
A core data and behaviour language for E-LOTOS

Alan Jeffrey

Based on discussions at the COST 247 short term scientific mission
attended by Hubert Garavel,. Guy Leduc, Charles Pecheur,

Ricardo Peña and Mihaela Sighireanu

University of Liège April 1996

Abstract

This paper presents an integrated core data and behaviour language for LOTOS. This
core language is not directly usable for specifications, but we can define some syntax
sugar to make it more usable and compatible with existing specifications.

1 Introduction

This paper presents static and dynamic semantics for a fragment of LOTOS with a functional
(rather than algebraic) data language.

The fragment considered is based on the core languages discussed in [1], and extends it by
considering exception handling and subtyping.

Exception handling has been suggested as a useful addition to LOTOS, allowing termina-
tion to be generalized from just the δ-gate to other gates.

Subtyping appears in existing LOTOS in two places:

� When the functionality of a process is calculated, noexit functionality is treated spe-
cially, for example:

Process Functionality
stop noexit

exit
�
1 � exit int

stop � exit
�
1 � exit int

stop � exit
�
1 � noexit

� When untyped gates are used, data of more than type can be sent on a single gate, for
example:

G!1;G!true; stop

1

In existing LOTOS, these two phenomena are treated by different ad hoc mechanisms. In this
paper we propose unifying both into a form of record subtyping. This includes record types
none (a type with no inhabitants) and � � a completely unspecified record. This subtyping
relation allows record types to be intersected and unioned, for example:

� a : intb : bool ����� a : int c : float ��� � a : intb : boolc : float �
� a : intb : bool ����� a : int c : float ��� � a : int �

T � none � T

T � none � none

This then provides simple rules for calculating the functionality of a behaviour, such as:

C � B1 	 exitT1
C � B2 	 exitT2

C � B1 � B2 	 exitT1 � T2

C � B1 	 exitT1
C � B2 	 exitT2

C � B1 � B2 	 exitT1 � T2

This paper is concerned with the integration of a functional data language with the LOTOS
behavioural language. In particular:

� In Section 2 we present a ‘core’ behaviour language based on [1]. This is given a static
and dynamic semantics in the style of the SML formal language definition [3].

� In Section 3 we provide syntax sugar to make the core language more usable, for exam-
ple providing ‘if’ statements as syntax sugar for ‘case’. The most important addition is
the use of immediately exiting LOTOS behaviours to perform data computations.

This paper uses syntax and definitions from [2, 1], to which the reader is referred for an
introduction to the language, examples of its use, and motivation for the design choices made.

2 Core language

The core language we consider here is monomorphic, explicitly typed, and allows record
subtyping. In this paper we do not consider implicit typing or overloading.

The terminals of the abstract syntax are:

syntactic category symbol
type identifier S

variable identifier V
gate identifier G

process identifier Q

The non-terminals are:

2

syntactic category symbol
type T

constant K
primitive constant R

pattern P
behaviour B

pattern-match M

In this paper we will not discuss the primitive constants, but we assume they contain standard
constants such as integers, floats, and strings.

In this abstract grammar we have not given end keywords for each of the constructs, for
example there is no endproc keyword. In the concrete grammar these should be included
where appropriate. We have also used ������� � as the syntax for records rather than

� ����� � , and
as the syntax for record wildcard rather than ����� , in order to clarify the difference between the
concrete and meta languages (for example � E1 � ����� � En � � rather than

�
E1 � ����� � En � ����� � � .

The static semantics is given by judgements such as C � B 	 exitT where C is a context
given by the grammar:

C :: � V 	 T�
S 	 type�
C 	

�
T � S ��

Q 	
��� �

gateT �
	���� T � T ��
G 	 gateT� � ��
C � C

where all identifiers in a context must be unique. We view contexts up to ‘ � ’ being a commu-
tative monoid with unit

� � . We write C1; C2 for the context given by over-riding C1 by C2, and
C � V 	 T for C � C � V 	 T (and similarly for the other judgements).

The dynamic semantics is given by judgements such as E � B
α � K �� � B where E is an envi-

ronment given by the grammar:

E :: � C 	
�
T � S ��

Q 	 λ
�
G 	 � M� � ��

E � E
where all identifiers in an environment must be unique. We use the same notation for envi-
ronments as we do for contexts. Note that since LOTOS allows gates to be untyped, we have
to perform run-time type-checking, so we have to carry the types of constructors in environ-
ments.

3

2.1 Declarations

Declarations come in two flavours: datatype declarations such as:

type intlist is
nil � �
cons � int � intlist �

and process declarations such as:

processStack
�
i : gate int � o : gate int � � l : intlist � : exitnoneis

case l of
nil � � �

i?
�
x : int � ;Stack

�
i � o � � cons � x � l � �

cons � y : int � ys : intlist � �
i?x : int;Stack

�
i � o � � cons � x � l � � � o!y;Stack

�
i � o � � ys �

The syntax of declarations is:

D :: � typeS is
�
C

�
T � � 	�

process Q
� �

G : gateT ��	�� T : exitT isM

The static semantics of declarations is given with judgements of the form:

C � D 	 C
The dynamic semantics of declarations is given with judgements of the form:

E � D 	 E

2.1.1 Type declarations

Syntax:

typeS is
�
C

�
T � � 	

Static semantics:

C �
�
T 	 type

C � typeS is
�
C

� �
T � 	

�
S 	 type �

�
C 	

� �
T � S � �

Dynamic semantics:

E � typeS is
�
C

� �
T � 	

� �
C 	

�
T � S �

4

2.1.2 Process declarations

Syntax:

processQ
� �

G : gateT � 	 � T : exitT isM

Static semantics:

C �
�
T 	 type

C ;
�
G 	 gate

�
T � M 	 T � exitT
C � processQ

� �
G : gate

�
T � T : exitT isM 	�

Q 	
�
gate

�
T ��� T � exitT �

Dynamic semantics:

E � processQ
� �
G : gate

�
T � T : exitT isM 	�

Q 	 λ
� �
G � M �

2.2 Types

A type is either:

� a type identifier S,

� a fixed record of types � V1 : T1 ����� Vn : Tn � ,
� an extensible record of types � V1 : T1 ����� Vn : Tn � , or

� the empty type none.

We can define a subtyping relation

Process Functionality
exit � a : � 1b : � true � exit � a : intb : bool �
exit � a : � 1c : � 1 � 0 � exit � a : int c : float �

exit � a : � 1b : � true � � exit � a : � 1c : � 1 � 0 � exit � a : int �
exit � a : � 1b : � true � � exit � a : � 1c : � 1 � 0 � exit � a : intb : boolc : float �

The syntax of types is:

T :: � S� � �
V : T � 	 � � ��

none

where we require record field names to be disjoint. A record type is any type other than a type
identifier S.

5

The static semantics is given by judgements of the form:

C � T 	 type

Types have no dynamic semantics.
We define record subtyping as a preorder

�
on record types, generated by:

none
� �

�
V :

�
T

� � �
�

�
V1 :

�
T1

�
V2 :

�
T2

� � � � �
�
V1 :

�
T1 �

�
�
V1 :

�
T1

�
V2 :

�
T2 � � �

�
V2 :

�
T2

�
V1 :

�
T1 �

�
�
V1 :

�
T1

�
V2 :

�
T2 � � �

�
V2 :

�
T2

�
V1 :

�
T1 �

This is a preorder with bottom none and top � � . We shall write T � T for the resulting
equivalence on types (given by commutativity of record fields).

If:

T � � �
V :

�
T

�
V :

�
T � � � T � � �

V :
�
T

�
V :

�
T � � � where V i � V j implies T i �� T j

then we can define type union as:

none � T � T

T � none � T

T � T � �
T if T � T
�

�
V :

�
T � otherwise

If:

T � � �
V :

�
T

�
V :

�
T � � � T � � �

V :
�
T

�
V :

�
T � � � where V i � V j implies T i �� T j

then we can define type intersection as:

none � T � none

T � none � none

T � T �
�������� �������

T if T � T
T if

�
V is empty and T is extensible

T if
�
V is empty and T is extensible

�
�
V :

�
T

�
V :

�
T

�
V :

�
T � if

�
V and

�
V are disjoint

and T and T are extensible
none otherwise

Type union and type intersection are join (or least upper bound) and meet (or greatest lower
bound) for subtyping.

2.3 Type identifiers

Syntax:

S

Static semantics:

C � S 	 type � S 	 type

6

2.3.1 Records

Syntax:

� �
V : T � 	 � � �

Static semantics:

C �
�
T 	 type

C � �
�
V :

�
T

� � � 	 type

2.3.2 Empty type

Syntax:

none

Static semantics:

C � none 	 type

2.4 Patterns

Patterns are used in defining processes, case statements, and communication offers, for exam-
ple:

G � a : � !1b : � ?x : bool � ;exit � a : � !0b : � !x �
The syntax of patterns is:

P :: � R� � �
V : � P � 	 � � ��

C
�
P ��

any : S�
?V asP�
!K

where we require all record field names to be unique.
The static semantics is given by judgements of the form:

C � P 	
�
T � C � C � P 	

�
S � C �

The dynamic semantics is given by judgements of the form:

C � �
P 	 K � 	 σ C � �

P 	 K � 	 fail

where σ is a substitution.

7

2.4.1 Primitive constants

Syntax:

R

Static semantics:

C � R 	
�
S � � � �

�
R : S �

Dynamic semantics:

E � �
R 	 R � 	

� �

E � �
R 	 K � 	 fail

�
R �� K �

2.4.2 Records

Syntax:

� �
V : � P �
	 � � �

Static semantics:

C �
�
P 	

� �
T �

�
C �

C � �
�
V : �

�
P

� � � 	
� �

�
V :

�
T

� � � � � �
C � �

Dynamic semantics:

E � �
P 	 K � 	 fail

E � � ������� V : � P ����� � 	 ������� V : � K ����� � � 	 fail

E � � �
P 	

�
K � 	

�
σ

E � � �
�
V : �

�
P � 	 �

�
V : �

�
K � � 	

� �
σ �

E � � �
P 	

�
K � 	

�
σ

E �
�
K 	

�
T

E � � �
�
V : �

�
P � 	 �

�
V : �

�
K

�
V : �

�
K � � � � 	

� �
σ �

8

2.4.3 Constructor application

Syntax:

C
�
P �

Static semantics:

C � C 	
�
T � S �

C � P 	
�
T � C �

C � C
�
P � 	

�
S � C �

Dynamic semantics:

E � �
P 	 K � 	

�
σ

�
fail �

E � �
C

�
P � 	 C

�
K � � 	

�
σ

�
fail �

E � �
C

�
P � 	 K � 	 fail

�
K �� C

� ����� � �

2.4.4 Wildcard

Syntax:

any : T

Static semantics:

C � any : T 	
�
T � � � �

Dynamic semantics:

E � K 	 T
E � �

any : T 	 K � 	
� �

2.4.5 Bound variables

Syntax:

?V asP

Static semantics:

C � P 	
�
T 	 C �

C � ?V asP 	
�
T � �

C � V 	 T � �
Dynamic semantics:

E � �
P 	 K � 	 σ

E � �
?V asP 	 K � 	

�
σ � K � V �

9

2.4.6 Constants

Syntax:

!K

Static semantics:

C � K 	 T
C � !K 	

�
T � � � �

Dynamic semantics:

E � �
!K 	 K � 	

� �

E � �
!K 	 K � 	 fail

�
K �� K �

2.5 Pattern-matching

The syntax of pattern-matching is:

M :: � P
�
B � � B

� �
P
�
B � � B ��	

The static semantics is given by judgements of the form:

C � M 	
�
T � exitT �

The dynamic semantics is given by judgements of the form:

C � �
M 	 K � α � K � �� � B

2.5.1 Pattern-match

Syntax:

P
�
B � � B

� �
P
�
B � � B � 	

Static semantics:

C � P 	
�
T � C �

C ; C � B1 	 exitbool
C ; C � B2 	 exitT

C � �
P
�
B1 � � B2 � 	

�
T � exitT �

C � P 	
�
T1 � C �

C ; C � B1 	 exitbool
C ; C � B2 	 exitT 1

C � M 	
�
T2 � exitT 2 �

C � �
P
�
B1 � � B2 � �

M 	
�
T1 � T2 � exitT 1 � T 2 �

10

Dynamic semantics:

E � �
P 	 K � 	 σ

E � B1
�
σ � δtrue� � B 1

E � B2
�
σ � α � K �� � B 2

E � � �
P
�
B1 � � B2

� �
M � 	 K � α � K �� � B 2

E � �
P 	 K � 	 σ

E � B1
�
σ � δfalse� � B 1

E � �
M 	 K � α � K �� � B

E � � �
P
�
B1 � � B2

�
M � 	 K � α � K �� � B

E � �
P 	 K � 	 fail

E � �
M 	 K � α � K �� � B

E � � �
P
�
B1 � � B2

�
M � 	 K � α � K �� � B

2.6 Constants

The syntax of constants is:

K :: � R�
V� � �

V : � K � 	 � � ��
C

�
K �

where we require all record field names to be unique.
The static semantics is given by judgements of the form:

C � K 	 T

The dynamic semantics is given by judgements of the form:

E � K 	 T

Note that the dynamic semantics has to type-check constants: this is because LOTOS allows
processes such as:

hideG : gatebool inG?V : bool;H!V ; stop

which can ‘randomly generate’ any boolean—in order to ensure type safety we therefore have
to carry type information at run time.

Note also that the dynamic rules for type checking are just the same as the static rules, so
we omit them.

11

2.6.1 Primitive constants

Syntax:

R

Static semantics:

C � R 	 S

�
R : S �

2.6.2 Variables

Syntax:

V

Static semantics:

C � V 	 T � V 	 T

2.6.3 Records

Syntax:

� �
V : � K � 	 � � �

Static semantics:

C �
�
K 	

�
T

C � �
�
V : �

�
T

� � � 	 �
�
V :

�
T

� � �

2.6.4 Constructor application

Syntax:

C
�
K �

Static semantics:

C � K 	 T
C � C 	

�
T � S �

C � C
�
K � 	 S

12

2.7 Behaviours

The syntax for behaviours given here is simple, and consists of the following changes to
existing LOTOS:

� Patterns and pattern-matching are used uniformly throughout the language.

� Enabling is generalized to include exception handling as well as normal termination.

� Gate renaming is added as an explicit operator, and includes the ability to perform sim-
ple data transformations as well.

� We use behaviours of functionality exitbool as selection predicates.

Exception handling is based on generalized termination, and allows a behaviour to terminate
either with the δ gate, or by any other gate, for example a process which traps a division-by-
zero exception is:

G?X : int;G?Y : int;exit � X � Y � �����
accept � Z : int � � H!Z; stop
trapDiv � � � H!0; stop

Gate renaming has always been available in LOTOS, but only through the ‘back door’ of
process definition. Here, we make it an explicit operator, and also allow simple data transfor-
mations to be made. For example a field of a gate can be hidden with:

renameG � a : int � b : float � : � G � a � inB

or two fields can be swapped with:

renameG � a : int � b : int � : � G � b � a � inB

The syntax for behaviours is:

B :: � exitP�
i;B�
GP

�
B � ;B�

Q
�
G 	 � �

K ��
B

� �
G 	 � � B�

B � B�
B � B�
stop�
hideG : gateT inB�
caseK ofM�
B ����� acceptM

�
trapGM � 	�

rename
�
G

�
P � : � G

�
K � �
	 inB

13

The static semantics is given by judgements of the form:

C � B 	 exitT

The dynamics semantics is given by judgements of the form:

E � B
α � K �� � B

where α ranges over actions:

a :: � G
�
i α :: � a

�
δ

2.7.1 Termination

Syntax:

exitP

Static semantics:

C � P 	
�
T � � � �

C � exitP 	 exitT

Dynamic semantics:

E � �
P 	 K � 	

� �
E � exitP

δ � K �� � stop

2.7.2 Internal action prefix

Syntax:

i;B

Static semantics:

C � B 	 exitT
C � i;B 	 exitT

Dynamic semantics:

E � i;B
i ���� � B

14

2.7.3 Action prefix

Syntax:

GP
�
B � ;B

Static semantics:

C � G 	 gateT
C � P 	

�
T � C �

C ; C � B1 	 exitbool
C ; C � B2 	 exitT

C � GP
�
B1 � ;B2 	 exitT

�
T �

T �

Dynamic semantics:

E � �
P 	 K � 	 σ

E � B1
�
σ � δtrue� � B 1

E � GP
�
B1 � ;B2

G � K �� � B2
�
σ �

2.7.4 Process instantiation

Syntax:

Q
�
G 	 � �

K �
Static semantics:

C � Q 	
�
gate

�
T ��� T � exitT

C �
�
G 	 gate

�
T

C � K 	 T
C � Q

� �
G � �

K � 	 exitT
Dynamic semantics:

E � Q 	 λ
� �
G � M

E � rename
�
G : �

�
G incaseK ofM

α � K � �� � B
E � Q

� �
G � �

K � α � K � �� � B

2.7.5 Parameterized concurrency

Syntax:

B
� �
G 	 � � B

15

Static semantics:

C � B1 	 exitT1
C � B2 	 exitT2

C �
�
G 	 gate

�
T

C � 	 B1
� � �
G � � B2 	 exitT1 � T2

Dynamic semantics:

E � B1
G � K �� � B 1

E � B2
G � K �� � B 2

E � B1
� � �
G � � B2

G � K �� � B 1
� � �
G � � B 2

�
G �

�
G �

E � B1
a � K �� � B 1

E � B1
� � �
G � � B2

a � K �� � B 1
� � �
G� � B2

�
a ��

�
G�

E � B2
a � K �� � B 2

E � B1
� � �
G � � B2

a � K �� � B1
� � �
G� � B 2

�
a ��

�
G�

E � B1
δ � K �� � B 1

E � B2
δ � K �� � B 2

E � B1
� � �
G � � B2

δ � K �� � B 1
� � �
G� � B 2

2.7.6 Synchronized concurrency

Syntax:

B � B

Static semantics:

C � B1 	 exitT1
C � B2 	 exitT2

C � B1 � B2 	 exitT1 � T2

Dynamic semantics:

E � B1
G � K �� � B 1

E � B2
G � K �� � B 2

E � B1 � B2
G � K �� � B 1 � B 2

16

E � B1
i ���� � B 1

E � B1 � B2
i ���� � B 1 � B2

E � B2
i ���� � B 2

E � B1 � B2
i ���� � B1 � B 2

E � B1
δ � K �� � B 1

E � B2
δ � K �� � B 2

E � B1 � B2
δ � K �� � B 1 � B 2

2.7.7 Choice

Syntax:

B � B

Static semantics:

C � B1 	 exitT1
C � B2 	 exitT2

C � B1 � B2 	 exitT1 � T2

Dynamic semantics:

E � B1
α � K �� � B 1

E � B1 � B2
α � K �� � B 1

E � B2
α � K �� � B 2

E � B1 � B2
α � K �� � B 2

2.7.8 Deadlock

Syntax:

stop

Static semantics:

C � stop 	 exitnone

No dynamic semantics rules are needed.

17

2.7.9 Gate hiding

Syntax:

hideG : gateT inB

Static semantics:

C � T 	 type
C ;G 	 gateT � B 	 exitT

C � hideG : gateT inB 	 exitT
Dynamic semantics:

E � B
G � K �� � B

E � hideG : gateT inB
i � �� � hideG : gateT inB

E � B
α � K �� � B

E � hideG : gateT inB
α � K �� � hideG : gateT inB

�
α �� G �

2.7.10 Case

Syntax:

caseK ofM

Static semantics:

C � K 	 T
C � M 	

�
T � exitT �

C � caseK ofM 	 exitT
�
T �

T �

Dynamic semantics:

E � �
M 	 K � α � K � �� � B

E � caseK ofM
α � K � �� � B

2.7.11 Generalized enabling

Syntax:

B ����� acceptM
�
trapGM ��	

Static semantics:

C � M 	
�
T � exitT �

C �
�

M 	
� �
T � exitT �

C ;
�
G 	 gate

�
T � B 	 exitT
C � B � ��� acceptM trap

�
G

�
M 	 exitT

�
T �

T �

18

Dynamic semantics:

E � B
a � K �� � B

E � B ����� acceptM trap
�
G

�
M

a � K �� � B � ��� acceptM trap
�
G

�
M

�
a ��

�
G �

E � B
δ � K �� � B

E � �
M 	 K � α � K � �� � B

E � B ����� acceptM trap
�
G

�
M

α � K � �� � B

E � B
Gi � K �� � B

E � �
Mi 	 K � α � K � �� � B

E � B ����� acceptM trap
�
G

�
M

α � K � �� � B

2.7.12 Gate renaming

Syntax:

rename
�
G

�
P � : � G

�
K � � 	 inB

Static semantics:

C �
�
G 	 gate

�
T

C � � �
P 	

�
T � 	

�
C

C ;
�
C �

�
K 	

�
T

C ;
�
G 	 gate

�
T � B 	 exitT
C � rename

�
G

� �
P � : �

�
G � �

K � inB 	 exitT
Dynamic semantics:

E � B
Gi � K �� � B

E � �
Pi 	 K � 	 σ

E � rename
�
G

� �
P � : �

�
G � �

K � inB
G �i � Ki � σ� �� � rename

�
G

� �
P � : �

�
G � �

K � inB

E � B
α � K �� � B

E � rename
�
G

� �
P � : �

�
G � �

K � inB
α � K �� � rename

�
G

� �
P � : �

�
G � �

K � inB
�
α ��

�
G �

3 Syntactic sugar

The core language has a fairly simple syntax and semantics, but needs more features before it
is usable as a specification language. In this section we provide some syntactic sugar to make
the core language more usable, and to bring it closer to the user level language.

19

3.1 Omitting type information

In the core language, all bound variables must be explicitly typed, for example:

processStack
�
i : gate int � o : gate int � � l : intlist � : exitnoneis

case l of
nil � � �

i?
�
x : int � ;Stack

�
i � o � � cons � x � l � �

cons � y : int � ys : intlist � �
i?x : int;Stack

�
i � o � � cons � x � l � � � o!y;Stack

�
i � o � � ys �

Many of these annotations are unnecessary, for example there is no need to annotate y and
ys since their type can be deduced from the type of l. Type annotations can be omitted from
pattern P when:

� P occurs in a communication G
�
P � � B1 � ;B2 where the type of G determines the type of

P, or when

� P is used in a pattern match P � B, since the surrounding context will give the type of
P.

For example we could give the above process as:

processStack
�
i : gate int � o : gate int � � l : intlist � : exitnoneis

case l of
nil � � �

i?x;Stack
�
i � o � � cons � x � l � �

cons � y � ys � �
i?x;Stack

�
i � o � � cons � x � l � � � o!y;Stack

�
i � o � � ys �

By default gates have type gate � � .

3.2 Pattern shorthand

We can use variables as patterns:

P :: � ����� � ?V : T

by defining the shorthand:

?V : T
�����

� ?V asany : T

For example:

i?x : int;o!x; stop

is shorthand for:

i
�
?xasany : int � ;o!x; stop

20

3.3 Process declaration

Not all process declarations are case-statements, so we allow process declarations to have
behaviours as bodies (not just pattern-matches):

D :: � ����� � processQ
� �

G : gateT ��	�� � �
V : T �
	 � � � : exitT isB

This can be expanded as:

processQ
� �
G : gate

�
T � �

�
V :

�
T

� � � : exitT isB
� � �

� processQ
� �
G : gate

�
T � �

�
V :

�
T

� � � : exitT is �
�
V : � ?

�
V :

�
T

� � � � B

For example:

processQ
�
G � � x : int y : int � : exit int isG!x;exit

�
!y �

is shorthand for:

processQ
�
G � � x : int y : int � : exit int is � x : � ?xy : � ?y � � G!x;exit

�
!y �

3.4 Expressions

In the core language, there is no non-trivial computation of expressions, for example only
constants are allowed in process instantiation, output and exit . This is obviously impractical,
and we need to extend the language with a syntax for expressions, which may have non-trivial
behaviour (for example failing to terminate or raising an exception).

Introduce new syntactic terminals F (function identifiers) and X (exceptions) and non-
terminals E (expressions) and EM (expression matches):

E :: � R�
V� � �

V : � E �
	 � � ��
C

�
E ��

F
�
X 	 � �

E ��
raiseX

�
E ��

caseE ofEM
�
trapX EM � 	

EM :: � P
�
E � � E

� �
P
�
E � � E � 	

D :: � ����� � functionF
� �

X : exceptionT � 	�� T : T isEM

We translate an expression of type T to a behaviour of type exitT , and an exception of type T
to a gate of type T (using fresh variables Yi). This coding is based on Moggi’s translation of
the call-by-value λ-calculus into the monadic metalanguage [4]:

R
�����

� exit
�
R �

V
�����

� exit
�
!V �

21

�
�
V : �

�
E

� � �
�����

� E1
����� accept?Y1 � ����� En

� ��� accept?Yn �
exit! � V1 : � Y1 ����� Vn : � Yn

� � �
C

�
E �

�����

� E ����� accept?Y � exit
�
!C

�
Y � �

F
� �
X � �

E �
�����

� E ����� accept?Y � F
� �
X � �

Y �
raiseX

�
E �

�����

� E ����� accept?Y � X!Y ; stop

caseE ofEMtrap
�
X

�
EM

�����

� E ����� acceptEMtrap
�
X

�
EM

An expression match of type T � T is translated to a behaviour match of type T � exitT :
P1

�
E1 � � E 1

� ����� � Pn
�
En � � E n

�����

� P1
�
E1 � � E 1

� ����� � Pn
�
En � � E n

A function declaration of type
�
exception

�
T � � T � T is translated to a process declaration of

type
�
gate

�
T ��� T � exitT :

functionF
� �
X : exception

�
T � T : T isEM

�����

� processF
� �
X : gate

�
T � T : exitT isEM

3.5 Expressions in behaviours

Once the data language has been extended with expressions, the behaviour language should
be similarly extended:

B :: � ������
exit

�
O ��

GO
�
E � ;B�

Q
�
G 	 � �

E ��
caseE ofM

�
trapGM ��	�

raiseX
�
O �

O :: � � �
V : � �

!E
�
P � � 	 � � �

These all use similar translations as for expressions, for example:

G ������� V1 : � PV2 : � !E ����� � � E � ;B
� � �

� G �
����� V2 : � !E V1 : � P ����� � � E � ;B

G �
�
V : � !

�
E

�
V : �

�
P

� � � � E � ;B
� � �

� �
�
V : �

�
E � ����� accept �

�
V : � ?

�
V � �

G �
�
V : � !

�
V

�
V : �

�
P

� � � � E � ;B

The keyword ‘exception’ can be treated as synonymous with ‘gate’.

3.6 Tuples

The core syntax only supports records with named fields, not nameless tuples where fields are
identified positionally. We can extend the syntax of types with tuples:

T :: � ����� � � T �
� T �
	 � � � �

22

Following the style of ML, tuples can be made synonymous with records with numbered fields:

� T1 � ����� � Tn
�

� � �
� � �

� � $1 : T1 ����� $n : Tn
� � � �

We can also provide syntactic sugar for tuple patterns and constants:

P :: � ����� � � P � � P �
	 � � � �
K :: � ����� � � K � � K � 	 �
E :: � ����� � � E � � E � 	 �

This is translated into the core language by providing the appropriate field names, for example
the syntactic sugar:

hideG : gate � int � � inG � 1 � true � ;exit � �
is expanded to:

hideG : gate � $1 : int � inG � $1 : � 1$2 : � true � ;exit � �
This expansion is given by the rule:

C � G � P1 � ����� � Pm � Pm
�

1 � ����� � Pn
� � � � ;B

� � �

� G � V1 : � P1 ����� Vm : � Pm $
�
m � 1 � : � Pm

�
1 ����� $n : � Pn

� � � ;B

where C � G 	 gate � V1 : T1 ����� Vm : Tm
� � �

and similarly for constructor application, case expressions, enabling, process definitions, pro-
cess instantiation and gate renaming. In each case we have a unique translation, except in the
case of exit , since the context does not provide a unique type for the δ gate, so we will use the
translation:

exit � P1 � ����� � Pn
� � � �

� � �

� exit � $1 : � P1 ����� $n : � Pn
� � �

Note that these translations require some static semantic information to determine the appro-
priate field names.

This expansion can be extended to any occurrence of record syntax in expressions or be-
haviours.

3.7 Infix operators

Once we have a syntax for tuples, we can define infix operators as syntax sugar for function
application. We extend the data language with:

E :: � ����� � E C E
�
E F E

K :: � ����� � KC K

P :: � ����� � PC P

23

and define translations:

E1 C E2

�����

� C � E1 � E2 �
E1 F E2

�����

� F � E1 � E2 �
K1C K2

�����

� C � K1 � K2 �
P1 C P2

�����

� C � P1 � P2 �
We leave issues of parsing and priority of infix operators for further work.

3.8 Boolean expressions

We can define a language of boolean expressions from case statements:

E :: � ������
ifE1 thenE2 elseE3�
ifE1 thenB2 elseB3�
E1 andalsoE2�
E1 orelse E2�
notE�
E1 � E2�
E1 �� E2

with the expansions:

ifE1 thenE2 elseE3

�����

� case E1 of true � E2
�
false � E3

ifE1 thenB2 elseB3

�����

� case E1 of true � B2
�
false � B3

E1 andalsoE2

�����

� ifE1 thenE2 else false

E1 orelse E2

�����

� ifE1 then trueelseE2

notE
�����

� ifE then falseelse true

E1 � E2

�����

� case E1 of?Y � caseE2 of!Y � true
�
any � false

E1 �� E2

�����

� not
�
E1 � E2 �

3.9 Gate renaming

If we do not specify any change of data representation in a gate renaming, then by default
none happens. We extend the syntax of renaming to make the pattern-matching optional:

B :: � ������
rename

�
G

�
P � : � G

�
K � �

G : � G � 	 inB

then make the default behaviour to do no change of representation:

rename ����� G : � G ����� inB
� � �

� rename ����� G �
?X � : � G �

!X � ����� inB

24

3.10 Compatibility with existing specifications

For compatibility with existing specifications, we make the following syntactic sugar:

noexit
� � �

� exitnone

GP;B
� � �

� GP
�
true � ;B

GO1 ����� On
�
E � ;B

� � �

� G � O1 � ����� � On �
�
E � ;B

B1
� � �

B2

� � �

� B1
� � � � B2

B1
� � B2

� � �

� �
B1

� � � �
raiseX � � � exitany � � �����

accept?V � exit
�
!V �

trapX � � � B2

let
�
V �

�
E inB

� � �

� case �
�
E � of � ?

�
V � � B

choiceP � B
� � �

� exitany ����� acceptP � B

B � � acceptM
� � �

� B ����� accept?V � i;exit!V � ��� acceptM

For compatibility with existing specifications, ! is optional from patterns in exit , ! and ? are
mandatory in communications, and ? is optional from patterns in all other contexts.

3.11 Record calculation

We can provide syntactic sugar for record evaluation which gives some of the flavour of im-
perative programming to LOTOS. For example the behaviour:

x : � 0; ;y : � x � 1

can be defined to be bisimilar to:

exit � x : � 0y : � 1 �
We extend the behaviour language with:

B :: � ������
V : � E�
B; ;B�
G

�
P � � E �

and translate them into the core language as:

C � V : � E
� � �

� exit � V : � E �
C � B1; ;B2

� � �

� B1
��� � accept �

�
V1 : � ?

�
V1 � �

B2
��� � accept �

�
V2 : � ?

�
V2 � �

exit �
�
V1 : � !

�
V1

�
V2 : � !

�
V2 �

C � G
�
P � � E �

� � �

� G
�
P � � E � ;exit �

�
V : � !

�
V �

25

where C � Bi 	 exit �
�
Vi : Ti � and C � P 	

�
T � � �

V 	
�
T � � . Note that this requires static

semantic information.
We can extend the data language similarly.
These extensions allow for an imperative flavour of specification, for example:

�
G?x

� � �
G?y � ; ; z : � �

x � y �
is bisimilar to:

�
G?x;exit � x : � !x � � � � G?y;exit � y : � !y � � �����

accept � x : � ?xy : � ?y � � exit � x : � !xy : � !yz : � !
�
x � y � �

Using Moggi’s equations for monadic let, we can show that ; ; is associative with exit � � as a
unit.

3.12 Out parameters

To make it simpler to interface with other languages, it would be useful to provide out param-
eters as well as in parameters to processes:

D :: � process Q
� �

G
�
: gateT � � 	 � � � �

in
�
out � V : T � 	 � isB

B :: � Q
�
G 	�� � �

?V
�
!E �
	 �

where declarations are expanded:

processQ
� �
G � ������� outV1 : T1 inV2 : T2 ����� � isB

� � �

� processQ
� �
G� �
����� inV2 : T2 outV1 : T1 ����� � isB

processQ
� �
G � � in

�
V1 :

�
T1 out

�
V2 :

�
T2 � isB

�����

� processQ
� �
G� �

�
V1 :

�
T1 � : exit �

�
V2 :

�
T2 � isB

and process use is expanded:

Q
� �
G � �
����� ?V !E ����� �

� � �

� Q
� �
G � ������� !E ?P ����� �

Q
� �
G � � !

�
E ?

�
V �

� � �

� Q
� �
G � �

�
E � � ��� accept � ?

�
V � � exit �

�
V : � !

�
V �

The default parameter style is in .
We can define similar sugar for expressions.

26

References

[1] Alan Jeffrey. Semantics for a fragment of LOTOS with functional data and ab-
stract datatypes. In Revised Working Draft on Enhancements to LOTOS (v3), ISO/IEC
JTC1/SC21/WG7, chapter Annexe A. 1995.

[2] Alan Jeffrey, Hubert Garavel, Guy Leduc, Charles Pecheur, and Mihaela Sighireanu. To-
wards a proposal for datatypes in E-LOTOS. In Revised Working Draft on Enhancements
to LOTOS (v2), ISO/IEC JTC1/SC21/WG7 N1053, chapter Annexe A. 1995.

[3] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
1990.

[4] Eugenio Moggi. Notions of computation and monad. Inform. and Comput., 93:55–92,
1991.

27

