
A symbolic labelled transition system for coinductive subtyping of Fµ
� types

Alan Jeffrey
DePaul University

Extended Abstract

Abstract. F� is a typed λ-calculus with subtyping and
bounded polymorphism. Typechecking for F� is known to
be undecidable, because the subtyping relation on types is
undecidable. Fµ � is an extension of F� with recursive types.
In this paper, we show how symbolic labelled transition sys-
tem techniques from concurrency theory can be used to rea-
son about subtyping for Fµ � . We provide a symbolic labelled
transition system for Fµ � types, together with an an appro-
priate notion of simulation, which coincides with the existing
coinductive definition of subtyping. We then provide a ‘simu-
lation up to’ technique for proving subtyping, for which there
is a simple model checking algorithm. The algorithm is more
powerful than the usual one for F� , for example it terminates
on Ghelli’s canonical example of nontermination.

1 Introduction

Symbolic labelled transition systems [11] have been used in
concurrency theory to provide finite-state representations of
infinite systems. They have been used to model-check sys-
tems with data dependencies, where the nı̈ave state space
exploration technique would produce an infinite state space,
and so not terminate.

In this paper, we apply symbolic lts techniques to a new
problem area: that of deciding subtyping for polymorphic λ-
calculi.

Subtyping and polymorphism. Curien and Ghelli’s [5] F�
is a typed λ-calculus with bounded polymorphism and sub-
typing. It is based on Bruce and Longo’s [2] development of
Cardelli and Wegner’s [3] Fun language.

The most interesting rule in F� is that for subtyping of
polymorphic types:

Γ � T2 � T1 Γ � X � T2 � U1 � U2

Γ ����� X � T1 	 U1
�� ��� X � T2 	 U2
 (Full F�)

This is a stronger rule than the rule used in Fun, which is:

Γ � X � T � U1 � U2

Γ ����� X � T 	 U1
�� ��� X � T 	 U2
 (Kernel F�)

It is routine to develop an algorithm to check the subtyping
property of Kernel F� , but subtyping for Full F� has turned
out to be surprisingly complex. Curien and Ghelli [5] gave
an algorithm for checking subtyping, with a correctness proof
provided by Ghelli [7]. Later, Ghelli [9] showed that this al-
gorithm is not guaranteed to terminate. Pierce [14] showed
that Ghelli’s example of nontermination can be generalized
to code a Turing machine, and so subtyping (and hence type-
checking) for F� is undecidable.

Subtyping and recursive types. Recursive types are a
common programming language feature, typified by ML’s
��������������

construct. Amadio and Cardelli [17] investi-
gated the relationship between subtyping and recursive types.
Brand and Henglein [1] reformulated subtyping in terms of
coinductive relations on types, which we will use here. The
coinductive presentation of type systems for subtyping in
the presence of recursive types has been used by Pierce and
Sangiorgi [16] for the π-calculus, Turner [20] for Pict and
Sewell [19] for a distributed π-calculus. A good introduction
is by Gapeyev, Levin and Pierce [6].

Ghelli [8] has investigated the relationship between sub-
typing, recursive types and polymorphic types, in the recur-
sive extension to F� , called Fµ � . He has shown a number of
surprising results: adding recursion to F� is not conservative,
and Fµ � does not satisfy the transitivity elimination property.
These results are for the inductive definition of subtyping,
however, where here we look at the coinductive definition,
which is much better behaved. Colazzo and Ghelli have pro-
vided an algorithm for deciding subtyping of Kernel Fµ � [4]:
much of this paper is based on that algorithm.

Symbolic labelled transition systems. Labelled transition
systems are a form of nondeterministic automaton, where all
states are considered to be accepting states. They were pro-
posed by Milner [12, 13] as an appropriate model for con-
current systems. They have since been used to model higher-
order computation, for example Gordon’s [10] lts model of
the simply-typed λ-calculus.

1

One problem with lts models is that they can produce in-
finite models of systems which should be finite-state. For
example, the process defined:

P � ��� � x :
��� �
 ; ��� � � x � 1
 ;P

has transitions:

� P

	
��

n
� ����� � � n � 1
 ;P

����� � n � 1
� � P

for every integer n and so is infinite-state. Hennessy and
Lin [11] proposed using symbolic labelled transition sys-
tems as an appropriate finitary representation. A symbolic
lts includes free variables, so rather than having nodes being
closed processes, and edges labelled with closed expressions,
the nodes are processes together with their free variables, and
the edges are labelled with open expressions. For example:

� � P

	
��

x:
	
 �
� � x :

��� � ����� � � x � 1
 ;P

����� � x � 1
� � x :

��� � � P

Unfortunately, this system is still infinite-state, since the con-
text can grow unboundedly:

� � P

	
��

x:
	
 �
 � � x :

��� � ����� � � x � 1
 ;P

� x :
��� � � P

	
��
x � : 	
 �
�

����� � x � 1

� � x :

��� � � x � :
��� � ����� � � x ��� 1
 ;P

� x :
����� � x � :

����� � P

����� � x ��� 1

� �����

For this reason, symbolic techniques often work ‘up to
garbage collection’ where unneeded free variables can be re-
moved from the context. For example, the above process can
be given a finite symbolic representation as:

� � P

	
��

x:
	
 �
 � � x :

��� � ����� � � x � 1
 ;P

� x :
��� � � P

����� � x � 1
� �! � x:
	
 �

"

Symbolic lts’s have been used to provide finite-state repre-
sentations of systems that would otherwise be infinite-state.

Contributions of this paper. In this paper, we apply the
techniques of symbolic labelled transition systems to the
problem of subtyping Fµ � . In particular, we:

Give an alternative characterization of subtyping for
Fµ � , as polar simulation for an appropriate symbolic lts.

Use a variant of Milner and Sangiorgi’s [18] bisimula-
tion up to method to give a sound proof technique for
subtyping.

Provide an algorithm for finding an appropriate polar
simulation, if one exists.

Show that the algorithm is partially correct: if it termi-
nates, it does so with the right answer.

Show that the algorithm is strictly more powerful than
the standard algorithm for F� , and at least as powerful
as Colazzo and Ghelli’s algorithm for Kernel Fµ � .

Acknowledgements. I would like to thank Benjamin
Pierce, James Riely and Peter Sewell for useful discussions
about this material. Donald Knuth’s TEX typesetting system,
Leslie Lamport et al.’s LATEX document markup language,
and Paul Taylor’s diagrams package were used in the prepa-
ration of this paper.

2 The type system of Fµ $
In this section, we review the types system used in
Ghelli’s [8] Fµ � . There are some minor syntactic differences
between the types presented here and Ghelli’s, but they are
equally expressive. We have added type constants such as

��� �
and % � �'& to the language, to make examples clearer, they are
not required for any of the technical development.

Let K range over a finite collection of type constants, such
as

��� �
and % � �(& . The syntax of types is given:

T � U � V :: � T) U *,+-� � * K * � X � T 	 U * µ � X 	 T * X
Define the free variables of a type as:

.0/ � T
 � .1/ � � T
32 .1/54 � T

where the polarized free variables are:

.0/76 � T) U
 � .0/(8 � T
32 .0/76 � U
.0/ 6 ��+-� �
 � /0.1/76 � K
 � /0.0/56 ��� X � T 	 U
 � .1/(8 � T
32 � .0/76 � U
39;: X <
.1/ 6 � µ � X 	 T
 � .0/ 6 � T
39;: X <.1/ � � X
 � : X <.1/ 4 � X
 � /0

A type context is a sequence of variables with type bounds:

Γ � ∆ :: � X1 � T1 � 	 	 	 � Xn � Tn

where we ignore the order of bindings. The domain of a con-
text

 ��= � Γ
 is defined:

 ��= � X1 � T1 � 	 	 	 � Xn � Tn
 � : X1 � 	 	 	 � Xn <
2

When X �
 ��= � Γ
 we define Γ � X
 as:

� Γ � X � T
 � X
 � T

The well-formed context judgment Γ ��� is defined:

/0 ���
Γ � T

Γ � X � T ���
�
X ��
 ��= � Γ
��

where the well-formed type judgment Γ � T is defined:

Γ � T Γ � U

Γ � T) U

Γ ���
Γ ��+-� �

Γ ���
Γ � K

Γ � X � T � U

Γ � � X � T 	 U
Γ � X � T ���
Γ � X � T � X

Γ � X � + � � � T

Γ � µ � X 	 T
�
X �� .0/ 4 � T
 � T �� Y �

Note that we have required X to occur positively in T in any
recursive type µ� X 	 T , and that we cannot form recursive
types of the form µ� X 	 Y . These restrictions do not limit the
expressive power of the type system, since for any T � X
 we
can find T � � X � X �
 such that:

T � X
 � T � � X � X

X �� .1/ 4 � T � � X � X �

 X � �� .0/ � � T � � X � X �

then we can define:

µX 	 T � X
 � µ � X1 	 T � � X1 � µ � X2 	 T � � X2 � X1

and we can give a greatest fixed point semantics for µX 	 T as:

µX 	 Y �
� +-� � if X � Y

Y otherwise

We define α-equivalence on well-formed types as (when
Y ��
 ��= � Γ
):

� Γ � X � U � T
 �5�5�Y 	 X � Γ �Y
 X � � Y � U � T
�
Y
 X �

We assume an ordering K1 � K2 on type constants, for ex-
ample

����� � % � �'& . This is extended to an inductive subtyping
judgment Γ � T1 � T2 defined:

Γ � T � T

Γ � T2 � T1 Γ � U1 � U2

Γ ��� T1) U1
�� � T2) U2

Γ � T � +-� �
K1 � K2

Γ � K1 � K2

Γ � T2 � T1 Γ � X � T2 � U1 � U2

Γ ����� X � T1 	 U1
 � ��� X � T2 	 U2

Γ � Γ � X
�� T

Γ � X � T

Γ � T1
� � µ � X 	 T1

 X � � T2

Γ ��� µ � X 	 T1
 � T2

Γ � T1 � T2
� � µ � X 	 T2

 X �

Γ � T1 � � µ � X 	 T2

A well-formed relation on types R is a relation R on well-
formed types Γ � T such that if � Γ1 � T1
 R � Γ 2 � T2

then Γ1 � Γ2. We shall often write Γ � T1 R T2 when
� Γ � T1
 R � Γ � T2
 . For example, the inductive subtyping
relation � gives a well-formed relation on types:

Γ � T � U iff Γ � T � U

We regard well-formed relations on types up to α-
equivalence, so we can complete the diagram:

� Γ � T

� R � � Γ � U

� Γ � � T �

Y 	 X ����� � Γ � � U �

Y 	 X �����
as

� Γ � T

� R � � Γ � U

� Γ � � T �

Y 	 X ����� � R � � Γ � � U �

Y 	 X �����
A well-formed relation on types R is sound for subtyping if,
for every instantiated subtyping rule:

Γ1 � T1 � U1

�����
Γn � Tn � Un

Γ � T � U

we have:

if Γ1 � T1 R U1 and 	 	 	 and Γn � Tn R Un then Γ � T R U

A well-formed relation on types R is consistent with subtyp-
ing if it is sound for subtyping, and whenever Γ � T R U we
can find an instantiated subtyping rule:

Γ1 � T1 � U1

�����
Γn � Tn � Un

Γ � T � U

such that:

Γ1 � T1 R U1 and 	 	 	 and Γn � Tn R Un

Let the coinductive subtyping relation � be the largest rela-
tion consistent with subtyping.

Proposition 1 � is the smallest relation consistent with sub-
typing, and so ��� � .

3 Motivation for the symbolic lts semantics for Fµ $
This paper provides an alternative characterization of subtyp-
ing for Fµ � , using a symbolic labelled transition system. By
recasting coinductive subtyping as an lts, it is possible to use
existing tools from concurrency theory, notably Milner and
Sangiorgi’s bisimulation up to technique.

The lts has well-formed types as nodes, and edges which
reflect the structure of the type. For example, the +-� � type
has no transitions:

� Γ ��+-� �
 α
 � � Γ � � T �

3

and the type constants have transitions with their name:

� Γ � ��� �
 	
 �� � Γ � + � �
 � Γ � % � �'&
 � ������ � Γ ��+-� �

We can think of the subtyping relation as a simulation [13]
relation: if T is a supertype of U then any transition of T
must have a matching transition from U . For example we
can complete the following diagram:

� � % � �'&
 �
� � � � ��� �

� ��+-� �
� ������� as

� � % � �(&
 �
� � � � �����

� ��+-� �
� �������
�
� � � ��+-� �

	
� �����
 ���

We define the ‘matching transition relation’ �3��α �
formally

in Section 4, for the moment we will just say that it includes
α� , but also includes:

� Γ � ��� �
 ���
	
� ������ � Γ ��+-� �

This notion of a ‘matching transition relation’ is standard in
process calculi, where it is used to define weak bisimula-
tion [13]. In general, a simulation
 is a well-formed relation
on types where we can complete the diagram:

� Γ � T1
 �
� � � Γ � T2

� Γ � � T �1

α � as

� Γ � T1
 �
� � � Γ � T2

� Γ � � T �1

α �

�
� � � Γ � � T �2

�
α
 ���

Function types have domain and codomain transitions:

� Γ � T) U

� Γ � T

� ���
�

� Γ � U

! � �
�

Since function types are contravariant in their first argument
and covariant in their second argument, we introduce polar-
ity to labels:

 ��= is negative polarity, and � �
 is positive
polarity. This is important when we consider the subtyping
relation, for example:

� � �����) % � �(&
 � � � � � % � �'&) ��� �

� � �����
 �
� �

� ���
�

� � % � �'&

	� ������ � � �
�

� � % � �'&

! � �
�

�
� � � � �����

	! � �

��������

Note that after a

 ��= transition, the subtyping relation is in-

verted, but after a � �
 transition, it is not. A well-formed

relation
 is a polar simulation if it acts as a simulation on
positive labels, and on negative labels we can complete the
diagram:

� Γ � T1
 �
� � � Γ � T2

� Γ � � T �1

α � � as

� Γ � T1
 �
� � � Γ � T2

� Γ � � T �1

α � �

�
� � � Γ � � T �2

�
α �
 ���

To cope with recursive types, we allow silent actions τ, where
recursive types can silently unwind:

� Γ � µ � X 	 T
 τ� � Γ � T
�
µ � X 	 T
 X �

For example, if we define:

T � µ � X 	 ��� �) X U � µ � Y 	 ��� �) % � �'&) Y

then we have a polar simulation for T
 U , since we define
the matching transition relation to ignore τ actions:

� � ��� �
 �
� � � � ��� �

� � ��� �) T
 �
� �

� ��� �
� � �����) % � �'&) U

	� ������ � � � � � � �

� � T

�
� �

! � �
�

� � % � �'&) U

	! � �
 �! ! ! ! ! !

! !

� � ��� �) T

τ �

�
� � � � % � �'&) U

�
τ
 ���

� � ��� �

� ����
�

� � � � % � �'&

	� ���
 ���

� � T

τ

"

�
� �

! � �
#

� � U

�
τ

$
���������������������������

	! � �
% % % % % % % % % % %�&

Since we are giving a semantics for types with free vari-
ables, we need to give variables transitions: they can either
announce themselves, or behave like their bound:

� Γ � X

� Γ � + � �

X'

� Γ � Γ � X

τ (

For example, X � ��� � � �����
 X since:

� X � ��� � � ��� �

�
� � � X � ����� � X

� X � ��� � � + � �

	
 � �

�
� � � X � ��� � ��+-� �

�	
 �
 ���
4

Finally, we are left with the meat of the problem: modelling
bounded polymorphism. Modelling Kernel Fµ � is not too
difficult, we just add transitions which reveal the structure of
a polymorphic type:

� Γ � � X � T 	 U

� Γ � T

� ���
 �
�

� Γ � X � T � U

�
X � T

�

For example, ����� X � ����� 	 ��� �

 ��� X � ����� 	 X
 since:

� � � X � ��� � 	 �����
 �
� � � � � X � ��� � 	 X

� � ��� �
 �
� �

� ���
 �
�

� � ��� �

�� ���
 �
��� � �

� � �

� X � ��� � � �����

�
X � 	
 �

�
�

� � � X � ��� � � X

��
X � 	
 �

��������

In order to model Full Fµ � , however, we have to allow the
bound of a polymorphic type to vary. We do this by adding
an additional transition to the matching transition relation:

� Γ � � X � T 	 U
 �5�(�
��
X � V� � Γ � X � V � U

For example, ����� X � ����� 	 ��� �

 ��� X � % � �'& 	 X
 since:

� � � X � ��� � 	 �����
 �
� � � � � X � % � �'& 	 X

� � ��� �
 �
� �

� ���
 �
�

� � % � �'&

�� ���
 �
	�

� X � ��� � � �����

�
X � 	
 �

�
�

� � � X � ��� � � X

��
X � 	
 �

��������

In general, since �5��� ��
 is a negative label, it is easy to see
that the following diagram models the Full Fµ � rule for sub-
typing bounded polymorphism:

� Γ � � X � T2 	 U2
 �
� � � Γ � � X � T1 	 U1

� Γ � T2
 �
� �

� ���
 �

� Γ � T1

�� ���
 �
��� � �

� � �
�

� Γ � X � T2 � U2

�
X � T2

�
�

� � � Γ � X � T2 � U1

��
X � T2

��������

As a final example, we consider Ghelli’s [9] example of non-
termination of the standard algorithm for F� subtyping:

G � � X 	�� ��� Y � X 	�� Y

where we write � T as shorthand for T) +-� � , and � X 	 T as
shorthand for � X � +-� � 	 T . Ghelli’s example is to verify:

X0 � G ����� X1 � X0 	�� X1

 X0

If we define:

Γn � X0 � G � X1 � X0 � 	 	 	 � Xn � Xn 4 1

Gn � � Xn � 1 � Xn 	�� Xn � 1

then Γn � Gn
 Xn for every n since:

...

� Γn � Gn

 ��� �

� � � Γn � Xn

�

� Γ � Xn
 �
� �

� ���
 �
�

� Γ ��+-� �

�� ���
 �
��� � �

� � �
�

� Γn � 1 � � Xn � 1

�
Xn � 1 � Xn

�
�

� � � Γn � 1 � � Gn � 1

��
Xn � 1 � Xn

��������

� Γn � 1 � Xn � 1

� ��� �

�
� � � Γn � 1 � Gn � 1

	� ���
 ���
...

In particular, Γ0 � G0
 X0, which is Ghelli’s example. Note,
however, that in order to show this subtyping, we had to con-
struct an infinite simulation: we cannot just use this lts di-
rectly in a model checker to get an algorithm for deciding
subtyping of Fµ � . We will return to this problem in Section 5.

4 Definition of the symbolic lts semantics for Fµ $
We now provide formal definitions for the material discussed
in Section 3. The syntax of positive labels α� , negative labels
α
4

and labels α are given:

α � :: � τ *
 ��= * � X � T * X
α
4

:: � � �
 *��5��� �

α :: � α � * α 4

The symbolic lts
α� is defined:

� Γ � T) U

� ��� � � Γ � T

� Γ � T) U

! � � � � Γ � U

� Γ � K
 K� � Γ ��+ � �

� Γ � � X � T 	 U

� ���
 � � � Γ � T

� Γ � � X � T 	 U

�
X � T� � Γ � X � T � U

� Γ � X
 X� � Γ ��+ � �

� Γ � X
 τ� � Γ � Γ � X

� Γ � µ � X 	 T
 τ� � Γ � T
�
µ � X 	 T
 X �

5

The symbolic lts
�
α� is defined:

� Γ � T) U

	� ��� � � Γ � T

� Γ � T) U

	! � � � � Γ � U

� Γ � K

�
K �� � Γ ��+-� �
 � when K � K �

� Γ � � X � T 	 U

�� ���
 � � � Γ � T

� Γ � � X � T 	 U

��
X � V� � Γ � X � V � U

� Γ � X

�
X� � Γ ��+-� �

� Γ � X

�
τ� � Γ � Γ � X

� Γ � µ � X 	 T

�
τ� � Γ � T

�
µ � X 	 T
 X �

� Γ � T

�
τ� � Γ � T

We write � � � for the transitive reflexive closure of
τ� :

� Γ � T
 τ� �����
τ� � Γ � � T �

� Γ � T
 � � � � Γ � � T �

We write � �α �

for the transition
α� ignoring τ actions ‘on

the left’, and similarly for � ��α �
:

� Γ � T
 � � � �
α� � Γ � � T �

� Γ � T
 � �α � � Γ � � T �

� Γ � T
 � � � � �

α� � Γ � � T �

� Γ � T
 � �

�
α � � Γ � � T �

A polar simulation R is a well-formed relation on types such
that we can complete the diagram:

� Γ � T1

� R � � Γ � T2

� Γ � � T �1

α � � as

� Γ � T1
 � R � � Γ � T2

� Γ ��� T �1

α � �

�R � � � Γ � � T �2

�
α �
 ���

where we write R
6

for:

� Γ � T
 R � Γ � U

� Γ � T
 R � � Γ � U

� Γ � T
 R � Γ � U

� Γ � U
 R

4 � Γ � T

Let
 be the largest polar simulation.

Proposition 2
 is a preorder.

Proposition 3 Γ � T
 U iff Γ � U � T .

5 Motivation for polar simulation up to polarized
substitution

We have now given an alternative characterization of coin-
ductive subtyping of Fµ � , but this does not directly give us
any benefits. We can now use standard model-checking tech-
niques to check subtyping, but these only terminate when
they find a finite polar simulation. As the Ghelli’s example
(discussed in Section 3) shows, we can construct types which
generate an infinite polar simulation.

In this section, we shall provide a proof technique based on
Milner and Sangiorgi’s [18] bisimulation up to methodology,
which can be used to find finite representations of infinite
polar simulations. It is based on the requirement to find fi-
nite symbolic graphs for process terms in Hennessy and Lin’s
work [11].

Polar simulation up to garbage collection. Define the
garbage collection relation on well-formed types as discard-
ing unused type variables, for example:

� X � ��� � � Y � % � �'& � X

 �! � Y � � �����
� � X � ����� � X

We can use polar simulation up to garbage collection to pro-
vide finite proofs of subtyping, for example if we define:

T � µ � X 	 � Y � ��� � 	 X U � µ � X 	 � Y � % � �'& 	 X
then we have a finite proof that � T
 U given by:

� � ��� �
 � � � � � % � �'&

� � � Y � ��� � 	 T
 �
� �

� ���
 � �

� � � Y � % � �'& 	 U

�� ���
 ���� � � � � � �

� Y � ��� � � T

�
Y � 	
 � �

� Y � ����� � U

��
Y � 	
 �
 ���

� � T
 �
� �

τ

�

 �! � Y � 	
 �
 � � � U

�
τ

� � �
� � �
� � �
� � � �

 �! � Y � 	
 �
�

which provides us with a finite representation of the proof
that � T
 U . Polar simulation up to garbage collection is
a sound proof technique, but it does not cope with Ghelli’s
example, since there are no unused type variables.

Polar simulation up to substitution. Our next failed at-
tempt to find a proof technique generalizes the notion of po-
lar simulation up to garbage collection, by observing that one
can often replace a type variable by its bound, for example:

� X � ����� � Y � X � X) Y

	 � X � 	
 �
� � Y � ����� � ��� �) Y

6

We can try to use this to show subtypings, for example
Ghelli’s Γ0 � G0
 X0 from Section 3 has a finite polar simu-
lation up to substitution:

� Γ0 � X0
 �
� � � Γ0 ��+-� �

� Γ0 � � X1 � X0 	�� X1

� ���
 � "

�
� � � Γ0 � X0

�� ���
 �$
���

� Γ1 � � X1

�

X1 � X0
�

� Γ1 � � � X2 � X1 	 � X2

��
X1 � X0
 ���

� Γ0 � � X0

	 � X1 � X0
 �

�
� �
� ���

�

� Γ0 � � � X1 � X0 	 � X1

	 � X1 � X0
�

	� ���
��� �

Unfortunately, polar simulation up to substitution is not a
sound proof technique, for example:

� � � X � ��� � 	 X
 �
�� � � � � X � ��� � 	 �����

� X � ����� � X

�

X � 	
 � �
� � ��� �
 �

� �
� ���
 �

�
� � ��� �

�� ���
 �
��� � �

� �
�

� X � ��� � � �����

��
X � 	
 �
 ���

� � �����

	 � X � 	
 �
 �

�
� � � � ��� �

	 � X � 	
 �
�

As this example shows, we cannot always just replace type
variables by their bounds, and expect to get a valid subtype
relationship.

Polar simulation up to polar substitution. The technique
we adopt in this paper is a refinement of polar simulation up
to substitution. The crucial observation is that polar simula-
tion up to substitution is sound, as long as we only replace
negative occurrences of variables in the supertype, and posi-
tive occurrences of variables in the subtype.

Define the positive substitution relation as replacing any
positive occurrences of a type variable by its bound, and un-
defined if there are any negative occurrences, for example:

� X � ��� � � Y � X � Y) X

	 � � X � 	
 �
 � � Y � ����� � Y) �����

� X � ��� � � Y � X � X) Y

	 � � X � 	
 �

 � � Y � ����� � ��� �) Y

and the negative substitution relation similarly (but note that
we always substitute positively in the type context):

� X � ����� � Y � X � X) Y

	 � � X � 	
 �
� � Y � ��� � � �����) Y

Then a polar simulation up to polar substitution is one where
we are allowed to use negative substitution in the supertype,

and positive substitution in the subtype. For example, we
now have a valid finite proof of Ghelli’s example:

� Γ0 � X0
 �
� � � Γ0 ��+-� �

� Γ0 � � X1 � X0 	�� X1

� ���
 � "

�
� � � Γ0 � X0

�� ���
 �$
���

� Γ1 � � X1

�

X1 � X0
�

� Γ1 � � � X2 � X1 	�� X2

��
X1 � X0
 ���

� Γ0 � � X0

	 � � X1 � X0
 �

�
� �
� ���

�

� Γ0 � � � X1 � X0 	�� X1

	 � � X1 � X0
�

	� ���
��� �

and the counterexample for polar simulation up to substitu-
tion is no longer a counterexample, because it does not use
substitution with the right polarity.

Polar simulation up to polar substitution is the proof tech-
nique we adopt for the rest of this paper.

6 Definition of polar simulation up to polar
substitution

Let the garbage collection relation � Γ � T

 �! ∆� � Γ � � T �
 be:

� Γ � ∆ � T

 �! ∆� � Γ � T
 (when Γ � T)

Let R be a polar simulation up to garbage collection when-
ever we can complete any diagram:

� Γ � T1
 � R � � Γ � T2

� Γ ��� T �1

α � � as

� Γ � T1
 � R � � Γ � T2

� Γ � � T �1

α � �

� Γ � � T �2

�
α �
 ���

� Γ � � � T � �1

 �! ∆ �

� R � � � Γ � � � T � �2

 �! ∆�

Define a polar substitution T
�
U
 X � 6 as:

T
�
U
 X � 6 � T

�
U
 X � (when X �� .0/ 8 � T
)

Define a polar context substitution T
�
∆ � 6 as:

T
�
/0 � 6 � T

T
�
∆ � X � U � 6 � T

�
U
 X � 6 � ∆ � 6 (when X �� .0/ � ∆
)

Define a polar substitution relation � Γ � T

	 � ∆� � Γ � � T �
 as:

� Γ � ∆ � T

	 � ∆� � Γ �∆ � � � T

�
∆ � 6

7

Note that polar substitution generalizes garbage collection:

if � Γ � T

 �! ∆� � Γ � � T �
 then � Γ � T

	 � ∆� � Γ � � T �

Let R be a polar simulation up to polar substitution when-
ever we can complete any diagram:

� Γ � T1
 � R � � Γ � T2

� Γ � � T �1

α � � as

� Γ � T1
 � R � � Γ � T2

� Γ � � T �1

α � �

� Γ ��� T �2

�
α �
 ���

� Γ � � � T � �1

	�� ∆ �

� R � � � Γ � ��� T � �2

	 � ∆�

We can then show that polar simulation up to polar substi-
tution (and hence up to garbage collection) is a sound proof
technique.

Proposition 4 If R is a polar simulation up to polar substi-
tution and Γ � T R U then Γ � T
 U.

7 An algorithm for finding polar simulation up to
polar substitution

Polar simulation up to polar substitution gives us a proof
technique for showing subtyping, which can easily be con-
verted into a model checking algorithm. Since Fµ � is deter-
ministic, a simple breadth-first search algorithm is sufficient.
The algorithm is given in Figure 1. The invariants for the
while loop in the algorithm are:

1. Either Γ0 � T0 R U0 or Γ0 � T0 S U0.

2. R is a polar simulation up to polar substitution mod S .

3. If Γ0 � T0
 U0 then � R 2 S
 �
 .

where R is a polar simulation up to polar substitution mod S
whenever we can complete any diagram:

� Γ � T1
 � R � � Γ � T2

� Γ � � T �1

α � � as

� Γ � T1
 � R � � Γ � T2

� Γ � � T �1

α � �

� Γ � � T �2

�
α �
 ���

� Γ � � � T � �1

	 � ∆ �

� R ��� S � � � Γ � ��� T � �2

	 � ∆�

It is not too difficult to establish partial correctness of this
algorithm, by establishing Invariants 1–3:

function suptype � Γ0 � T0 � U0
;:
let R � /0;

let S � : Γ0 � T0 S U0 < ;

while � S �� /0
;:
let S � � /0;

foreach � Γ1 � T1 S U1
;:
foreach � Γ1 � T1
 α � � � Γ2 � T2
;:

if � α 6 � τ
�:
add Γ2 � T2 S � U1 to S � ;

< else if � Γ1 � U1
 �'�
�
α � � � Γ2 � U2
�:

let ∆ be the largest type context

such that � Γ2 � T2

	�� ∆� � Γ3 � T3

and � Γ2 � U2

	 � ∆� � Γ3 � U3
 ;

add Γ3 � T3 S � 6 U3 to S � 6 ;

< else :
return false;

<
<

<
R � R 2 S ;

S � S � 9 R ;

<
return true;

<
Figure 1: The algorithm

Proposition 5 For any Γ0 � T0 and Γ0 � U0 we have:

1. If suptype � Γ0 � T0 � U0
 returns true then Γ0 � T0
 U0.

2. If suptype � Γ0 � T0 � U0
 returns false then Γ0 � T0 �
 U0.

We can show that the algorithm is guaranteed to terminate in
the case where Γ � T �
 U .

Proposition 6 If Γ � T �
 U then suptype � Γ � T � U
 termi-
nates.

We can also show that if there is a finite polar simulation
up to polar substitution, then the algorithm will find it, and
so will terminate. For example, this means the algorithm is
guaranteed to terminate on Ghelli’s example.

Proposition 7 If there exists a finite polar simulation up
to polar substitution R f such that Γ � T R f U then
suptype � Γ � T � U
 terminates.

8

Using this, we can show that the algorithm is at least as strong
as the standard algorithm for subtyping F� . We do this by
showing that if Γ � T

�
U then we can construct a finite polar

simulation R such that Γ � T R U .

Proposition 8 If the standard algorithm for subtyping F�
terminates, then suptype � Γ � T � U
 terminates with the same
result.

Since our algorithm is at least as powerful as the standard
algorithm, but terminates on Ghelli’s example, we have that
our example is strictly more powerful.

8 Kernel Fµ $
In [4], Colazzo and Ghelli provide an algorithm for subtyping
of Kernel Fµ � . Their algorithm:

Works directly on the structure of the types, rather than
via an lts semantics.

Does not work ‘up to α-conversion’, which results in a
more efficient algorithm, at the cost of extra complexity.

We can easily modify our algorithm to check Kernel Fµ � sub-
typing, by changing the matching transition rule for polymor-
phic types to require bounds to be matched exactly:

� Γ � � X � T 	 U

��
X � T� � Γ � X � T � U

We can show that this modified algorithm is as powerful as
theirs (although probably not as efficient, depending on how
α-conversion is handled), by showing that our algorithm ter-
minates on Kernel Fµ � .

Proposition 9 If Γ � T
 U in Kernel Fµ � , then there is a
finite polar simulation R up to garbage collection such that
Γ � T R U.

Together with Proposition 7, this gives us that our algorithm
is a decision procedure for subtyping of Kernel Fµ � .

Proposition 10 If Γ � T
 U in Kernel Fµ � , then
suptype � Γ � T � U
 terminates with true.

9 Colazzo and Ghelli’s benchmark examples

We have already shown that our algorithm terminates on
Ghelli’s example of nontermination of the standard subtyp-
ing algorithm for F� .

Colazzo and Ghelli [4] provide two motivating examples
for their algorithm for Kernel Fµ � , which act as useful bench-
marks for our approach. The examples make use of tuple

types T � U , and a bottom type � : these can easily be given
an lts semantics:

� Γ � T � U
 � Γ ���

� Γ � T

� 	 �
�

� Γ � U

	
 �
�

� Γ ���

� �

with matching transitions:

� Γ � T � U
 � Γ ���

� Γ � T

�� 	 �
�

� Γ � U

		
 �
�

� Γ ��+-� �

�
α �'

� Γ ���

�
α �
�

For example, we can use this semantics to verify one of
Pierce’s [15] requirements for subtyping with � , that any
type variable bounded by � is equivalent to � :

X � ��� X
	� X � �����
 X

In the examples, we also use many syntactic abbreviations,
such as defining equations, missing +-� � bounds, and ignor-
ing some τ steps.

The first example is a benchmark which checks that the al-
gorithm performs enough garbage collection to find a finite
polar simulation up to garbage collection. It is given in Fig-
ure 2.

The second example checks that the algorithm does not
produce false positives, caused by collapsing variables to-
gether incorrectly. It is given in Figure 3.

10 Conclusions and further work

This paper describes an application of symbolic labelled tran-
sition systems, which have previously been used to model
concurrent languages, to modelling subtyping. This allows us
to use the techniques from concurrency theory, such as sim-
ulations, and ‘simulation up to’ to reason about subtyping. It
also often makes proofs easier to read, even in the presence of
quite complex types such as Colazzo and Ghelli’s benchmark
in Figure 2.

This technique should generalize to other examples such
as record subtyping, union types and intersection types. It
may be that Gordon’s [10] work on lts semantics for λ-calculi
could be applied here, to give a semantics of higher-order
features such as functions of kind + �����) + ����� . We leave
the technical development of this to future work.

The main result which is missing from the current work
is a syntactic characterization of when the algorithm suptype
terminates. Also, we have not discussed how α-conversion
would be implemented: it should be possible to define α-
conversion as a strong bisimulation, and then use polar sim-
ulation up to strong bisimulation as a proof technique. We
also leave these issues for future work.

9

� � T1
 �
� � � � U1

� X1 � T2 � X1

�

X1
�

�
� � � X1 � U2

	�
X1
 ���

� X1 � X2 � T3 � X1
 � T1

�
� �

�
X2

�
� X1 � X2 ��� � U3 � X2

	�
X2

��� � �
� � �

� � �
�

� X1 � X2 � T3 � X1

�
� �

� 	 �
�

� X1 � X2 ���

�� 	 �
��� � �

� � �
� � �

� � �
�

� X1 � X2 � T1

	
 �

�
�

� � � X1 � X2 � U3 � X2

		
 �

�������������

� X2 � T1
 �
� �

 �! X1

�
� X2 � U3 � X2

 �! X1

�

� X1 � X2 � T2 � X1

�

X1
�

�
� � � X1 � X2 � U4 � X2

	�
X1
 ���

� X1 � X2 � X �2� T3 � X1
 � T1

�
X �2 �

�
� � � X1 � X2 � X �2� U5 � X2
 � U3 � X2

	�
X �2

������

� X1 � X2 � T3 � X1
 � T1

	
 �

"

�
� �

 �! X �2
�

� X1 � X2 � U5 � X2
 � U3 � X2

		
 �

$
�������������������������������������

 �! X �2
	

� X1 � X2 � T3 � X1

� 	 � �

�
� � � X1 � X2 � U5 � X2

�� 	 �
 ���

� X1 � X2 � T2 � X1

 �! X2

"

��
 � �
�

� X1 � X2 � X1
 �
� �

� 	 �
�

� X1 � X2 ���

�� 	 �
��� � �

� � �
� � �

� � �
�

� X1 � X2 � U2

 �! X2

"

	��
 � �

��

� X1 � X2 ��+-� �

	
 �

�
�

� � � X1 � X2 � X2

		
 �

�������������

T1

� � �� � X1 	 T2 � X1

T2 � X1

� � �� � X2 	 � T3 � X1
 � T1

T3 � X1

� � �� X1 ��+-� � � T2 � X1

U1

� � �� � Y1 	 U2

U2

� � �� � Y2 	 � � � U3 � Y2

U3 � Y2

� � �� � Y3 	 U4 � Y2

U4 � Y2

� � �� � Y4 	 � U5 � Y2
 � U3 � Y2

U5 � Y2

� � �� � � Y2 � U2

Figure 2: Colazzo and Ghelli’s first example: show that � T1
 U1

10

� � T1
 �
�� � � � U1

� X1 � T2 � X1

�

X1
�

�
�� � � X1 � U2 � X1

	�
X1
 ���

� X1 � T3 � X1

� 	 � �

�
�� � � X1 � U2 � X1

�� 	 �
 ���

� X1 � T4 � X1

	
 � �

�
�� � � X1 � U3 � X1

		
 �
 ���

� X1 � T5 � X1

	
 � �

�
�� � � X1 � U1

		
 �
 ���

� X1 � X5 � T2 � X1

�

X5
�

�
�� � � X1 � X5 � U2 � X5

	�
X5
 ���

� X1 � X5 � T3 � X1

� 	 � �

�
�� � � X1 � X5 � U2 � X5

�� 	 �
 ���

� X1 � X5 � T4 � X1

	
 � �

�
�� � � X1 � X5 � U3 � X5

		
 �
 ���

� X1 � X5 � X1

� 	 � �

�
�� � � X1 � X5 � X5

�� 	 �
 ���

� X1 � X5 ��+-� �

X1

�

T1

� � �� � X1 	 T2 � X1

T2 � X1

� � �� T3 � X1
 ��+-� �
T3 � X1

� � �� +-� � � T4 � X1

T4 � X1

� � �� X1 � T5 � X1

T5 � X1

� � �� � X5 	 T2 � X1

U1

� � �� � Y1 	 U2 � Y1

U2 � Y1

� � �� U2 � Y1
 � U3 � Y1

U3 � Y1

� � �� Y1 � U1

Figure 3: Colazzo and Ghelli’s second example: show
� T1 �
 U1

References
[1] M. Brandt and F. Henglein. Coinductive axiomatization of recursive

type equality and subbtyping. In Proc. Typed Lambda Calculi and
Applications, volume 1210 of Lecture Notes in Computer Science,
pages 63–81. Springer-Verlag, 1997.

[2] K. B. Bruce and G. Longo. A modest model of records, inheritance
and bounded quantification. Inform. and Comput., 87(1):196–240,
1990.

[3] L. Cardelli and P. Wegner. On understanding types, data abstraction
and polymorphism. Computing Surveys, 17(4):471–522, 1985.

[4] D. Colazzo and G. Ghelli. Subtyping recursive types in kernel Fun,
extended abstract. In Proc. Logic in Computer Science. IEEE Com-
puter Society Press, 1999.

[5] P.-L. Curien and G. Ghelli. Coherence of subsumtion: Minimum typ-
ing and type checking in F� . Math. Struct. in Comp. Sci., 2(1):55–91,
1992.

[6] V. Gapeyev, M. Levin, and B. C. Pierce. Recursive subtyping re-
vealed. In Proc. Int. Conf. Functional Programming, 2000.

[7] G. Ghelli. Proof Theoretic Studies about a Minimal Type System
Integrating Inclusion and Parametric Polymorphism. PhD thesis,
Universitá di Pisa, 1990.

[8] G. Ghelli. Recursive types are not conservative over F� . In M. Bezen
and J.F. Groote, editors, Proc. Typed Lambda Calculi and Appli-
cations, number 664 in Lecture Notes in Computer Science, pages
146–162. Springer-Verlag, 1993.

[9] G. Ghelli. Divergence of � type checking. Theoret. Comput. Sci.,
139(1-2):131–162, 1995.

[10] A. D. Gordon. Bisimilarity as a theory of functional programming.
In Proc. Math. Foundations of Programming Semantics, number 1 in
Electronic Notes in Comp. Sci. Elsevier, 1995.

[11] M. Hennessy and H. Lin. Symbolic bisimulations. Theoret. Comput.
Sci., pages 353–389, 1995.

[12] R. Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer-Verlag, 1980.

[13] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[14] B. C. Pierce. Bounded quantification is undecidable. Inform. and
Comput., 112(1):131–165, 1994.

[15] B. C. Pierce. Bounded quantification with bottom. Technical Report
492, Computer Science Department, Indiana University, 1997.

[16] B.C. Pierce and D. Sangiorgi. Typing and subtyping for mobile pro-
cesses. In Proc. LICS ’93, pages 376–385. IEEE Computer Society
Press, 1993.

[17] M. Amadio R and L. Cardelli. Subtyping recursive types. ACM
Trans. Programming Languages and Systems, 15(4):575–631, 1993.

[18] D. Sangiorgi and R. Milner. The problem of ‘weak bisimulation up
to’. In Proc. CONCUR 92, volume 630 of Lecture Notes in Computer
Science. Springer Verlag, 1992.

[19] P. Sewell. Global/local subtyping for a distributed π-calculus. Tech-
nical Report 435, Computer Laboratory, University of Cambridge,
1997.

[20] D. N. Turner. The Polymorphic Pi-calculus: Theory and Implemen-
tation. PhD thesis, University of Edinburgh, 1995.

11

