A ������� , evaluates its argument to a value v, and then

12 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

returns a trivial a delayed computation; this computation, when activated, immediately
evaluates to the value v. In order to represent these trivial computations we introduce a
new constructor for guarded expressions, A and the semantics of � � � � ��� is then captured
by the rule:

e
�

v� � e
�

� � � � ��� e τ� � e
� �� �Av�

Since Av immediately evaluates to the constant v we have:

Av τ� � v
The choice construct ���������� e is a choice between delayed computations as ����� ��� has
the type A ��������	 A ������ � A ������� . To interpret it we introduce a new choice constructor
ge1 � ge2 where ge1 and ge2 are guarded expressions of the same type. Then ��������� e pro-
ceeds by evaluating e until it can produce a value, which must be of the form

� � ge1 � ��� ge2 � � ,
and the evaluation continues by constructing the delayed computation � ge1 � ge2 � . This is
represented by the rule:

e
� � �

ge1 � � � ge2 � 	� � � � � � � � e
�

���������� e τ� � e
� �� � ge1 � ge2 �

The notation � , introduced in (Reppy, 1992), is unfortunate, as it is used in (Hennessy,
1988) to represent the internal choice between processes whereas here it represents exter-
nal choice: we have the following auxiliary rules , which are the same as CCS summation:

ge1
α� � e

ge1 � ge2
α� � e

ge2
α� � e

ge1 � ge2
α� � e

This ends our informal description of the operational semantics of µCML. We now sum-
marise, giving the precise definitions of the new syntax. For the purposes of comparison
with the reduction semantics of λcv, (Reppy, 1992), it is convenient to view the extension to
µCML in two stages. The first is obtained by adding the new syntactic category of guarded
expressions, and two new constructors for values:

v
�

Val :: �
����� � �

v � v � � � ge�
ge

�
GExp :: � v!v

�
v?

�
ge
 v

�
ge � ge

�
Λ

�
Av

The resulting language we call µCMLcv, as it corresponds very closely to Reppy’s λcv.
A precise comparison is given in Section 6. The final language, µCML � , is obtained by
extending µCMLcv with:

e � Exp :: �
����� �

ge
�
e �� e

and type judgements for all the extra constructs appear in Figure 4.
The operational semantics is given as a set of transition relations over closed expressions

from µCML � . These transition relations have as labels Label:

a :: � k!v
�
k?x α :: � a

�
τ l :: � α

� �
v

which are typed with judgements ? l : A in Figure 5, and are defined to be the least relations
satisfying the rules in Figure 2. The rules are divided into three parts. The first gives the
set of context rules, showing when moves may be propagated through certain contexts; the
second give the reduction rules while the third contains the axioms.

A Theory of Weak Bisimulation for Core CML 13

Γ 0 v : A Γ 0 w : B
Γ 0 �

v / w � : A � B
Γ 0 ge : A

Γ 0 1
ge4 : A

�������
Γ 0 v : A ��� 	�� Γ 0 w : A

Γ 0 v!w : � ��� �
Γ 0 v : A ��� 	��

Γ 0 v? : A
Γ 0 ge : A Γ 0 v : A � B

Γ 0 ge = v : B

Γ 0 ge1 : A Γ 0 ge2 : A
Γ 0 ge1 � ge2 : A Γ 0 Λ : A

Γ 0 v : A
Γ 0 Av : A

Γ 0 e : A Γ 0 f : B
Γ 0 e

�� f : B

Fig. 4. Type rules for extra µCML
�

constructs

Γ 0 τ : A
Γ 0 v : A

Γ 0 � v : A Γ 0 k?x : A
Γ 0 w : B

Γ 0 k!w : A

1
k 8 ChanB 4

Fig. 5. Type rules for labels

It is worth pointing out that the context rules are asymmetric for the propagation of value
production though the context �� ; in e �� f only the computation thread f can produce a
value. This is in agreement with the reduction semantics of (Reppy, 1992) where in a given
state represented by a multi-set of expressions only one distinguished expression is allowed
to produce a value. Also in the rule for application, the evaluation of e f is somewhat
more complicated than previously stated; values of functional type all involve the fix point
operator and these fix points are automatically unfolded at the point of application.

We end this section with a Subject Reduction Theorem for our semantics:

Theorem 2.1
For every closed expression ? e : A in µCML �

� if e τ� � e
�

then ? e
�
: A,� if e

�
v� � e

�
then ? e

�
: A and ? v : A,� if e k?x� � e

�
and k

�
ChanB then x : B ? e

�
: A, and� if e k!v� � e

�
and k � ChanB then ? e

�
: A and ? v : B.

Proof
By rule induction on the inferences.

3 Weak Bisimulation Equivalence

In this section we demonstrate the usefulness of our operational semantics by providing
µCML � with an appropriate version of bisimulation equivalence. We discuss a range of
possible bisimulation based equivalences and eventually propose a new variation called
hereditary bisimulation equivalence, which we feel is most suited to µCML � .

We first show how to adapt the notion of strong bisimulation equivalence to µCML � .
Since our language is typed it is more convenient to define the equivalence in terms of
type-indexed families of relations. Moreover since the operational semantics uses actions

14 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

of the form e k?x� � f where f may be an open expression we need to consider relations
over open expressions. Let an open type-indexed relation R be a family of relations R Γ � A
such that if e R Γ � A f then Γ ? e : A and Γ ? f : A. We will often elide the subscripts from
relations, for example writing e R f for e R Γ � A f when context makes the type obvious. Let
a closed type-indexed relation R be an open type-indexed relation where Γ is everywhere
the empty context, and can therefore be elided. For any closed type-indexed relation R , let
its open extension R � be defined as:

e R � �
x:
�
A � B f iff e � �v � �x � R B f � �v � �x � for all ? �

v :
�
A D

A closed type-indexed relation R is structure preserving iff:

� if v R A w and A is a base type then v � w,� if
�
v1 � v2 � R A1

� A2

�
w1 � w2 � then vi R Ai

wi,� if � ge1 � R A � � �
�
� � ge2 � then ge1 R A ge2, and� if v R A � B v

�
then for all ? w : A we have vw R B v

�
w.

With this notation we can now define strong bisimulations over µCML � expressions.
A closed type-indexed relation R is a first-order strong simulation iff it is structure-
preserving and the following diagram can be completed:

e1 R e2 e1 R e2

as

e
�
1

l

�
e

�
1

l

�
R � e

�
2

l

�

Note the use of the open extension R � . This means, for example, that if e1 R e2 we require
that the move e1

k?x� � f1 be matched by a move e2
k?x� � f2 where f2 is such that for all

values v of the appropriate type f1 � v � x� R f2 � v � x� . Thus in the terminology of (Milner
et al., 1992) our definition corresponds to the late version of bisimulation. (An alternative
would be early bisimulation where input moves are labelled with closed values rather than
variables. This is computationally more appealling, but it is an open problem whether the
techniques of the next section can be applied to open bisimulation).

R is a first-order strong bisimulation iff R and R
� 1 are first-order strong simulations.

Let � 1 be the largest first-order strong bisimulation.

Proposition 3.1
� 1 is an equivalence.

Proof
Use diagram chases to show that if R is a first-order strong simulation then so are the
identity relation I and the relation composition R R . The result follows.

Unfortunately, � 1 is not a congruence for µCML � , since we have:

����� � 1 � 2 ��� 1 ����� � 2 � 1 �
however, sending the thunked expressions on channel k we get:

k!
� ��� x
 ����� � 1 � 2 � � �� 1 k!

� � � x
 ����� � 2 � 1 � �

A Theory of Weak Bisimulation for Core CML 15

since the definition of strong bisimulation demands that the actions performed by expres-
sions match up to syntactic identity. This counter-example can also be reproduced using
only µCML contexts:

������� � ���������
	�� � � k � � � x
 ����� � 1 � 2 � � � �� 1 ������� � ���������
	�� � � k � � � x
 ����� � 2 � 1 � � �
since the left hand side can perform the move:

� ����� � ���������
	�� � � k � � � x
 ����� � 1 � 2 � � � τ��
 k!
��� �

x � ����� �
1 � 2 � �� � � � � � � � � � � � �

but this can only be matched by the right hand side up to strong bisimulation:

� ����� � ���������
	�� � � k � � � x
 ����� � 2 � 1 � � � τ��
 k!
��� �

x � ����� �
2 � 1 � �� � � � � � � � � � � � �

In fact, it is easy to verify that the only first-order strong bisimulation which is a congruence
for µCML is the identity relation.

To find a satisfactory treatment of bisimulation for µCML, we need to look to higher-
order bisimulation, where the structure of the labels is accounted for. To this end, given a
closed type-indexed relation R , define its extension to labels R l as:

τ R l
A τ

v R A w�
v R l

A
�

w k?x R l
A k?x

v R B w

k!v R l
A k!w

� k � ChanB �
Then R is a higher-order strong simulation iff it is structure-preserving and the following
diagram can be completed:

e1 R e2 e1 R e2

as where l1 R l l2

e
�
1

l1

�
e

�
1

l1

�
R � e

�
2

l2

�

Let � h be the largest higher-order strong bisimulation.

Proposition 3.2
� h is a congruence.

Proof
Use a similar technique to the proof of Proposition 3.1 to show that � h is an equivalence.
To show that � h is a congruence, define R as:

R �&B � C � e � � C � f � � � e � h f E
and then show by induction on C that R is a simulation. The result follows.

For many purposes, strong bisimulation is too fine an equivalence as it is sensitive to the
number of reductions performed by expressions. This means it will not even validate
elementary properties of β-reduction such as

� � � x
 x � 0 � 0. We require the coarser weak
bisimulation which allows τ-actions to be ignored.

This in turn requires some more notation. Let ε��
 be the reflexive transitive closure of
τ� � , and let l��
 be ε��
 l� � (i.e. any sequence of silent action followed by an l action).

Note that we are not allowing silent actions after the l action. Let l̂��
 be ε��
 if l � τ and

16 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

l��
 otherwise. Then R is a first-order weak simulation iff it is structure-preserving and the
following diagram can be completed:

e1 R e2 e1 R e2

as

e
�
1

l

�
e

�
1

l

�
R � e

�
2

l̂�
��������

Let � 1 be the largest first-order weak bisimulation.

Proposition 3.3
� 1 is an equivalence.

Proof
Similar to the proof of Proposition 3.1.

Unfortunately, � 1 is not a congruence, for the same reason as � 1, and so we can attempt
the same modification. R is a higher-order weak simulation iff it is structure-preserving
and the following diagram can be completed:

e1 R e2 e1 R e2

as where l1 R l l2

e
�
1

l1

�
e

�
1

l1

�
R � e

�
2

l̂2�
��������

Let � h be the largest higher-order weak bisimulation.

Proposition 3.4
� h is an equivalence.

Proof
Similar to the proof of Proposition 3.1.

However, � h is still not a congruence, for the usual reason that weak bisimulation equiva-
lence � is not a congruence for CCS summation. Recall from (Milner, 1989) that in CCS
0 � τ D 0 but a D 0 � 0 �� a D 0 � τ D 0. We can duplicate this counter-example in µCML � since the
CCS operator � corresponds to the µCML � operator � and 0 corresponds to Λ. However

� may only be applied to guarded expressions and therefore we need a guarded expression
which behaves like τ D 0; the required expression is A � Λ�
 � ����� . Thus:

Λ � h A �Λ �
 �������
since the right hand side has only one reduction:

A �Λ �
 � �����
τ� � � �������Λ �
τ� � Λ

but:

Λ � k!0 �� h � A �Λ �
 ��������� � k!0

A Theory of Weak Bisimulation for Core CML 17

because the only reduction of Λ � k!0 is Λ � k!0 k!0� � Λ � Λ and:
�
A �Λ�
 ��������� � k!0

τ� � � �������Λ�
τ� � Λ

This counter-example can also be replicated using the restricted syntax of µCML. We have:

������� � � � h � ����� � � � � � ��� � ������� � � ��� � �������
since the left hand side has only one reduction:

������� � � � �
Λ�� �
 Λ

and the right hand side can match this with:

� ����� � � � � � ��� � ������� � � ��� � ������� � �
A
�
Λ � � � � ��� �� ����� �������
 Λ

and we have seen:

Λ � h A �Λ �
 � ����� D
However:

� ����� � ��������� � ������� � ��� ���������
	�� � � k � 0 � � �
�� h � ����� � ��������� � � ����� � � � � � ��� � ������� � � ��� � ��������� ��������� 	 � � � k � 0 � � �

since the left hand side has only one reduction:

� ����� � ��������� � ������� � ��� ���������
	�� � � k � 0 � � �
τ��
 Λ � k!0

whereas the right hand side has the reduction:

� ����� � ��������� � � ����� � � � � � ��� � ������� � � ��� � ��������� ��������� 	 � � � k � 0 � � �
τ��
 �

A �Λ �
 ��������� � k!0

A first attempt to rectify this is to adapt Milner’s observational equivalence for µCML, and
to define � h as the smallest symmetric relation such that the following diagram can be
completed:

e1 � h e2 e1 � h e2

as where l1 � hl
l2

e
�
1

l1

�
e

�
1

l1

�
� h e

�
2

l2�
��������

Proposition 3.5
� h is an equivalence.

Proof
Similar to the proof of Proposition 3.1.

This attempt fails, however, since it only looks at the first move of a process, and not at the

18 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

first moves of any processes in its transitions. Thus, the above µCML counter-example for
� h being a congruence also applies to � h; i.e.

������� � � � h � ����� � � � � � ��� � ������� � � ��� � �������
but:

� ����� � ��������� � ������� � ��� ���������
	�� � � k � 0 � � �
�� h � ����� � ��������� � � ����� � � � � � ��� � ������� � � ��� � ��������� ��������� 	 � � � k � 0 � � �

This failure was first noted in (Thomsen, 1995) for CHOCS.
Thomsen’s solution to this problem is to require that τ-moves can always be matched

by at least one τ-move, which produces his definition of an irreflexive simulation as a
structure-preserving relation where the following diagram can be completed:

e1 R e2 e1 R e2

as where l1 R l l2

e
�
1

l1

�
e

�
1

l1

�
R e

�
2

l2�
��������

Let � i be the largest irreflexive bisimulation.

Proposition 3.6

� i is a congruence.

Proof

The proof that � i is an equivalence is similar to the proof of Proposition 3.1. The proof
that it is a congruence is similar to the proof of Theorem 4.7 in the next section.

However this relation is rather too strong for many purposes, for example ����� � 1 � 2 � �� i

����� � 1 � ����� � 1 � 1 � � since the right hand side can perform more τ-moves than the left hand
side. This is similar to the problem in CHOCS where a D τ D P �� i a D P.

In order to find an appropriate definition of bisimulation for µCML, we observe that
µCML only allows � to be used on guarded expressions, and not on arbitrary expressions.
We can thus ignore the initial τ-moves of all expressions except for guarded expressions.
For this reason, we have to provide two equivalences: one on terms where we are not
interested in initial τ-moves, and one on terms where we are.

A pair of closed type-indexed relations R �
�
R n � R s � form a hereditary simulation

(we call R n an insensitive simulation and R s a sensitive simulation) iff R s is structure-
preserving and we can complete the following diagrams:

e1 R n e2 e1 R n e2

as where l1 R sl l2

e
�
1

l1

�
e

�
1

l1

�
R n � e

�
2

l̂2�
��������

A Theory of Weak Bisimulation for Core CML 19

and:
e1 R s e2 e1 R s e2

as where l1 R sl l2

e
�
1

l1

�
e

�
1

l1

�
R n � e

�
2

l2�
��������

Let
�

� n � � s � be the largest hereditary bisimulation. Note that we require R s to be structure-
preserving because it is used to compare the labels in transitions, which may contain ab-
stractions or guarded events.

In the operational semantics of µCML expressions, guarded expressions can only appear
in labels, and not as the residuals of transitions. This explains why in the definition of � n

labels are compared with respect to the sensitive relation � s whereas the insensitive relation
is used for the residuals. For example, if ge1 � n �� s ge2 then we have:

� � � x
 ge1 � � n � � � x
 ge2 �
since once either side is applied to an argument, their first action will be a τ-step. On the
other hand:

� ge1 � �� n � ge2 �
since ��� is precisely the construct which allows us to embed ge1 and ge2 in a � context.

Theorem 3.7
� s is a congruence for µCML � , and � n is a congruence for µCML.

Proof
The proof that � s and � n are equivalences is similar to the proof of Proposition 3.1. The
proof that they form congruences is the subject of the next section.

Proposition 3.8
The equivalences on µCML � have the following strict inclusions:

� 1 � � � 1

� h

�

�

� � � i � � � s � � � n

�

�

� h

�

�

� � � h

�

�

Proof
For each inclusion, show that the first bisimulation satisfies the condition required to be the
second form of bisimulation. To show that the inclusions are strict, we use the following
examples:

� � � x
 ����� � 1 � 2 � � � h �� 1 � � � x
 ����� � 2 � 1 � �

20 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

1 � 1 �� 1 � � x � 1 � � x

��������� � ��
�
 � �� k � � � � � ��
�

� �� k � � � i �� h � � � � ��
�

� �� k �
����� � 1 � 2 � � s �� i ����� � 1 � ����� � 1 � 1 � �

1 � n �� s � � x � 1 � � x

������� � � � h �� n � � � � ������� � � �
1 � h �� h � � x � 1 � � x

where:

� � � � � � x
 � ����� � � � � �
��� x � ���������
(Note that this settles an open question (Thomsen, 1995) as to whether � i is the largest
congruence contained in � h.)

It is the operator � which differentiates between the two equivalences � n and � h . However
in order to demonstrate the difference we need to be able to apply � to guarded expressions
which can spontaneously evolve, i.e. perform τ-moves. The only µCML � constructor for
guarded expressions which allows this is A, and in turn occurrences of this can only be
generated by the µCML constructor � � � �
��� . Therefore:

Proposition 3.9
For the subset of µCML � without � � � � ��� and A, � n is the same as � h, and � s is the same
as � h.

Proof
From Proposition 3.8 � n @ � h .

For the subset of µCML � without � � � � ��� and A, define R s as:

B � v � w � � v � h w E � B � ge1 � ge2 � � ge1 � h ge2 E � B � v1 w � v2 w � � v1 � h v2 E
Then since no event without A can perform a τ-move, and since the only initial moves of
vi w are β-reductions, we can show that

�
� h � R s � forms an hereditary bisimulation, and so

� h @ � n . From this it is routine to show that � s � � h .

Unfortunately we have not been able to show that � n is the largest µCML congruence con-
tained in weak higher-order bisimulation equivalence. However we do have the following
characterisation:

Theorem 3.10
� n is the largest higher-order weak bisimulation which respects µCML contexts.

Proof
By definition, � n is a higher-order weak bisimulation, and we have shown that it respects
µCML contexts. All that remains is to show that it is the largest such.

Let R be a higher-order weak bisimulation which respects µCML contexts. Then define:

R n � R � B v1 w � e2 � � v1 R v2 � v2 w τ� � e2 E � B e1 � v2 w � � v1 R v2 � v1 w τ� � e1 E
R s � B � v � w � � v R w E � B � ge1 � ge2 � � � ge1 � R � ge2 � E � B � v1 w � v2 w � � v1 R v2 E

We will now show that
�
R n � R s � forms an hereditary simulation, from which we can de-

duce R @ R n @ � n .

A Theory of Weak Bisimulation for Core CML 21

First, we note that R s is structure preserving, and that R sl � R l .
Then we show that we can complete the required diagrams for

�
R n � R s � to be an hered-

itary simulation. The only tricky case is if:

ge1 R s ge2

e1

l1

�
in which case, by the definition of R s, � ge1 � R � ge2 � , and since R respects µCML contexts
we have (for fresh k):

���������� � � ge1 � ����
�

� �� k � R ��������� � � ge2 � ���� �

� �� k �

Λ

� � ge1 � k? �
�

��������
R Λ

� � ge2 � k?�
�

��������
and since R is a higher-order weak bisimulation, we have:

ge1 � k? R ge2 � k?

e1

l1

�
which can be completed as:

ge1 � k? R ge2 � k?

where l1 R l l2

e1

l1

�
R e2

l̂2
�

���������
but since e1

k?x� ��
 and l1 �� k?x, we have e2
k?x� ��
 and l2 �� k?x, and so:

ge1 R s ge2

where l1 R sl l2

e1

l1

�
R e2

l2
�

���������
The other cases are simpler, and so

�
R n � R s � is an hereditary bisimulation. Thus R @

R n @ � n , and so � n is the largest higher-order weak bisimulation which respects µCML
contexts.

This Theorem should be contrasted with the case of CCS. In (Milner, 1989) section 7 D 2 it
is shown that the largest congruence contained in weak bisimulation is not itself a weak
bisimulation.

22 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

4 Bisimulation as a congruence

To serve as the basis of a useful semantic theory of µCML, bisimulation should be pre-
served by all of the constructs of the language. In this section we will show that � s is a
congruence for µCML � , and that � n is a congruence for µCML.

Unfortunately, this proof is not straightforward, due to the higher-order nature of heredi-
tary bisimulation. The problem is not unique to µCML, and it occurs in many higher-order
languages, for example typed λ-calculi (Gordon, 1995), the untyped λ-calculus (Howe,
1989), and the Calculus of Higher-Order Communicating Systems (CHOCS) (Thomsen,
1995) .

The difficulty is in finding the right form of induction to use, when all of the standard in-
ductions (for example on structure of terms, on number of τ-moves, on structure of proof)
fail. For example, the proof of congruence for CHOCS (Thomsen, 1995, Prop. 6.6) adapts
Milner’s technique (Milner, 1989, Theorem 8, p. 155) but uses a non-well-founded induc-
tion. It seems that any inductive proof that weak bisimulation is a congruence for higher-
order languages requires an induction on both syntax and proof structure. The usual meth-
ods of performing nested induction fail in this case, and so another method of performing
simultaneous induction is required. Fortunately this is achieved by a technique developed
for the lazy λ-calculus (Howe, 1989).

We shall apply Howe’s technique to show that � s is a congruence for µCML � , and that
� n is a congruence for µCML � without � ge� and ge1 � ge2. This particular application is
made complicated by the fact that we have to deal a pair of relations,

�
� n � � s � which are

defined in terms of each other. So although we follow the general proof method used in
(Howe, 1989) and the notation of (Gordon, 1995), the various technical definitions about
relations which follow will apply to pairs of relations of the form R �

�
R n � R s � with

R s @ R n. We will continue to apply the usual operations associated with relations, such
as composition, under the assumption that such operations are applied pointwise.

Define a context to be given by the grammar:

C :: �
�
i
�
e
�
cC

� � � C ������ C �� �� C
���

C � C � � � �� x � C � � C
�
CC

� ��� � x � � � y
 C � � � C � C �
� �C � � C!C

�
C?

�
C
 C

�
C � C

�
AC

�
C �� C

Let C � �e� be the term given by replacing each ‘hole’
�
i by the term ei (unlike substitution, we

allow for capture of free variables). An equivalence R is a congruence iff ei R fi implies
C � �e� R C � �f � .

Define an uneventful context to be one which does not use �C � or C � C, that is one given
by the grammar:

Cn :: �
�
i
�
e
�
cCn

� � � Cn ������ Cn �� �� Cn
���

Cn � Cn � � � �� x � Cn � � Cn
�
Cn Cn

� ��� � x � � � y
 Cn � � � Cn � Cn ��
Cn!Cn

�
Cn?

�
Cn
 Cn

�
ACn

�
Cn �� Cn

An equivalence R is an uneventful congruence iff ei R fi implies Cn � �e� R Cn � �f � . Note
that any µCML context is an uneventful context, and so any uneventful congruence is a

A Theory of Weak Bisimulation for Core CML 23

congruence for µCML. So we concentrate on showing that � s is a congruence, and � n is
an uneventful congruence.

Define the one-level deep contexts with the grammar:

D :: � x
�
l
�
c
�
1
� � � � 1 ������ � 2 �� �� � 3 �����

1 � � 2 � � � �� x �
�
1 � �

�
2���

1
�
2
� ��� � x �	� � y
 �

1 � � � � 1 � � 2 �� � � 1 � ��� 1!
�
2
���

1?
���

1
 �
2
��

1 �
�
2
�
A
�
1
���

1 �� �
2

Let Dn range over uneventful one-level deep contexts.
For any pair of relations R �

�
R n � R s � with R s @ R n, let its compatible refinement,

�

R
be defined:

�

R
n � B � Dn � �e � � Dn �

�
f � � � ei R n fi E �

�

R
s

�

R
s � B � D � �e � � D � �f � � � ei R s fi E

� B � ��� � x � � � y
 e ��� ��� � x �	� � y
 f � � � e R n f E
This definition is rather different from Howe’s and Gordon’s definition of

�

R �CB � D � �e � � D � �f � � �
ei R fi E . The differences are that:

� � n is not a congruence, it is only an uneventful congruence, so we only close
�

R
n

un-
der uneventful one-level deep contexts rather than arbitrary one-level deep contexts,� we want to maintain the invariant that for all pairs of relations we consider, R s @ R n ,
hence we include

�

R
s

in the definition of
�

R
n
, and� if two insensitive bisimilar expressions are thunked, the resulting expressions are

sensitive bisimilar; for this reason the proof of Theorem 4.7 requires ��� � x �	� � y

e � �

R
s � � � x � ��� y
 f � when e R n f .

Proposition 4.1
If R is an equivalence and

�

R @ R , then R s is a congruence and R n is an uneventful
congruence.

Proof
A variant of the proof in (Gordon, 1995; Howe, 1989). Show by induction on C that if
ei R s fi then C � �e� R s C � �f � . Either C �

�
i, in which case the result is immediate, or C �

D � �C� and by inductionCi � �e� R s Ci �
�
f � , so by definitionC � �e � � D � �C � �e � � �

R
s

D � �C � �f � � � C � �f � . It
follows that R s is a congruence. The proof that R n is an uneventful congruence is similar.

For any R , its compatible closure, R
�

, is given by:

e
�

R
�

e
�

R � e
� �

e R
�

e
� �

Note that R
� s @ R

� n.
This definition of R

�

is specifically designed to facilitate simultaneous inductive proof
on syntax (since the definition involves one-level deep contexts) and on reductions (since
the definition involves inductive use of R �). This form of induction is precisely what is
required to show the desired congruence results.

Its relevant properties are summed up in the following proposition.

24 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

Proposition 4.2
If R � is a preorder then R

�

is the smallest relation satisfying:

1. R
�

R � @ R
�

,
2.

�

R
� @ R

�

, and
3. R � @ R

�

.

Proof
A variant of the proof in (Gordon, 1995).

First we show that R
�

is reflexive, by showing by structural induction on e that e R
� s e.

Find D � �e� such that e � D � �e � , so by induction ei R
� s ei, so by definition of

�

R , e � D � �e� �

R
� s

D � �e � R s � D � �e��� e.
Then we show the required properties:

1. R
�

R � @
�

R
�

R � R � @
�

R
�

R �$@ R
�

.
2.

�

R
� @

�

R
�

R � @ R
�

.
3. R � @ R

�

R � @ R
�

.

To see that R
�

is the smallest relation satisfying these properties we show that if S satisfies
these properties, then

�

SR � @ SR � @ S , and so R
� @ S.

Since
�

R
� @ R

�

, we know from Proposition 4.1 that if R
�

is an equivalence then R s is a
congruence and R n is an uneventful congruence. However, we can show a stronger result
than that, which is that R

�

is closed under substitution of closed values:

Proposition 4.3
If R is a preorder then for any v R

� s w:

1. if e R
� s f then e � v � x� R

� s f � w � x� , and
2. if e R

� n f then e � v � x� R
� n f �w � x� .

Proof
A variant of the proof in (Gordon, 1995; Howe, 1989). To prove the first part, we proceed
by induction on e.

� If e � x then x R s � f , so e � v � x� � v R
� s w R s � f �w � x� so by Proposition 4.2 e � v � x� R

� s

f �w � x� .� If e � ��� � y � � � z
 e1 � then we can find a g1 such that e1 R
� n g1 and ��� � y �

� � z
 g1 � R s � f , so by induction e1 � v � x� R
� n g1 �w � x � , so e � v � x� � � � � y � � � z

e1 � v � x� � �

R
� s � � � y � � � z
 g1 �w � x� � R s � f �w � x� , so by definition of R

�

, e � v � x� R
� s

f �w � x� .� Otherwise, we have e � D � �e� and D � �e � � v � x� � D � �e � v � x � � , so we can find
�
g such

that
�
e R

� s �g and D � �g � R s � f , so by induction ei � v � x � R
� s fi �w � x� , hence e � v � x � �

D � �e� � v � x� � D � �e � v � x � � �

R
� s

D � �f �w � x� � � D � �f � �w � x � R s � f �w � x � , so by definition of
R

�

, e � v � x � R
� s f �w � x� .

The proof of the second part is similar.

Our proof strategy is to show that � � and �
�

coincide. Since � � @ �
�

, this amounts to
showing that �

� @ � � , which we do by proving that �
�

, when restricted to programs, is
an hereditary simulation.

A Theory of Weak Bisimulation for Core CML 25

Proposition 4.4
When restricted to closed expressions of µCML � , �

�

is an hereditary simulation.

Proof
We have to show that �

� s is structure-preserving, and that the diagrams for an hereditary
simulation can be completed.

Showing that �
� s is structure preserving is a routine structural induction.

If:
e �

� n f

e
�

l1

�
then we proceed by induction on e to show that we can complete the diagram as:

e �
� n f

e
�

l1

�
�

� n f
�

l̂2�
��������

where l1 �
� sl l2, and similarly for �

� s. We shall show three of the more interesting cases,
the others are similar but more routine:

� if we have:

e � � � � � � � �� x � e1 � � e2

�

�
� n � �� x � g1 � � g2 � n f

e
�

τ
�
� � ��� � � e

�
1 �� e2 � v � x�

τ
�

where ei �
� n gi and e1

�
v� � e

�
1 , then by induction g1

�
w�
 g

�
1, v �

� s w and e
�
1 �

� n g
�
1 ,

so using Proposition 4.3, we have:

e � � � � � � � �� x � e1 � � e2

�

�
� n � �� x � g1 � � g2 � n f

e
�

τ
�
� � ��� � � e

�
1 �� e2 � v � x�

τ
�

�
� n g

�
1 �� g2 �w � x�

τ�
��������

� n f
�

ε�
��������

� if we have:

e � � � � � � � � � � � � � � e1 e2

�

�
� n

g1 g2 � n f

e
�

τ
�
� � � � � � e

�
1 �� � �� y � e2 � � e3 � v � x�

τ
�

26 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

where ei �
� n gi, e1

�
v� � e

�
1 , and v ����� � x � ��� y
 e3 � then by induction g1

�
w�
 g

�
1 ,

v �
� s w, up to α-conversion w � ��� � x � � � y
 g3 � , and e

�
1 �

� n g
�
1. Then by the

definition of �
�

, we can find an v
�
� ��� � x � � � y
 h3 � such that e3 �

� n h3 and
v

�
� s w, so by Proposition 4.3, e3 � v � x� �

� n h3 � v � � x� � n � v
�
y � n � wy � n � g3 �w � x� ,

and so:

e � � � � � � � � � � � � � � e1 e2

�

�
� n

g1 g2 � n f

e
�

τ
�
� � � � � � e

�
1 �� � �� y � e2 � � e3 � v � x �

τ
�

�
� ng

�
1 �� � � y � g2 � � g3 �w � x�

τ�
��������

� n f
�

ε�
��������

� if we have:

e � � � � � ����� � x � � � y
 e1 �
�

�
� n ��� � x �	� � y
 g1 � � n f

e
�

�
e

�
� � � � � � � � � � � � Λ

�
e

�
where e1 �

� n g1 then let v � � � � x � ��� y
 g1 � , so:

e � � � � � ����� � x � � � y
 e1 �
�

�
� n ��� � x �	� � y
 g1 � � n f

e
�

�
e

�
� � � � � � � � � � � � Λ

�
e

�
�

� n Λ

�
v

�
��������

� n f
�

�
w�

��������

and e �
� s v � s w.

Thus �
�

is an hereditary simulation.

We now have that �
�

is a simulation, and we would like to show that it is a bisimulation,
for which it suffices to show that �

�

is symmetric. Unfortunately, this is not easy to prove
directly, and so we use a result of (Howe, 1992) (pointed out to the authors by Andrew
Pitts) which allows us to show that �

� �
is symmetric.

Proposition 4.5
If R is an equivalence then R

� �
is symmetric.

Proof
A variant of the proof in (Howe, 1992).

It suffices to show that if e R
� s f then f R

� s � e, and that if e R
� n f then f R

� n � e,
which we show by induction on e. If e R

� s f , then either:

� e � D � �e � �

R
� s

D � �f � R s � f and ei R
� s fi, so by induction fi R

� s � ei, so f
�

R
s

D � �f � D �

R
s �

� �e��� e, or� e ����� � x � � � y
 e
� � �

R
� s ��� � x � ��� y
 f

� � R s � f and e
�

R
� n f

�
, so by induction

f
�

R
� n � e

�
, so f

�

R
s � � � x � ��� y
 f

� � R
� s � ��� � x �	� � y
 e

� � � e.

A Theory of Weak Bisimulation for Core CML 27

The proof for R n is similar.

We can use this result to show that �
� �

is a bisimulation.

Proposition 4.6
When restricted to closed expressions of µCML � , �

� �
is an hereditary bisimulation.

Proof
By Proposition 4.4, �

�

is an hereditary simulation, and so �
� �

is an hereditary simulation.
By Proposition 4.5, �

�

is symmetric, and so �
�

is an hereditary bisimulation.

This gives us the result we set out to prove.

Theorem 4.7
� s is a congruence, and � n is an uneventful congruence.

Proof
From Proposition 4.6, �

�

is an hereditary bisimulation, so �
� @ � � , and by Proposition 4.2

� � @ �
�

, so �
�

and � � are the same relation. Since
�

�
� @ �

�

, we have the desired result
by Proposition 4.1.

5 Properties of Weak Bisimulation

In this section, we show some results about program equivalence up to hereditary weak
bisimulation. Some of these equivalences are easy to show, but some are trickier, and re-
quire properties about the transition systems generated by µCML � . Although much re-
mains to be done on elaborating the algebraic theory of µCML programs we hope that the
results in this section indicate that this equivalence can form the basis of a useful theory
which generalises those associated with process algebras and functional programming.

We have given an operational semantics to µCML by extending it with new constructs,
most of which correspond to constructs found in standard process algebras. These include a
choice operator � , a parallel operator �� and suitable versions of input and output prefixing,
(Milner, 1989). The prefixes in µCMLcv have a slightly unusual syntax—their equivalents
in CCS are given as:

CCS prefix µCMLcv equivalent
k?x D P k?
 � � x
 P
k!v D P k!v
 � � x
 P
τ D P A

� ��
 � � x
 P

We now examine the extent to which � and �� act like choice and parallel operators from
a process algebras

We can find bisimulations for the following (and hence they are sensitive bisimilar):

Λ �� e � 1 e�
e1 �� e2 � �� e3 � 1 e1 �� �

e2 �� e3 ��
e1 �� e2 � �� e3 � 1 �

e2 �� e1 � �� e3

Thus �� satisfies many of the standard laws associated with a parallel operator in a pro-
cess algebra. However it is not in general symmetric because of its interaction with the

28 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

production of values:

v �� e � 1 e

For example:

1 �� Λ � 1 Λ Λ �� 1 � 1 1

This means that we can view the parallel composition of processes as being of the form:
� �� iei � �� f

where the order of the ei is unimportant. Note that it is important which is the right-most
expression in a parallel composition, since it is the main thread of computation, and so can
return a value, which none of the other expressions can.

The choice operator of µCML � also satisfies the expected laws from process algebras,
those of a commutative monoid, although it can only be applied to guarded expressions:

Λ � ge � 1 ge�
ge1 � ge2 � � ge3 � 1 ge1 �

�
ge2 � ge3 �

ge1 � ge2 � 1 ge2 � ge1

This means that we can view the sum of guarded expressions as being of the form:
�

i

gei

where the order of the gei is unimportant.
In fact guarded expressions can be viewed in a manner quite similar to the sum forms

used in the development of the algebraic theory of CCS, (Milner, 1989). We can find bisim-
ulations for the following (and hence they are sensitive bisimilar):

�
ge1 � ge2 ��
 v � 1 �

ge1
 v � �
�
ge2
 v �

ge
 � � x
 x � s ge

Av � s A
� �
 � � x
 v

From this, we can show, by structural induction on syntax that all guarded expressions are
of a given form:

ge � s
�

i

gei
 vi

where each gei is either ki!vi, ki? or A
� � . From this and:

cv � 1 δ
�
c � v �

we can show that all values ? v : A ������� are of the form:

v � n ������������ � ����� � e1 � v1 ����D�D�D � � ����� � en � vn � �
where en is either ���������
	�� � � ki � vi � , �� �

� �� ki, or � � � � ��� � � .

We could continue in this manner emulating the algebraic theory of CCS, for example
with expansion theorems for guarded expressions or values of event type. However we
leave this for future work.

A Theory of Weak Bisimulation for Core CML 29

We now turn our attention to µCML viewed as a functional language. One would not
expect β-reduction in its full generality in a language with side-effects such as µCML but
we do obtain an appropriate call-by-value version:

� � � y
 e � v � 1 e � v � y�
We also have expected laws such as:

� � � � e � v � � 1 e

� � � � v � e � � 1 e� � � � x � � � y
 e � � v � 1 e � ��� � x � � � y
 e � � x � � v � y�
� �� x � v � � e � 1 e � v � x �

� �� y �
�
� � x � e � � f ��� � g � 1 � �� x � e � � � � �� y � f � � g � where x �� f v

�
g �

The last two equations are of particular interest, since they are exactly the left unit and
associativity axioms of the monadic metalanguage (Moggi, 1991). The right unit equation:

� � x � e � � x � n e

is not so simple to show, and indeed if e were an arbitrary labelled transition system then
it would not be true, as can be seen by:

e �� n � �� x � e � � x

�
�

�
�

�

k!
� �

�
�

�
�

�
v

� �
�

�
�

�

k!
� �

�
�

�
�

τ

�

Λ Λ Λ Λ �� v

Λ

�
v

�

(This is the same example which makes SKIP not act as a right unit for sequential compo-
sition in CSP (Hoare, 1985) and exit not act as a right unit for � in LOTOS (ISO 8807,
1989).) Fortunately, we can show that our operational semantics for µCML satisfies four
properties which allow us to show the right unit equation.

A labelled transition system is single-valued iff:

if e
�

v� � e
�
then e

� �
w� �� �

It is value deterministic iff:

if

e
�

v � e
�

e
� �

�
w

�
then v � w and e

�
� e

� �

30 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

It is forward commutative iff:

if

e
�

v � e
�

e
� �

α
�

then

e
�

v � e
�

e
� �

α
� �

v � � e
� � �

α
�

Note that since α may be an input move, e
� �

may be an open term, so we need to take the
open extension

�
v �� � � of the termination relation.

It is backward commutative iff:

if

e
�

v � e
�

e
� � �

α
�

then

e
�

v � e
�

e
� �

α
� �

v � � e
� � �

α
�

Note in particular that LOTOS and CSP do not satisfy forward commutativity, which is
why their sequential composition operators do not have a right unit. However, µCML does
satisfy these conditions.

Proposition 5.1
µCML satisfies single-valuedness, value determinacy, forward commutativity and back-
ward commutativity.

Proof
A routine induction on syntax.

The important property which such lts’s satisfy is the following, where we assume the
existence of the operator �� .

Proposition 5.2
In any single-valued, value deterministic, forward commutative, backward commutative
lts, if e

�
v� � e

�
then e � 1 e

� �� v.

Proof
Use the properties of the lts to establish that the following is a first-order weak bisimulation:

B � e � e � �� v � � e �
v� � e

� E � B � e � � e � �� Λ � � e �
v� � e

� E
The result follows.

As a corollary to this proposition, it is routine to show that the following is a first-order
weak bisimulation:

B � e � � �� x � e � � x � E �
� 1

So we have the right unit equation we were looking for:

e � 1 � �� x � e � � x

These equations enable us to define a categorical model for µCML where:

A Theory of Weak Bisimulation for Core CML 31

� objects are types,� morphisms between A and B are typed expressions with one free variable x : A ? e : B,
viewed up to weak bisimulation,� the identity morphism is x : A ? x : A, and� composition is

�
x : A ? e : B � ; � y : B ? f : C � � �

x : A ? � � y � e � � f : C � .
The equations for weak bisimulation discussed above show that morphism composition
is associative and has the identity as both a left unit and right unit. Thus µCML forms a
category.

Again we leave the investigation of the properties of this category to future work but
we should point out that so far we have been unable to cast it as an instance of general
categorical framework of (Moggi, 1991).

6 Comparing µCML � and λcv

In section 2 we presented the operational semantics of a subset of CML, as a labelled tran-
sition system, in order that we might investigate its behavioural properties. In this section
we shall make a formal connection between this semantics and the reduction semantics
for λcv presented in (Reppy, 1992). We have not considered λcv in its entirety and so the
comparison will be confined to the common subset, namely µCMLcv. We first reproduce,
as faithfully as possible, the reduction semantics of Reppy as it applies to µCML. From this
reduction semantics we then derive a labelled transition system for µCML expressions and
our main theorem states that this labelled transition system (up to first-order weak bisim-
ulation) is the same as ours. In fact the more technical results we derive connecting the
two semantics would support a much closer relationship but expressing it would involve
developing yet another bisimulation based equivalence.

Before presenting the operational semantics and our main theorem we clarify the differ-
ences between λcv and µCMLcv:

� We do not consider the λcv constructs ��������� and � �	��
��������� . We conjecture that
the operational semantics of µCML would need to be considerably altered to cope
with translating these constructs.� We omit the λcv construct ��� ����������� since we cannot encode unique channel name
generation in µCML, although it should not be difficult to add it using operational
rules à la π-calculus. However this would require using a bisimulation similar to
Sangiorgi’s (Sangiorgi, 1992) context bisimulation for the higher-order π-calculus.� We have added recursive function types to µCMLcv because in (Reppy, 1992) recur-
sion is encoded using process creation and unique channel name generation.� In λcv, constant functions such as � ����� are values, where in µCML they have to be
coded as

� � � x
 � ����� x � . This restriction has no effect on the expressive power of
µCML, and makes it simpler to reason about the operational semantics, since any
value of type A � B must be of the form ��� � x � � � y
 e � .

We now present Reppy’s reduction semantics for µCMLcv. In (Reppy, 1992) this is rep-
resented by a transition relation between multi-sets of µCMLcv, or more generally λcv

32 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

expressions. Instead of multi-sets we use configurations of µCMLcv expressions given by
the grammar:

C
�

Con f :: � e
�
C �� C

�
Λ

Note that configurations are restricted forms of µCML � expressions. This will facilitate
the comparison between the two semantics since it can be carried out for configurations
rather than µCML expressions.

The semantics of (Reppy, 1992) is expressed as a reduction relation ��
 between con-
figurations and reductions have four independent sources. The first involves a sequential
reduction within an individual µCML expression and this in turn is defined using another
reduction relation � � � ; the second is the spawning of new computation threads which
results in an increase in the number of components of the configuration; the third is com-
munication between two expressions and the last is required to handle the � � � �
��� construct.
We need notation for each of these and we consider them in turn.

The operational rules for sequential reduction are defined in context in the style of
(Wright & Felleisen, 1991), and the contexts that permit reduction are given by the fol-
lowing grammar:

E :: � � � � � E e
�
vE

�
cE

���
E � e � ��� v � E � � � �� x � E � � e

� � � E ������ e � � e

The relation � � � is defined to be the least relation satisfying the following rules:

E � cv ��� � � E � δ � cv � � �
c �� B��
��� � � � ������� E � const

E � � ��� � x � � � y
 e � � v ��� � � E � e � ��� � x �	� � y
 e � � x� � v � y � � beta
E � � �� x � v � � e��� � � E � e � v � x� � let

E � � v � w � ��� � � E � � v � w � � pair

Here each rule corresponds to a basic computation step in a sequential call-by-value lan-
guage. We should point out that the last rule does not appear in (Reppy, 1992), it is implicit
in Reppy’s statement “the syntactic class of the term

�
v1 � v2 � is either Exp or Val; this am-

biguity is resolved in favour of Val.” We have made the grammar unambiguous, and have
added an explicit reduction rule for resolving ambiguity.

Note that the definition of � � � is not compositional: the reductions of an expression are
not defined in terms of the reductions of its sub-expressions. The following Lemma will be
useful in later proofs and shows that we can recover compositionality.

Lemma 6.1
If e � � � e

�
then E � e��� � � E � e � � .

Proof
By examination of the proof of the transition e � � � e

�
.

To capture reductions which involve communication it is necessary to define a notion of
when two guarded expressions may give rise to a communication. For any k the relation:

ge
k��� ge

�
with

�
e � e � �

read as “ge matches ge
�
on k with result

�
e � e � � ” is defined to be the least relation satisfying

the rules in Figure 6a. Intuitively this means that two concurrent threads e1 � e2 of the form

A Theory of Weak Bisimulation for Core CML 33

k!v
k��� k? with %�% ' / v '

ge
k��� ge

�
with % e / e � '

ge
k��� ge

� = v with % e / ve
� '

ge
k��� ge

�
with % e / e � '

ge
k��� ge

� � ge
� �

with % e / e � '
ge

k��� ge
� �

with % e / e � � '
ge

k��� ge
� � ge

� �
with % e / e � � '

ge
k��� ge

�
with % e / e � '

ge
� k��� ge with % e � / e '

Figure 6a. The rules for matching events

Av � v
ge � e

ge = v � ve
ge � e

ge � ge
�
� e

ge
�
� e

�
ge � ge

�
� e

�

Figure 6b. The rules for immediate evaluation of events

e1 � E1 � ��������� ge� � � e2 � E2 � � ������� ge
� � � may communicate in one step on the channel k with

E1 � e � and E2 � e � � being the result of this communication.
To handle reductions caused by � � � � ��� we need to formalise when guarded expressions

such as Av can immediately return values. This is given by Reppy’s relation ge � e, is
defined in Figure 6b.

We can now formally present the reduction relation ��
 between configurations. It is
defined to be the least relation satisfying the rules:

ei �
� � e

�
i�

e1 �� ����� �� ei ��
����� �� en � ��
 �

e1 �� ����� �� ei ��
����� �� en � seq

�
e1 �� ����� �� E � � ��� � � v� �� ����� �� en � ��
 �

e1 �� ����� �� v
� � �� E � � � � �� ����� �� en � spawn

ge
k� � ge

�
with

�
e � e � ��

e1 �� ����� �� E � ��������� ge� � �� ����� �� E
� � ��������� ge

� � � �� ����� �� en �
��
 �

e1 �� ����� �� E � e � �� ����� �� E
� � e � � �� ����� �� en �

comm

ge � e�
e1 �� ����� �� E � ��������� ge� � �� ����� �� en � ��
 �

e1 �� ����� �� E � e� �� ����� �� en � eval

This completes our exposition of Reppy’s semantics as it applies to µCMLcv, which for
convenience we call the µCMLcv semantics. We refer to that in section 2 as the µCML �
semantics and we now compare them. In order to do this, we extract a labelled transition
system from the µCMLcv semantics by defining:

C τ
� � � C

�
iff C ��
 C

�
C

�
v
� � � C

�
iff C � C

� � �� v and C
�
� C

� � �� Λ (up to �� associativity and Λ left unit)

C k!v
� � � C

�
iff C �� k? ��
 C

� �� v

C k?x
� � � C

�
iff C �� k!x ��
 C

� �� � �

34 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

We will then show that this labelled transition system is weakly bisimilar to the µCML �
lts:

Theorem 6.2
The µCMLcv semantics of a configuration is weakly bisimilar to its µCML � semantics.

The remainder of this section is devoted to proving this result. Although the style of pre-
sentation of these two semantics are very different the resulting relations are very similar
and there are essentially only two sources for the differences. The first is that certain re-
ductions in µCMLcv, when modelled in the µCML � semantics, require in addition some
‘housekeeping’ reductions. A typical example is the reduction:

� � � x
 e � v � � � e � v � x�5D
In µCML � this requires two reductions:

� � � x
 e � v τ� � � �� x � v � � e τ� � e � v � x �
This problem is handled by identifying the set of ‘housekeeping’ reductions, such as the
second reduction above, within the µCML � semantics . These turn out to be very simple
and we can work with ‘housekeeping normal forms’ in which no further housekeeping
reductions can be made.

The second divergence between the semantics concerns the treatment of �
��� � � ; expres-
sions in µCML � may spawn new processes which give rise to parallel processes occurring
as sub-terms of the expression. For example, the reductions of

� �
��� � � v � e � in µCML � and
µCMLcv are:

� � ��� � � v � e � τ� � �
Λ �� v

� � �� � ��� e �� � ��� � � v � e � τ
� � � v

� � �� � � ��� e �
This difference is handled by working with the µCMLcv semantics up to a syntactically
defined equivalence; this equivalence is contained in strong bisimulation equivalence and
it also preserves housekeeping reductions.

We now explain in some more detail these technical developments; most of the associ-
ated proofs are relegated to an Appendix. House-keeping reductions are ones derived using
the rules:

e
� �

ge �� � � e
�

� ����� e τ� � e
� �� ge

e
�

v� � e
�

�
e � f � τ� � e

� �� � � x � f � � � v � x �
e

�
v� � e

�
e f τ� � e

� �� � �� y � f � � g � v � x� � v � ��� � x � � � y
 g � �
We shall write e τH� � e

�
whenever e τ� � e

�
is a housekeeping reduction.

It is routine to verify that the housekeeping moves are ‘semantically unimportant’, as is
captured by the next proposition:

Proposition 6.3
If e τH� � e

�
then e � 1 e

�
.

Proof
Construct a weak bisimulation for each case.

A Theory of Weak Bisimulation for Core CML 35

Moreover, we can show a confluence result for the µCML � semantics about housekeeping
moves:

Proposition 6.4

If

e
τ
�
H � e

�

e
� �

l

�
then

e
τ
�
H � e

�

e
� �

l

�
τ
�
�H � e

� � �
l̂

�
Proof
First show by induction on ge that ge τH� �� � . Then prove by induction on e, using forward
commutativity, that if e τH� � e

�
and e l� � e

� �
are distinct reductions then we can find e

� � �
such

that e
� l� � e

� � �
and e

� � τH� � e
� � �

. The result follows.

Call a term ‘tidy’ if it has no housekeeping reductions. Then we can show that every
µCML � term has a unique tidy normal form.

Proposition 6.5
For any µCML � term e there is a unique tidy e

�
such that e τH� � �

e
�
.

Proof
Show by induction on e that there is some tidy e

�
such that e τH� � �

e
�
. From Proposition 6.4,

this e
�
is unique.

We now turn our attention to the syntactic equivalence used to handle the different treat-
ments of �
��� � � . In order to define the equivalence � it is convenient to introduce reduction
contexts for µCML � , equivalent to those for µCMLcv:

E � :: � � � � � E � e
�
cE � ���

E � � e � � � �� x � E � � � e
� � � E � ������ e � � e

�
E � �� e

�
e �� E �

In the Appendix we show that these satisfy the natural properties one would expect of
reduction contexts. Let � be the smallest equivalence given by:

E � �Λ �� e ��� E � � e � E �1 � E �2 � e �� f � ��� E �1 � e �� E �2 � f � �
The equivalence � is a strong first-order bisimulation which respects housekeeping, that is
a relation R where we can complete the diagram:

e1 R e2 e1 R e2

as

e
�
1

τH

�
e

�
1

τH

�
R e

�
2

τH

�

and similarly for R
� 1 .

Proposition 6.6
� is a strong first-order bisimulation which respects housekeeping.

Proof

36 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

See the Appendix.

We can also show a very strong correspondence between reductions of µCMLcv configu-
rations, and their tidy normal forms.

Proposition 6.7

If C τH� � �
e and e is tidy, then the following diagrams can be completed:

C
τ
�
H � e C

τ
�
H � e

as

C
�

l

�
C

�
l

�
τ
�
�H � � e

�
l

�

and:

C
τ
�
H � e C

τ
�
H � e

as

e
�

l

�
C

�
l

�
τ
�
�H � � e

�
l

�

Proof

See the Appendix.

With these technical results we can now prove the main result showing the correspondence
between the two semantics:

Theorem 6.8

The µCMLcv semantics of a configuration is weakly bisimilar to its µCML � semantics.

Proof

Intuitivelywe know, from Proposition 6.3, that µCML � expressions are semantically equiv-
alent to their tidy forms, and Proposition 6.7 can be used to transform µCMLcv moves from
an expression into µCML � moves of its tidy form up to � , and vice-versa. Formally we
show that τH� � �

�
τH� � � is a weak bisimulation by completing the diagram:

C1
τ
�
H � e1 � � � � � � � � � f1

�
τ
�
H g1

C2

l

�

by using Proposition 6.5 to find e1’s tidy form e2 , and then using Propositions 6.4, 6.6

A Theory of Weak Bisimulation for Core CML 37

and 6.7 to show:

C1
τ
�
H � e1 � � � � � � � � � f1

�
τ
�
H g1

C2

l

�
e2

τ
�
H

�
� � � � � � � � � f2

τ
�
H

�
�

τ
�
H f2

τ
�
H

�

e4

τ
�
�H

�
� � � � � � � � � e3

l

�
� � � � � � � � � f3

l

�
�

τ
�
�H f3

l

�
and by completing the diagram:

C1
τ
�
H � e1 � � � � � � � � � f1

�
τ
�
H g1

g2

l

�
by using Proposition 6.5 to find e1’s tidy form e3 and then using Propositions 6.4, 6.6
and 6.7 to show:

C1
τ
�
H � e1 � � � � � � � � � f1

�
τ
�
H g1

�
�

�
�

�

τ
�
H

e3 e2

l̂

�
� � � � � � � � � f2

l̂

�
�

τ
�
�H g2

l

�
�

�
�

�
l̂

�

C2

l̂

� τ
�
H � e5 � � � � � � � � � e4

τ
�
�H

�
� � � � � � � � � f4

τ
�
�H

�
The result follows.

7 Conclusions

In this paper we have defined a compositional operational semantics for a core subset of
CML, called µCML, and used it to develop at least the beginnings of an algebraic theory
of CML programs based on an appropriate version of weak bisimulation equivalence. The
operational semantics required an extension of the language to µCML � although it is worth
pointing out that all of the added constructs can be defined in the core language µCML up
to weak bisimulation equivalence.

Much research remains to be done. The algebraic theory of µCML, started in Section 5,

38 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

needs to be developed to the extent that it can be used to characterise the semantic equiv-
alence � n. More generally both the operational semantics and the semantic equivalence
should be extended to incorporate more of the features of CML. Of particular interest is
the generation of new channel names. We believe that our operational semantics can be
adapted to handle new channel generation but the semantic equivalence would need to
be changed to an appropriate adaptation of context bisimulation equivalence, (Sangiorgi,
1992).

As pointed out in Section 3 our semantic equivalence, � n , is based on the late version
of bisimulations, (Milner et al., 1992). This fits in quite well with the functional nature of
CML but nevertheless it would be of interest to consider other variations. One can easily
define an early version of � n or versions where silent moves are allowed to occur after a
matching l� � move. However we have been unable to adapt Howe’s method to show that
these equivalences are preserved by µCML contexts.

In Section 3, we were forced to develop the theory of hereditary bisimulations because
of the usual problems of τ actions resolving choice. In the sublanguage without � � � � ��� and
A, we showed that weak bisimulation coincided with insensitive hereditary bisimulation,
and so has a simpler and more elegant theory. This theory has been investigated by the first
author (Ferreira, 1995). In this theory, it is possible to use CSP rather than CCS summation,
and so weak bisimulation is respected by all contexts. As a side-effect of this, it is possible
to remove the syntactic restriction that � ge� can only be applied to guarded expressions.
The third author has shown (Jeffrey, 1995) that the resulting semantics can be presented in
terms of computational monads (Moggi, 1991).

There has already been a considerable amount of research into the foundations of CML
and related languages. Much of this is concerned with developing more detailed type sys-
tems, where types contain information on the behaviour of expressions as they evolve,
(Nielson & Nielson, 1993; Nielson & Nielson, 1996). Here we confine our remarks to work
directly concerned with the development of semantic theories. We have already given a de-
tailed comparison with the operational semantics given in (Reppy, 1991b; Reppy, 1992;
Panangaden & Reppy, 1996). This semantics has been used in (Berry et al., 1992) to study
an implementation of ML reference types using process generation. If we extend our ap-
proach to include channel generation then we could hope to give an algebraic treatment
of their results. In (Bolignano & Debabi, 1994; Debabi, 1994) there are a number of dif-
ferent semantics given to languages related to CML. A denotational semantics is given
using the concept of “dynamic types” but it has not yet been related to any operationally
based equivalence. An operational semantics is also given for a language called FPI. This
contains many CML features but the author notes that accommodating any spawn or fork
operator would be difficult. In (Havelund, 1994; Baeten & Vaandrager, 1992) the spawn
operator is studied within the context of process algebras. The former gives a two-level op-
erational semantics for a simple “pure” process algebra with fork and uses this to develop
a semantic equivalence based on strong bisimulation; an axiomatisation is also given using
an auxiliary operator called forked. The latter shows how the various algebraic theories of
ACP can be adapted to support the addition of a spawn operator. This contains an lts based
operational semantics for ACP � spawn and their treatment of spawn has been used in
(Ferreira & Hennessy, 1995) to give an operational semantics of a language which can be
considered to be an untyped version of µCML. However bisimulation based equivalences

A Theory of Weak Bisimulation for Core CML 39

are not developed in (Ferreira & Hennessy, 1995); instead a testing equivalence is defined
(Hennessy, 1988) and a fully-abstract denotational semantics based on Acceptance Trees
is given.

Other languages which contain much in common with CML include CHOCS (Thomsen,
1995), FACILE (Giacalone et al., 1989), PICT (Pierce & Turner, 1995), ACTORS (Agha
et al., 1994) and HOπ (Sangiorgi, 1992). Most of these are endowed with an operational
semantics some of which are similar in spirit to ours. However we feel that our treatment
of spawn and delayed computations is novel and hope that it can be used to good effect
with other languages. Many of these languages also have associated with them bisimula-
tion based semantic equivalences. Section 3 may be viewed as an extension of the research
in (Thomsen, 1995) and the new equivalence � n can easily be adopted to languages such
as CHOCS and FACILE. We have also already indicated that when we extend µCML to
include channel generation it will be necessary to adopt the context bisimulation equiva-
lence, originally developed in (Sangiorgi, 1992). In short although semantic theories are
being developed independently for these languages many of the techniques developed will
find more general application.

Appendix

This section is devoted to the proof of Proposition 6.6 and Proposition 6.7. But first we need some
auxiliary results. The following three Propositions state elementary properties of the reduction con-
texts for µCML

�
, introduced in Section 6 and we omit the proofs; they all use structural induction

on contexts:

Proposition A.1
If e α� � e

�
then E

� 1
e 4 α� � E

� 1
e
� 4 .

Proposition A.2
If E

�
1

1
e4 l� � f then either:

� f 3 E
�
2

1
e4 and for all g, E

�
1

1
g 4 l� � E

�
2

1
g 4 , or

� f 3 E
�
2

1
e
� 4 , e l

�� � e
�
, and for all g l

�� � g
�
, E

�
1

1
g 4 l� � E

�
2

1
g
� 4 .

Proposition A.3
For any E there is an E

�
such that for all e, E

1
e4 τH� � �

E
� 1

e4 .
With these we can now prove Proposition 6.6:

Proposition A.4
� is a strong first-order bisimulation which respects housekeeping.

Proof
First observe that an alternative definition of � is as the smallest equivalence given by:

Λ
�� e � e % e �� f

' �� g � e
��&% f

�� g
'

e
�� % f

�� g
' � f

�� % e �� g
'

% e �� f
'
g � e

���% f g
'

c % e �� f
' � e

���% c f
' % e �� f / g ' � e

���% f / g '

! ��� x 3 e
�� f

���
g � e

���! ��� x 3 f
���

g
� �

e
�� f

� � ��� g
� ! ��� h � e

�� � �
f
� � ��� g

� ! ��� h

e � f
E
1
e 4 � E

1
f 4

Then show by induction on the proof of this alternative that � satisfies the required properties to
be a first-order strong bisimulation which preserves housekeeping.

The next result shows that the auxilarly predicates used in the reduction semantics of µCMLcv, 3 = ,
have their exact counterparts in the µCML

�
semantics:

40 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

Proposition A.5

1. ge k!v� � e iff ge
k��� k? with % e / v ' ,

2. ge k?x� � e iff ge
k��� k!x with % e /7% '�' ,

3. ge τ� � e iff ge � e, and

4. if ge1
k��� ge2 with % e1 / e2

'
then gei

k!v� � ei and ge j
k?v� � e j .

Proof
A routine structural induction.

We these results we can now give the proof of Proposition 6.7, which for convenience we restate:

Proposition A.6
If C τH� � �

e and e is tidy, then the following diagrams can be completed:

C
τ

�

H � e C
τ

�

H � e

as

C
�

l
�

C
�

l
�

τ
���
H� � e

�
l
�

and:

C
τ

�

H � e C
τ

�

H � e

as

e
�

l
�

C
�

l
�

τ
���
H� � e

�
l
�

Proof
The first diagram is completed by case analysis of C l� � � C

�
. We shall prove some of the cases, as the

others are similar.
� If C τ� � � C

�
from the const rule, then C 3 E

�
1

1
E2

1
cv 4 4 and C

� 3 E
�
1

1
E2

1
cv4 . Then by Proposi-

tions A.1 and A.3:

C 3�3�3�3�3�3�3 E
�
1

1
E2

1
cv 4 4 τ

�

H� E
�
1

1
E
�
2

1
cv 4 4 3�3�3�3�3�3�3�3�3�3�3 e

C
�

τ
�

3�3�3�3�3 E
�
1

1
E2

1
δ % c / v ' 4 4

τ
�

τ
�

H� E
�
1

1
E
�
2

1
δ % cv

' 4 4 � � E
�
1

1
E
�
2

1
Λ

�� δ % cv
' 4 4

τ
�

� If C � v� � � C
�
then C 3 C

� � �� v and C
� 3 C

� � �� Λ, so:

C 3 3�33 3�33 C
� � �� v

τ
�

H � e
� � �� v 3�3�3�3�3�3�3 e

C
�

� v
�

3�3�3�3�3�3 C
� � �� Λ

� v
�

τ
�

H� e
� � �� Λ � � � � � e

� � �� Λ

� v
�

� If C k!v� � � C
�

then (from the definition of C k!v� � � C
�

and the comm rule) C 3 E
�
1

1
E2

1 ��-�� � 1 ge 4 4 4 ,
C 3 E

�
1

1
E2

1
e 4 4 , and ge

k��� k? with % e / v ' , so by Proposition A.5, ge k!v� � e, and so by Proposi-

A Theory of Weak Bisimulation for Core CML 41

tions A.1 and A.3:

C 333 333 E
�
1

1
E2

1 ��-�� � 1 ge4 4 4 τ
�

H� E
�
1

1
E
�
2

1
ge 4 4 3�3�3�3�3�3 e

C
�

k!v
�

3�3�3�3�3�3�3�3 E
�
1
1
E2

1
e 4 4

k!v
�

τ
�

H� E
�
1
1
E
�
2
1
e 4 4 � � � E

�
1
1
E
�
2
1
e 4 4

k!v
�

The second diagram is completed by induction on C. We shall prove some of the cases, as the others
are similar.

If C 3 E
1
f 4 , E is a one-level deep reduction context for both µCML

�
and µCMLcv, e 3 E

1
g 4 ,

f τH� � �

g, e
� 3 E

1
g
� 4 and g α� � g

�
then by induction f l� � � C

� τH� � �

f
�

� g
�

and we can show by
induction on E that E

1
g 4 l� � � � E

1
C 4 so by Propositions 6.6:

C 333�333 33 E
1
f 4 τ

�

H � E
1
g4 33�3�3 3�3�33 e

C
� �

α
�

� � � � � � � E
1
f
� 4

�
�

�
�

τ
���
H

�

�
�

�
�

τ
���
H

�

f
� �

� � � � � � � E
1
g
� 4

α

�

3�3�3�3�3�3�3 e
�

α

�

Otherwise:

� If C 3 c f then f τH� � �

g, g is tidy and cg τH� � �

e, so either:

— c 3 ��-�� � , e 3 g
� �� ge, g ��� ge �� ��� � g

�
, and f τH� � �

g, so by induction and the definition of
� v� � � , f 3 g 3 1

ge4 and g
� 3 Λ, so e

� 3 Λ
�� g

� �
and ge α� � g

� �
, so by Proposition A.5,��- � � 1 ge4 α� � � g

� �
, and so:

C 3�3�3�3�3�3 ��-�� � 1 ge 4 τ
�

H� Λ
�� ge 3�3�3 3�3�33 e

g
� �

α
�

τ
���
H � g

� �
� � � � � � Λ

�� g
� �

α
�

3 33333 3 e
�

α
�

— c 3 ��"�	�# �
, e 3 ��"�	5# �

g, e
� 3 g

� �� v % ' �� % ' and g � v� � g
�
, so by induction and the definition

of � v� � � , f 3 g 3 v and g
� 3 Λ, and so:

C 3�3�3�3�3�3 ��"�	�#$�
v

τ
�

H � ��"�	�# �
g 33 3�3 3333 e

v % ' �� % '
τ
�

τ
���
H� v % ' �� % ' � � � Λ

�� v % ' ���% '
τ
�

3+3�363+3 e
�

τ
�

42 W. Ferreira, M. Hennessy and A. S. A. Jeffrey

— or e
� 3 g

� �� δ % c / v ' and g � v� � g
�
, so by induction and the definition of � v� � � , f 3 g 3 v and

g
� 3 Λ, and so:

C 3�3�3�3�3�3�3�3 cv
τ

�

H� ��"�	�# �
g 33�3�3�33�3 e

δ % c / v '
τ
�

τ
���
H � δ % c / v ' � � � � Λ

�� δ % c / v '
τ
�

363+3�363 e
�

τ
�

� If C 3 f1 f2 then f1
τH� � �

g1 � v� � g
�
1 where v 3 :+<�% x 3 ���

y = g3
'
, f2

τH� � �

g2, e 3 g
�
1
��&! ��� y 3

g2
���

g3
1
v � x 4 , so by induction and the definition of � v� � � , f1

3 g1
3 v and g

�
1
3 Λ, and so either:

— e
� 3 g

�
1
�� ! ��� y 3 g

�
2
���

g3
1
v � x 4 and g2

α� � g
�
2 so by induction (up to associativity of

�� and
Λ being a left unit), f2

α� � � C
� �� f

�
2

τH� � ���
f3

�� f
� �
2

� g
�
2, and so:

C 3�3�3�3�3�3�3�3�3�3�3�3�3�3 v f2
τ

�

H� Λ
���! ��� y 3 g2

���
g3

1
v � x4 3�3 3�33�3 e

C
� �� v f

�
2

α
�

τ
���
H� f3

���! ��� y 3 f
� �
2
���

g3
1
v � x 4 � � Λ

���! ��� y 3 g
�
2
���

g3
1
v � x4

α
�

3�3+363�3 e
�

α
�

— or e
� 3 g

�
1
�� g

�
2
�� g3

1
v � x 4 1w � y 4 and g2 � w��� � g

�
2, so by induction and the definition of � v� � � ,

f2
3 g2

3 w and g
�
2
3 Λ, and so:

C 33�3 33�3 3�33�33 vw
τ

�

H� Λ
���! ��� y 3 w

���
g3

1
v � x 4 3�33�33�3 e

g3
1
v � x 4 1 w � y4

τ
�

τ
�

H� g3
1
v � x4 1 w � y 4 � � � Λ

�� Λ
�� g3

1
v � x4 1 w � y 4

τ
�

3�3�3�3�3�3 e
�

τ
�

The result follows.

References

Agha, G., Mason, I., Smith, S., & Talcott, C. (1994). A foundation for actor computation. J. func-
tional programming.

Baeten, J. C. M., & Vaandrager, F. W. (1992). An algebra for process creation. Acta informatica,
29(4), 303–334.

Bergstra, J. A., & Klop, J. W. (1985). Algebra of communicating processes with abstraction. Theoret.
comput. sci., 37, 77–121.

Berry, D., Milner, R., & Turner, David N. (1992). A semantics for ML concurrency primitives. Proc.
popl 92.

Bolignano, D., & Debabi, M. (1994). A semantic theory for concurrent ML. Proc. TACS ’94.

Debabi, M. (1994). Integration de paradigmes de programmation paralle, fonctionnelle et impera-
tive. Ph.D thesis, Universite D’Orsay.

Ferreira, W. (1995). Semantic theories for concurrent ML. D.Phil thesis, COGS, Sussex Univ.

Ferreira, W., & Hennessy, M. (1995). Towards a semantic theory of CML. Proc. MFCS 95. Lecture
Notes in Comp. Sci., no. 969. Springer-Verlag.

Giacalone, A., Mishra, P., & Prasad, S. (1989). Facile: A symmetric integration of concurrent and
functional programming. Pages 184–209 of: Proc. Tapsoft 89. LNCS, vol. 352. Springer-Verlag.

A Theory of Weak Bisimulation for Core CML 43

Gordon, A.D. (1995). Bisimilarity as a theory of functional programming. Proc. MFPS 95. Elec-
tronic Notes in Comp. Sci., no. 1. Springer-Verlag.

Gunter, C. (1992). Semantics of programming languages. MIT Press.

Havelund, K. (1994). The fork calculus: Towards a logic for concurrent ML. Ph.D thesis, École
Normale Superieur, Paris.

Hennessy, M. (1988). Algebraic theory of processes. MIT Press.

Hoare, C. A. R. (1985). Communicating sequential processes. Prentice-Hall.

Holmström, S. (1983). PFL: A functional language for parallel programming. Pages 114–139 of:
Proc. declarative programming workshop.

Howe, D. (1989). Equality in lazy computation systems. Pages 198–203 of: Proc. LICS 89.

Howe, D. (1992). Proving congruenceof simulation orderings in functional languages. Unpublished
manuscript.

ISO 8807. (1989). LOTOS—a formal description technique based on the temporal ordering of ob-
servational behaviour.

Jeffrey, A.S.A. (1995). A fully abstract semantics for a concurrent functional language with monadic
types. Pages 255–264 of: Proc. LICS 95.

Milner, R. (1989). Communication and concurrency. Prentice-Hall.

Milner, R. (1991). The polyadic π-calculus: a tutorial. Proc. international summer school on logic
and algebra of specification.

Milner, R., Parrow, J., & Walker, D. (1992). A calculus of mobile proceses. Inform. and comput.,
100(1), 1–77.

Moggi, E. (1991). Notions of computation and monad. Inform. and comput., 93, 55–92.

Nielson, F., & Nielson, H. R. (1993). From CML to process algebras. Report DAIMI FN-19. Dept.
Comp. Sci., Aarhus University.

Nielson, F., & Nielson, H. R. (1996). Communication analysis for concurrent ML. In ML with
concurrency, Springer.

Nikhil, S. (1990). Id reference manual. MIT Lab. for Comp. Sci.

Pierce, B. C., & Turner, D. N. (1995). Pict: A programming language based on
the pi-calculus. Technical report in preparation; available electronically from
http://www.cl.cam.ac.uk/users/bcp1000/ftp/index.html.

Plotkin, G. (1975). Call-by-name, call-by-value and the lambda-calculus. Theoret. comput. sci., 1,
125–159.

Reppy, J. (1991a). A higher-order concurrent langauge. Pages 294–305 of: Proc. SIGPLAN 91.

Reppy, J. (1991b). An operational semantics of first-class synchronous operations. Technical report
TR 91-1232. Dept. Comp. Sci., Cornell Univ.

Reppy, J. (1992). Higher-order concurrency. Ph.D thesis, Cornell Univ.

Panangaden, P., & Reppy, J. (1996). The essence of concurrent ML. In ML with concurrency,
Springer.

Sangiorgi, D. (1992). Expressing mobility in process algebras: First-order and higher-order
paradigms. Ph.D thesis, LFCS, Edinburgh Univ.

Thomsen, B. (1995). A theory of higher order communicating systems. Inform. and comput., 116(1),
38–57.

Wright, A., & Felleisen, M. (1991). A syntactic approach to type soundness. Technical report TR91-
160. Dept. of Comp. Sci., Rice Univ.

