
A Fully Abstract May Testing Semantics for Concurrent Objects

Alan Jeffrey
CTI, DePaul University

Chicago, IL, USA
ajeffrey@cs.depaul.edu

Julian Rathke
COGS, University of Sussex

Brighton, UK
julianr@cogs.susx.ac.uk

Abstract

This paper provides a fully abstract semantics for a vari-
ant of the concurrent object calculus. We define may testing
for concurrent object components and then characterise it
using a trace semantics inspired by UML interaction dia-
grams. The main result of this paper is to show that the
trace semantics is fully abstract for may testing. This is the
first such result for a concurrent object language.

1. Introduction

Abadi and Cardelli’s [1] object calculus is a minimal lan-
guage for investigating features of object languages such as
encapsulated state, subtyping, and self variables. Gordon
and Hankin [7] added concurrent features to the object cal-
culus, to produce the concurrent object calculus.

Prior work on the object calculus has concentrated on the
operational behaviour of object systems, and type systems
which provide type safety guarantees. The closest paper
to ours is Gordon and Rees’s [8] fully abstract semantics
for the immutable single-threaded object calculus. There
has been no work on providing fully abstract semantics for
concurrent mutable objects.

In this paper, we present the first fully abstract testing
semantics for a variant of Gordon and Hankin’s concurrent
object calculus without subtyping. The lack of subtyping
here affords a simpler presentation of the labelled transi-
tions and traces but we anticipate that the proof techniques
used here are robust enough to cater for subtyping also. This
semantics was inspired by UML interaction diagrams [4],
which are a common tool for visualising interactions with
object systems.

1.1. Interaction diagrams

Interaction diagrams (in particular sequence diagrams)
were developed by Jacobson, and are now part of the Uni-
fied Modeling Language standard [4]. Interaction diagrams

record the messages sent between objects of a component in
an object system. These messages include method calls and
returns (interaction diagrams include other forms of mes-
sage, but we will not use these in this paper).

A simple interaction with an integer reference object �
of type

�������	��

has it receive two incoming method calls

� �
������� and � ������� , for which it produces appropriate re-
turn values:

r : IntRef

set (5)

get ()

5

A more complex interaction allows a method call on one
object to call methods on other objects:

foo : Foo bar : Bar

fred ()
barney ()

betty
wilma

Here, the object

����

has one incoming call to

 � ������� ,

makes one outgoing call to �	� � ��������� , receives the result
� �
����� back, then returns ���
 �!"� itself. This illustrates the
four messages which may be sent during an interaction: in-
coming and outgoing method calls, and matching outgoing
and incoming returns.

In this paper, we use a textual representation of an inter-
action, as a trace, which is just a sequence of messages. In

1

the above example,

����

has the trace:

���������	��
�

� ���	���������
?����������������������� ���"!#�����

!���	�"$&%�� �'���($�$�!��
?���	�"$&%�� �
)+*���,-���
!

where we mark incoming messages with ? and outgoing
messages with !. The object ��� � has the matching trace:

���(�����������������������"!#�����
?�.�/�($&%0� �'���($�$�!��

!

and so composing these two traces together, we get that the
whole system has the trace:

���(�����	��
1
#� ���/�2�3���4�
?���	�"$&%�����)5*���,-���

!

There are two additions we will make to the UML message
notation: adding thread identifiers, and making name scope
more explicit.

Sequence diagrams can be used for multithreaded appli-
cations, for example:

r : IntRef

set (5)

get ()

5

Here, two threads independently call methods of the object
� , creating a race condition. In our textual representation,
we give the threads names, and we decorate each message
with the thread responsible for the message:

$&60�	�����
7����(��������� 8��"$(�
5
�4�

?$&60�	������9#���(��������� :0�"$(�����
?$&60�	������9#�.�/�($&%0� �3;��

!$&60�	�����
7��.�/�($&%0� ���
!

The other addition we make to the notation is to make the
scope of names more explicit. For example, consider the
following interaction with a factory object, which builds
new integer reference objects:

factory : IntRefFactory

build ()

result : IntRef«create»
result

set (5)

In the textual representation of this trace, we need to make
clear that the � � ��< � object has not been seen before by
the environment (it is a genuinely new object, not a recycled
object). We do this by decorating the label with ν to indicate
that the � � ��< � object is new:

$&6��/�2���=7����������/�����"$.
1�>!?�>�0%�*�� �=� �4�
?

ν
���	�(8(%0� $

: @ ��$(A��(�B�
� $&6��	�����
7����	�"$&%����C�	�(8"%�� $4�
!$&6��/�2���=7���������� �	�(8(%0� $&� 84�($(�

5
���

?$&6��/�2���=7����	�"$&%������
!

As well as allowing the system to generate new names on
outgoing messages, we allow the environment to generate
new names on incoming messages. This style of dealing
with fresh names comes originally from the π-calculus [19,
18], and has since been used in other languages, notably the
ν-calculus [23].

We have now presented informally all of the machinery
required by our semantics for objects:

D The semantics of a system is given by a set of traces,
where a trace is a sequence of messages corresponding
to one interaction.

D Messages are incoming or outgoing message calls, or
matching outgoing or incoming returns.

D Messages are decorated with thread identifiers.

D Messages may include fresh names.

We have only used a very small subset of sequence dia-
grams, which in turn is a very small subset of UML, but in
this paper we will show that this small subset is very expres-
sive, and in particular provides a fully abstract semantics.

1.2. The object calculus

The object calculus is a minimal language for modelling
object-based programming. Abadi and Cardelli [1] pro-
vided a type system and operational semantics for a variety
of object calculi, and proved type safety for them. Gordon
and Hankin [7] have since extended this language to include
concurrent features.

In this paper, we shall investigate a variant of Gordon
and Hankin’s concurrent object calculus, which includes:

D A heap of named objects and threads.

D Threads can call or update object methods, can com-
pare object or thread names for equality, can create
new objects and threads and can discover their own
thread name.

D An operational semantics based on the π-calculus [19,
18], and a simple type system.

D A trace semantics as discussed in Section 1.1.

We are not considering many of the more advanced features
of the object calculus or the concurrent object calculus, such
as recursive types, object cloning and object locking. This
is just for simplicity, we do not see any technical problems
with incorporating these features into our language.

In another strand of research Di Blasio and Fisher [3]
also designed a calculus for modelling imperative, concur-
rent object-based systems. As with Abadi and Cardelli’s
object calculus and its various extensions, the emphasis in
Di Blasio and Fisher’s work is again on type systems and
safety properties for them.

1.3. Full abstraction

The problem of full abstraction was first introduced by
Milner [17], and investigated in depth by Plotkin [24]. Full
abstraction was first proposed for variants of the λ-calculus,
but has since been investigated for process algebras [9],
the π-calculus [6, 10], the ν-calculus [23, 14], Concurrent
ML [5, 15], and the immutable object calculus [8].

One way to define a semantics for a programming lan-
guage is to define:

D A language of typed components C which can be com-
posed C1 � C2. (In this paper, components are pro-
grams in the concurrent object calculus.)

D A notion of when a component is successful. (In this
paper, we use a special ��<���� method call to indicate
a successful component although the theory is robust
enough that any other suitable observable would suf-
fice).

We can then define the may testing preorder [21, 9] as
C1 �� may C2 whenever:

for any appropriately typed C
if C1 � C is successful then C2 � C is successful

Unfortunately, although it is very simple to define, and is
quite intuitive, may testing is often very difficult to reason
about directly, because of the quantification over ‘any ap-
propriately typed C’. In practice, we require a proof tech-
nique which we can use to show results about may testing.

One approach is to use a trace semantics, given by defin-

ing possible executions of components C ���s � C 	 where s
is a sequence of messages. We then write
 � ���"��8#�

C
�

for the
set of all traces of C. We say that:

D Traces are sound for may testing when

 � ���"�(8
�

C1
���
 � ���"��8=�

C2
�

implies C1 �� may C2.

D Traces are complete for may testing when
C1 �� may C2 implies
 �	���(�(8=�

C1
�
�
 �	���(�(8#�

C2
�
.

D Traces are fully abstract for may testing when
they are both sound and complete.

A fully abstract trace model can be a useful tool in under-
standing a behavioural equivalence in the sense that, in or-
der to be sound, the traces used to build the model must,
at minimum, account for all of the possible interactions a
system of objects may have with its environment and, in or-
der to be complete, the interactions described by the traces
must be genuine. This is taken to mean that for each interac-
tion described by a trace there is an actual system of objects
which can play the role of the environment in that interac-
tion. Therefore, to obtain a fully abstract trace model it is
necessary to describe all possible interactions accurately.

Establishing full abstraction for a language which in-
cludes features such as higher-order programming, new
name generation, and heap-based objects is often non-
trivial. For example, Pitts and Stark introduced the ν-
calculus [23], as a minimal higher-order language with
name generation, by extending the simply typed λ-calculus
with an abstract type of names, together with a name gen-
erator and an equality test. Even this minimal language is
remarkably difficult to reason about, and there is no known
fully abstract semantics for it [15].

1.4. Contribution of this paper

In this paper, we present a variant of Gordon and Han-
kin’s concurrent object calculus, which is in turn an exten-
sion of Abadi and Cardelli’s object calculus. The only sig-
nificant departures from Gordon and Hankin’s concurrent
object calculus is that we use named threads, where they use
anonymous threads and we restrict the calculus to disallow
subtyping and recursive types. Whilst this latter restriction
does move us away from the essence of object-oriented pro-
gramming it is imposed so as to keep the technical presenta-
tion as simple as possible at this stage. The re-introduction
of these features into the type system would affect the be-
havioural theory in what we expect to be a predictable way
and anticipate that techniques employed in [11] and those
presented here can be combined to give a similar treatment
for a concurrent object language with subtyping.

We provide the calculus with an operational semantics,
and a trace semantics, and then show that the trace seman-
tics is fully abstract for may testing. This is the first full
abstraction result for a concurrent object-based language.

2. Concurrent objects

In this section, we will present the syntax, static seman-
tics and dynamic semantics of our concurrent object calcu-
lus. This is a variant of Gordon and Hankin’s concurrent
object calculus with named rather than anonymous threads.

2.1. Syntax

The syntax for the concurrent object calculus we will use
in this paper is given in Figure 1. For the remainder of this
section, we will provide an informal description of the syn-
tax.

In examples, we will often make use of base types such
as integers and booleans: these are not part of our formal
system, but will make examples easier to present. They
could be comfortably included in the language without
changing the theory significantly. We will also make use
of some syntax sugar, which we will define formally at the
end of this section.

A componentC is a collection of named objects n �O � and
threads n

�
t
�
. For example, one possible component consist-

ing of an integer reference p and a thread n which incre-
ments the reference is:

p � �(
#�2$.���2$.8 � 5 � �
n
�.� �"$

x � p
� �"
=��$.����$.8 *��

p
� �(
#�2$.���2$.8

: � x � 1
�

We also use the ν-notation of the π-calculus [18] to indi-
cate which names are private, and not known to the outside
world. By default, names are public, and have to be marked
by ν in order to be considered private. For example, n is
private, and p is public in:

ν
�
n :

$&60�	�����1�
�"�
p � �(
#�2$.���2$.8 � 5 � �
n
��� �"$

x � p
� �(
#�2$.���2$.8 *��

p
� �"
#�2$.���2$.8

: � x � 1
�

�

An object �O � consists of a set of named methods, for exam-
ple an integer reference with

8��"$
and

:��($
methods might be

written:

� �(
#�2$.���2$.8 � 5 �8��"$ � ς
� $&6�* 8

: @ ��$(A��"� �=�
λ
�
x : @ ��$��
��$&6�* 8"� �(
#�2$.���2$.8

: � x;x �:0�"$ � ς
� $&6�* 8

: @ ��$(A��"� �=�
λ
���
��$&6�* 8&� �"
=��$.����$.8

�
Here we are using Abadi and Cardelli’s [1] notation for
fields as zero-argument methods. Each method M consists

of a self name as well as a list of parameters and a body. For
example, the

8��"$
method above has self name

��$&6�* 8
: @ ��$(A��(�B�

,
parameters

�
x : @ ��$�� , and body

� $&6�* 8(� �"
#�2$.���2$.8
: � x

�
.

(Readers familiar with Abadi and Cardelli’s work will
note that we are taking parameterized methods as primitive,
rather than defining them as syntax sugar. This is neces-
sary for our semantics, which is based on method calls with
arguments and return values.)

A thread
�
t
�

consists of a stack of let-expressions, termi-
nated either by a return value:

��� �"$
x1 : T1 � e1

*���������� �"$
xn : Tn � en

*��
v
�

or by a deadlocked
8.$.
	�

thread:

��� �($
x1 : T1 � e1

*��
������� �"$
xn : Tn � en

*�� 8.$.
����

Each expression is either itself a thread, or:

D an if expression
* �

v1 � v2
$&6����

e1
��� 84�

e2,

D a method call v
�
l
�
�
v
�
,

D a method update v
�
l � M,

D a new object
���") �O � ,

D a new thread
���") �

t
�
, or

D the current thread name
��%0� �/����$�$&6��	�����

.

Each value is either a name or a variable. We will discuss
types in Section 2.2. In examples, we will often use some
syntax sugar. We will elide types from variable and name
binders, where they can be reconstructed. We write e; t as
syntax sugar for

� �($
x � e

*��
t when x is a fresh variable.

We use Abadi and Cardelli’s definition of fields f as zero-
argument methods: a field declaration f � v in an object is
syntax sugar for a method declaration f � ς

�
n : T

�1�
λ
���1�

v; a
field type f : T in an object type is syntax sugar for a method
type f :

�����
T ; a field access expression v

�
f is syntax sugar

for a method call v
�
f
���

; and a field update expression v
�
f : �

v 	 is syntax sugar for a method update v
�
f � �

ς
�
n : T

�
�
λ
���
�

v
�
.
In addition, we have restricted many subexpressions of

an expression to be values rather than full expressions, for
example in a method call v

�
l
�
�
v
�

we require the object and the
arguments to be values rather than expressions e

�
l
�
�
e
�
. This

makes the operational semantics much easier to define, and
does not restrict the expressivity of the language, for exam-
ple we can define

�
e
�
l
�
�
e
����� ��� �($

x � e
*��-� �"$��

x � �
e

*��
x
�
l
���
x
�4�

.
Similarly, the distinction between threads and expres-

sions makes the operational semantics much simpler, but
we can treat any expression as a thread by η-converting it:�
e
��� �.� �"$

x � e
*��

x
�
.

Components: C :: � 0 � C � C � ν �
n : T

�
�
C � n �O ��� n �

t
�

Objects: O :: � l � M � �4��� � l � M
Methods: M :: � ς

�
n : T

�=�
λ
�
x : T � �4��� � x : T

�
�
t

Threads: t :: � v � 8.$.
�� � � �"$ x : T � e
*��

t
Expressions: e :: � t � * � v � v

$&62���
e

��� 8��
e � v � l � v � �4�4� � v � � n �

l � M � ���") �O ��� �2�() �
t
� � ��%0� �	���2$�$&60�	�����

Values: v :: � x � n
Types: T :: � $&6��	����� � �2
=�2� � � l : L � �4��� � l : L �
Method types: L :: � �

T � ���4� � T � �
T

We assume grammars for variables x � y, names n � p and method identifiers l.
In objects and object types, we require method identifiers l to be unique, and viewed up to reordering.

Figure 1. Syntax of the concurrent object calculus

2.2. Static semantics

The static semantics for our concurrent object calculus is
given in Figures 2–6. Most of the rules are straightforward
adaptations of those given by Abadi and Cardelli [1]. The
main judgement is ∆ � C : Θ which is read as ‘the compo-
nent C uses names ∆ and defines names Θ’. For example, if
we define C1

�
v
�
, C2 and @ ��$(A��"�

as:

C1
�
v
���

p ��(
#�2$.���2$.8 � v �8��"$ � ς
��$&6�* 8

: @ ��$(A��"���
�
λ
�
x : @ �2$��
��$&6�* 8(� �(
#�2$.���2$.8

: � x;x �:0�"$ � ς
��$&6�* 8

: @ �2$(A��"�B�
�
λ
� �
��$&6�* 8&� �"
=��$.����$.8

�
C2

�
n
�

� �($
x � p

� :0�"$"��� *��
p
� 84�($(�

x � 1
�
;
84$.
	�

�
@ �2$(A��"� � ��(
#�2$.���2$.8

: @ �2$ � 8��"$:
� @ �2$�� � @ �2$ � :��($:

��� � @ ��$
�

then we can deduce (if v : @ ��$):
n :

$&6��/�2��� � C1
�
v
�

:
�
p : @ �2$(A��"�B�

p : @ ��$(A��"� � C2 :
�
n :

$&6��	�����1�
� �

C1
�
v
� � C2

�
:
�
p : @ ��$(A��(� � n :

$&6��/�2�����
� ν

�
n :

$&6��/�2�����
�"�
C1

�
v
� � C2

�
:
�
p : @ �2$(A
�(�B�

We will now introduce an important requirement of our
components, that they be write closed:

Whenever ∆ � C : Θ contains a subexpression of
the form n

�
l � M with n free, then n appears in Θ.

This is intended to capture the common software engineer-
ing requirement that components should not export mutable
fields, instead they should export suitable

:0�"$
and

84�"$
meth-

ods. For example, the configurations C1 and C2 above are

write closed, since the only updates are to
$&6�* 8

, but the fol-
lowing component which writes directly to p

� �(
#�2$.���2$.8
is

not write closed:

C 	2 � n
�.� �"$

x � p
� �"
=��$.����$.8 *��

p
� �(
#�2$.���2$.8

: � x � 1;
84$.
	�2�

For the remainder of the paper we will require components
to be write closed. This makes developing a fully abstract
semantics much simpler, since we do not need to model
method update directly.

2.3. Dynamic semantics

The dynamic semantics for our concurrent object calcu-
lus is given in Figures 7–10.

We define two relations:

D C
τ�

C 	 when C can reduce to C 	 by the interaction of a
thread and an object (either a method call or a method
update).

D C
β�

C 	 when C can reduce to C 	 by a thread acting
independently of any other threads or objects.

We write C
�

C 	 when either C
τ�

C 	 or C
β�

C 	 ; we write
C
�

C 	 when C
���

C 	 .
The important property of β-reductions is that they do

not introduce race conditions (and hence nondeterminism),
where τ-reductions may introduce race conditions. This is
discussed further in the full version of this paper.

For example, recalling the definition of C1
�
v
�

from Sec-
tion 2.2 we have:

C1
�
5
� � n

��� �"$
x � p

� :0�"$"��� *��
p
� 84�($&�

x � 1
�
;
8.$.
��2�

τ�
C1

�
5
� � n

��� �($
x � p

� �(
#�2$.���2$.8 *��
p
� 84�($(�

x � 1
�
;
84$.
	�2�

τ�
C1

�
5
� � n

��� �($
x � 5

*��
p
� 8��"$(�

x � 1
�
;
8.$.
��2�

β� �
C1

�
5
� � n

�
p
� 84�($"�

6
�
;
8.$.
����

∆ � 0 :
��� ∆ � Θ2 � C1 : Θ1 ∆ � Θ1 � C2 : Θ2

∆ � �
C1 � C2

�
:
�
Θ1 � Θ2

� ∆ � C : Θ � n : T
∆ � ν

�
n : T

�
�
C : Θ

;∆ � n : T �
�O � : T
∆ � n �O � :

�
n : T

� ;∆ � n :
$&6��/�2��� � t :

��
#���
∆ � n

�
t
�

:
�
n :

$&60�	�����1�

Figure 2. Rules for judgement ∆ � C : Θ

Γ;∆ � M1 : T
�
l1

�����
Γ;∆ � Mk : T

�
lk

Γ;∆ ��� l1 � M1 � ���4� � lk � Mk � : T

Figure 3. Rule for judgement Γ;∆ �
�O � : T (when T � � l1 : L1 � �4�4� � lk : Lk �)

Γ � x1 : T1 � �4��� � xk : Tk;∆ � n : T � t : U
Γ;∆ � ς

�
n : T

�
�
λ
�
x1 : T1 � �4�4� � xk : Tk

�
�
t : T

�
l

Figure 4. Rule for judgement Γ;∆ � M : T
�
l (when T � � �4��� � l :

�
T1 � �4�4� � Tk

�	�
U � �4��� � and T

�
l is the record l

selected from T)

Γ;∆ � v1 : T1 Γ;∆ � v2 : T1

Γ;∆ � e1 : T2 Γ;∆ � e2 : T2

Γ;∆ � * �
v1 � v2

$&6����
e1

��� 84�
e2 : T2

Γ;∆ � v : � ���4� � l :
�
T1 � ���4� � Tk

� �
T � �4��� �

Γ;∆ � v1 : T1
�����

Γ;∆ � vk : Tk

Γ;∆ � v
�
l
�
v1 � ���4� � vk

�
: T

Γ;∆ � n : T Γ;∆ � M : T
�
l

Γ;∆ � n
�
l � M : T

Γ;∆ ���O � : T
Γ;∆ � ���") �O � : T

Γ;∆ � t : T
Γ;∆ � ���") �

t
�

:
$&6��/�2���

Γ;∆ � ��%0� �	���2$�$&60�	�����
:
$&60�	�����

Γ;∆ � e : T1 Γ � x : T1;∆ � t : T2

Γ;∆ � � �"$
x : T1 � e

*��
t : T2 Γ;∆ � 8.$.
��

: T Γ � x : T � Γ 	 ;∆ � x : T Γ;∆ � n : T � ∆ 	 � n : T

Figure 5. Rules for judgement Γ;∆ � e : T

Variable contexts: Γ :: � x : T � �4��� � x : T Name contexts: ∆ � Θ � Σ � Φ :: � n : T � �4��� � n : T

In variable contexts, variables must be unique, and are viewed up to reordering.
In name contexts, names must be unique, types must not be

��
#���
, and are viewed up to reordering.

Figure 6. Syntax of name and variable contexts

0 � C
�

C
�
C1 � C2

� � C3
�

C1 � �
C2 � C3

�
C1 � C2

�
C2 � C1

C1 � ν
�
n : T

�
�
C2

�
ν
�
n : T

�
�"�
C1 � C2

�
ν
�
n1 : T1

�
�
ν
�
n2 : T2

�
�
C
�

ν
�
n2 : T2

�
�
ν
�
n1 : T1

�
�
C

Figure 7. Axioms for structural congruence (where n is not free in C1)

n
�.� �"$

x : T � v
*��

t
� β�

n
�
t � v � x � �

n
��� �($

x : T � ��� �($
x1 : T1 � e1

*��
e2

� *��
t
� β�

n
��� �"$

x1 : T1 � e1
*�� �.� �"$

x : T � e2
*��

t
�4�

n
�.� �"$

x : T � � * �
v � v

$&62���
e1

��� 84�
e2

� *��
t
� β�

n
��� �"$

x : T � e1
*��

t
�

n
�.� �"$

x : T � ��* �
v1 � v2

$&6����
e1

��� 84�
e2

� *��
t
� β�

n
��� �"$

x : T � e2
*��

t
�

(v1 �� v2)

n
��� �($

x : T � �2�() �O � *�� t
� β� ν

�
p : T

�
�"�
p �O � � n

��� �"$
x : T � p

*��
t
���

(p is not free in O or t)

n
��� �"$

x : T � ���") �
f
� *��

t
� β� ν

�
p : T

�
�"�
p
�
f
� � n

��� �($
x : T � p

*��
t
���

(p is not free in t or f)

n
�.� �"$

x : T � ��%����	���2$�$&6��/�2��� *��
t
� β�

n
��� �"$

x : T � n
*��

t
�

n
�.� �"$

x : T � 8.$.
��+*��
t
� β�

n
��8.$.
����

p �O � � n
��� �"$

x : T � p
�
l
�
�
v
�C*��

t
� τ�

p �O � � n
��� �($

x : T � O
�
l
�
p
�(�
�

v
�C*��

t
�

p �O � � n
��� �($

x : T � p
�
l � M

*��
t
� τ�

p �O �
l � M � � n

��� �"$
x : T � p

*��
t
�

Figure 8. Axioms for reduction precongruence

C
� β� �

C 	
C

β�
C 	

C
β�

C 	
C � C 	 	 β�

C 	 � C 	 	
C

β�
C 	

ν
�
n : T

�
�
C

β� ν
�
n : T

�=�
C 	

C
� τ� �

C 	
C

τ�
C 	

C
τ�

C 	
C � C 	 	 τ�

C 	 � C 	 	
C

τ�
C 	

ν
�
n : T

�
�
C

τ� ν
�
n : T

�=�
C 	

Figure 9. Rules for reduction precongruence

� �
l � �

M � l � M
�"�

l
�
p
�(�
�

v
� � t � p � n � �v � �x � � �

l � �
M � l � M 	 �&� l � M � � �

l � �
M � l � M

�

Figure 10. Definition of O
�
l
�
p
�"�
�

v
�

and O
�
l � M where M � ς

�
n : T

�=�
λ
�
�
x :

�
T

�
�
t

τ�
C1

�
5
� � n

�
p
� �"
=��$.����$.8

: � 6;6;
8.$.
����

τ�
C1

�
6
� � n

�
p;6;

84$.
	���
β� �

C1
�
6
� � n

��84$.
	���

as expected.

2.4. Testing preorder

We will now define the testing semantics for our concur-
rent object calculus. We will do this by defining a notion
of barb for a component, and let a successful component be
one which communicates on that barb. This is similar to the
use of barbs in process algebra [20].

Let the type
�������

be defined:
����� � � � 8(%���� :

��� � ��
#��� �
for some fresh method name

8"%��(�
. We say that a component

strongly barbs on b :
�������

written C � b if and only if:

C
�

ν
���
n :

�
T

�=�"�
C 	 � n

��� �"$
x :

�2
=�2� � b
� 8(%�������� *��

t
�4�

for b �� �
n and barbs on b :

����� �
written C � b if and only if:

C
�

C 	 � b

When ∆ � C1 : Θ and ∆ � C2 : Θ we write ∆ � � C1 �� may C2 : Θ
if and only if:

for any ∆ 	 � Θ � b :
����� � � C : ∆ if

�
C1 � C

� � b then
�
C2 � C

� � b

This is a straightforward adaptation of the standard [9] def-
inition of may testing for concurrent systems.

2.5. Trace semantics

The trace semantics for the concurrent object calculus is
given by a labelled transition system (lts) with judgements:

�
∆ � C : Θ

� α� �
∆ 	 � C 	 : Θ 	 �

The lts is given for components extended by introducing
two new expressions:

e :: � ����� � �0�
?��� � �	�"$&%�� �
v

These new threads are included purely to assist in the de-
scription of the lts and are intended to represent a command
for a thread to wait for some unknown interaction with the
environment and a command for a thread to report a value
to the environment and then to go back to a

�0�
?���
ed state.

There are no reductions associated with these commands
and they may be typed as:

Γ;∆ � �0�
?���
: T

Γ;∆ � v : T

Γ;∆ � �	�"$&%�� �
v : U

where T and U are any types. The lts for our concurrent
object language are given in Figures 11–14.

For example if we define:

Θ
� �

p : @ ��$(A��(���
Θ 	 � �

p : @ �2$(A��"� � n :
$&60�	�����1�

then (where C1
�
v
�

is defined in Section 2.2) we have:

� � C1
�
5
�

: Θ
�

ν � n: �	��
 ��
����	� n ����
�� � p � ����������� ?�
� � �

C1
�
5
� � n

�.� �"$
x � p

� :��($&� �C*�� �	�"$&%����
x
���

: Θ 	 ��
� � �

C1
�
5
� � n

�.�/�($&%0� �
5
�4�

: Θ 	 �
n ��
 �	�	��
� 5 � !�

� � �
C1

�
5
� � n

�.�0�
?�������
: Θ 	 �

n ���!
�� � p � "��	�	� 6 ��� ?�
� � �

C1
�
5
� � n

�.� �"$
x � p

� 84�($&�
6
� *��-�	�"$&%�� �

x
�4�

: Θ 	 ��
� � �

C1
�
6
� � n

�.�/�($&%0� �
6
�4�

: Θ 	 �
n ��
 �	�	��
� 6 � !�

� � �
C1

�
5
� � n

�.�0�
?�������
: Θ 	 �

For any component
�
∆ � C : Θ

�
we define its traces to be:

 � ���"��8��
∆ � C : Θ

� �$# s � � ∆ � C : Θ
� � �s � �

∆ 	 � C 	 : Θ 	 �&%

We will now show that this trace semantics is fully abstract
for may testing.

3. Soundness of traces for may testing

3.1. The merge operator

Define the partial merge operatorC1 ' C2 as the symmet-
ric operator defined up to

�
where:

0 ' C
�

C�
ν
�
p : T

�=�
C1

� ' C2
�

ν
�
p : T

�=�"�
C1 ' C2

�
�
p �O � � C1

� ' C2
�

p �O � � �
C1 ' C2

�
�
p
�
t
� � C1

� ' C2
�

p
�
t
� � �

C1 ' C2
�

�
n
�
t1

� � C1
� ' �

n
�
t2

� � C2
� �

n
�
t1 ' t2

� � �
C1 ' C2

�

when n �� �0
#, �
C2

�
and p �� ���-�

C2
�
.

Define the partial merge operator t1 ' t2 as the symmetric

�
∆ � n :

$&6��/�2��� � C : Θ
� n ���!
�� � p � l ���v ��� ?� �

∆ � C � n
��� �($

x : T � p
�
l
���
v
� *�� �	�"$&%�� �

x
�

:
�
n :

$&6��	����� � Θ ���
�
when ;∆ � n :

$&6��	����� � Θ � p
�
l
���
v
�

: T and p
� Θ

�
�
∆ � C � n

��� �($
x : T � �0�
?��� *��

t
�

: Θ
� n ���!
�� � p � l ���v ��� ?� �

∆ � C � n
��� �($

y : U � p
�
l
�
�
v
� *�� � �"$

x : T � �	�"$&%����
y

*��
t
�

: Θ
�

�
when ;∆ � Θ � p

�
l
���
v
�

: U and p
� Θ

�
�
∆ � C � n

��� �($
x : T � �0�
?��� *��

t
�

: Θ
� n ��
 ��� ��
� v � ?� �

∆ � C � n
�
t � v � x � � : Θ

�
�
when ;∆ � Θ � v : T

�
�
∆ � C � n

��� �($
x : T � p

�
l
���
v
� *��

t
�

: Θ
� n ���!
�� � p � l ���v ��� !� �

∆ � C � n
��� �($

x : T � �0�
?��� *��
t
�

: Θ
�

�
when p

� ∆
�

�
∆ � C � n

��� �"$
x : T � �/�($&%0� �

v
*��

t
�

: Θ
� n ��
 �	�	��
� v � !� �

∆ � C � n
��� �($

x : T � �0�
?��� *��
t
�

: Θ
�

Figure 11. Axioms for labelled transition system
�
∆ � C : Θ

� α� �
∆ 	 � C 	 : Θ 	 �

�
∆ � C :

�
Θ � n : T

�4� a� �
∆ 	 � C 	 : �

Θ 	 � n : T
�4�

�
∆ � ν

�
n : T

�
�
C : Θ

� a� �
∆ 	 � ν

�
n : T

�
�
C 	 : Θ 	 �

�
n is not free in a

�

�
∆ � C :

�
Θ � n : T

�4� γ!� �
∆ 	 � C 	 : Θ 	 ��

∆ � ν
�
n : T

�
�
C : Θ

� ν � n:T �	� γ!� �
∆ 	 � C 	 : Θ 	 �

�
n is free in γ

�

�
∆ � n : T � C : Θ

� γ?� �
∆ 	 � C 	 : Θ 	 ��

∆ � C : Θ
� ν � n:T �	� γ?� �

∆ 	 � C 	 : Θ 	 �
�
n is free in γ � T is not

��
#�����

Figure 12. Rules for labelled transition system
�
∆ � C : Θ

� α� �
∆ 	 � C 	 : Θ 	 �

C
�

C 	�
∆ � C : Θ

� � �ε � �
∆ � C 	 : Θ

�
�
∆ � C : Θ

� a� �
∆ 	 � C 	 : Θ 	 �

�
∆ � C : Θ

� � �a � �
∆ 	 � C 	 : Θ 	 �

�
∆ � C : Θ

� � �s � �
∆ 	 � C 	 : Θ 	 � � �s

� � �
∆ 	 	 � C 	 	 : Θ 	 	 �

�
∆ � C : Θ

� � �ss
� � �

∆ 	 	 � C 	 	 : Θ 	 	 �

Figure 13. Rules for trace semantics
�
∆ � C : Θ

� � �s � �
∆ 	 � C 	 : Θ 	 �

Basic labels: γ :: � n
���(�����

p
�
l
���
v
��� � n �.�/�($&%0� �

v
� � ν �

n : T
�=�

γ
Visible labels: a :: � γ? � γ!
Traces: q � r� s :: � a

�����
a

Figure 14. Syntax of labels and traces

operator where:
�.� �"$

x � ���
?��� *��
t
� ' 84$.
	�

� 8.$.
	�
�.� �"$

x � ���
?��� *��
t
� ' v�

v�.� �"$
x � ���
?��� *��

t1
� ' ��� �($

y � �	�"$&%�� �
v

*��
t2

�
� ��� �"$

y � ���
?��� *��
t2

� ' �
t1 � v � x � ��.� �"$

x � ���
?��� *��
t1

� ' ��� �($
y � e

*��
t2

�
� � �"$

y � e
*�� �4�.� �"$

x � �0�
?��� *��
t1

� ' t2
�

when e is block/return free and y �� ��� �
t2

�
.

Lemma 3.1 If ∆ � �
C1 � C2

�
: Θ then

�
C1 ' C2

� � �
C1 � C2

�
.

Lemma 3.2 If C1 ' C2
�

C then C � b if and only if C1 � b

or C2 � b.

3.2. Trace composition and decomposition

Given a trace s we write s̄ for the complementary trace:

ε̄ � ε s1s2 � s̄1s̄2 γ̄? � γ! γ̄! � γ?

Proposition 3.3 (Trace composition/decomposition) For
any components

�
∆ � Φ � C1 : Θ � Σ �

and
�
Θ � Φ � C2 : ∆ � Σ �

such that C1 ' C2
�

C, we have:

(i) If
�
∆ � Φ � C1 : Θ � Σ � � �s � �

∆ 	 � Φ � C 	1 : Θ 	 � Σ 	 �
and

�
Θ � Φ � C2 : ∆ � Σ � � � s̄ � �

Θ 	 � Φ � C 	2 : ∆ 	 � Σ 	 �
then C

�
C 	

where ν
�
∆ 	 � Θ 	 � Σ 	 � ∆ � Θ � Σ �
�"�

C 	1 ' C 	2 � � C 	 .
(ii) If C

�
C 	 then there exists some trace s

such that
�
∆ � Φ � C1 : Θ � Σ � � �s � �

∆ 	 � Φ � C 	1 : Θ 	 � Σ 	 �
and

�
Θ � Φ � C2 : ∆ � Σ � � � s̄ � �

Θ 	 � Φ � C 	2 : ∆ 	 � Σ 	 �
where ν

�
∆ 	 � Θ 	 � Σ 	 � ∆ � Θ � Σ �
�"�

C 	1 ' C 	2 � � C 	 .
3.3. Proof of soundness

Theorem 3.4 (Soundness of traces for may testing)
If
 �	���(�(82�

∆ � C1 : Θ
���
 � ���"��8��

∆ � C2 : Θ
�

then ∆ � � C1 �� may C2 : Θ

Proof: Suppose that
 �	���(�(8��
∆ � C1 : Θ

�
�
 �	���(�(8��
∆ � C2 :

Θ
�

and that we have
�
Θ � b :

����� � � C0 : ∆
�

such that
�
C1 �

C0
� � b; we must show that

�
C1 � C0

� � b also.
Now, since

�
C1 � C0

� � b we can find C 	 such that:
�
C1 � C0

� �
C 	 � b

By Lemma 3.1 we know that: C1 � C0
�

C1 ' C0 and so by
Proposition 3.3 we have:

�
∆ � b :

������� � C1 : Θ
� � �s � �

∆ 	 � b :
����� � � C 	1 : Θ 	 � Σ 	 �

�
Θ � b :

����� � � C0 : ∆
� � � s̄ � �

Θ 	 � b :
������� � C 	0 : ∆ 	 � Σ 	 �

where: ν
�
∆ 	 � Θ 	 � Σ 	 � ∆ � Θ �
�"�

C 	1 ' C 	0 � � C 	 . By Lemma 3.2
we know that either C 	1 � b or C 	0 � b.

D Case
�
C 	1 � b

�
. Since C 	1 � b we can find a label ω! of the

form:
ω! � ν

�
�
n :

�
T

�
�
n
���(�����

b
� 8"%��(��� �4�

!

such that:

�
∆ 	 � b :

����� � � C 	1 : Θ 	 � Σ 	 � ω!�

Since
 �	���(�(82�
∆ � C1 : Θ

� �
 �	���(�(82�
∆ � C2 : Θ

�
we

have:

�
∆ � b :

������� � C2 : Θ
� � s � �

∆ 	 � b :
����� � � C 	2 : Θ 	 � Σ 	 � ω!�

By Lemma 3.1 we know that C2 � C0
�

C2 ' C0 and so
by Proposition 3.3 we have:

�
C2 � C0

� �
C 	 	 where:

ν
�
∆ 	 � Θ 	 � Σ 	 � ∆ � Θ �=�"�

C 	2 ' C 	0 ��� C 	 	
By Lemma 3.2, since C 	2 � b we have that C 	 	 � b, and so�
C2 � C0

� � b as required.

D Case
�
C 	0 � b

�
. Similar to the above. �

3.4. Example

We can use the trace semantics now to show a simple
equivalence, derived from one of the Meyer-Sieber exam-
ples [16] for idealised Algol. The following two compo-
nents are may testing equivalent if x �� t � C:

C � n
�.� �"$

x � ���") �O � *�� t
�

and C � n
�
t
�&�

To show this we use a meta-property of reduction that traces
are invariant under β-reductions so we reduce our obligation
to showing equivalence of

�
ν
�
p
�
�

p �O � � � C � n
�
t
�

and C � n
�
t
�"�

This can be achieved by establishing a simple invariant (by
examining each labelled transition rule) that each of these
can perform the same actions to get to a similar syntactic
form.

4. Completeness of traces for may testing

A key step in demonstrating completeness of traces for
may testing is to find, for each trace, a component which
exhibits that trace; we call this problem definability. How-
ever, we only actually require definability for traces which
originated from well-typed components. To identify these,
in the full version of the paper, we present a type system
for traces ∆ � s :

$&� ���"�
Θ which captures exactly those we

require. For present purposes the reader may think of the

well-typed traces ∆ � s :
$&� ���"�

Θ simply as those which are
generated by well-typed components ∆ � C : Θ. Also, due
to an amount of latency and asynchrony in the labelled tran-
sition system, to demonstrate definability, we found it nec-
essary to define an information order ∆ � r � s :

$&� ���"�
Θ for

typed traces which incorporates prefixing, input receptivity
[12], and commutativity of certain actions. Details of this
may be found in the full version of the paper.

Lemma 4.1 (Trace Duality) If ∆ � s :
$&�	���(�

Θ
then Θ � s̄ :

$&� ���"�
∆

Proposition 4.2 (Trace Subject Reduction) If ∆ � C : Θ
and

�
∆ � C : Θ

� � �s � �
∆ 	 � C 	 : Θ 	 � then ∆ � s :

$&� ���"�
Θ

and ∆ 	 � C 	 : Θ 	 .
Lemma 4.3 (Information Order Duality)
If ∆ � r γ! � sγ! :

$&� ���"�
Θ and

��� �
γ
���

Θ
�
s
� � /0 and γ! �� s � r

then Θ � s̄ � r̄ :
$&� ���"�

∆.

Proposition 4.4 (Information Order Closure)

If
�
∆ � C : Θ

� � �s � and ∆ � r � s :
$&�	���(�

Θ

then
�
∆ � C : Θ

� � �r � .

In the full version of this paper, we define a component�
=���#: �
∆ � s :

$&� ���"�
Θ

�
for any typed trace ∆ � s :

$&� ���"�
Θ,

and show the following results about it.

Lemma 4.5 If ∆ � s :
$&� ���"�

Θ
then ∆ � �
=���#: �

∆ � s :
$&�	���(�

Θ
�

: Θ.

Proposition 4.6 (Definability) For any ∆ � s :
$&�	���(�

Θ
we have

�
∆ � �
#���#: �

∆ � s :
$&� ���"�

Θ
�

: Θ
� � �r �

if and only if ∆ � r � s :
$&�	���(�

Θ.

The definition of
�
#���#: �

∆ � s :
$&�	���(�

Θ
�

is rather lengthy
so rather than presenting it in full detail here we simply of-
fer an indication of how it is constructed. Firstly, we con-
struct two objects called

A��"�
and � $4�2$.� . The former con-

tains a field holding a pointer to the latter. The State object
provides type-indexed families of methods called

#%2$
,
*��?A��	�

$&%0� �
, and

*�� � �����
. We also provide object and thread defini-

tions for all those references for which the type demands it,
i.e. those in Θ. The object definitions provide methods ac-
cording to the object types, where the method bodies simply
indirectly re-route all calls to the appropriate � $4�2$.��
�*�� � �����

.
The thread definitions make indirect calls to � $4�2$.��

=%�$

. It it
through these that traces are begun.

The bodies for the

=%�$

,
*��?A
�($&%0� �

, and
*�� � �����

methods de-
pend on the next action in the trace we are providing de-
finability for. For instance, if the next action to be per-
formed is an output n

���(�����
p
�
l
���
v
���

! then all of the bodies will
be a stopped thread save for

#%2$
which will have a method

body which will check that the calling thread is n and, if so,

update
A��"�

to point to a new � $4�2$.� object which will per-
form the next action in the trace. It will then indirectly call
� $4�2$.��
�*��?A
�($&%0� �

with the result of calling p
�
l
���
v
�

(on dangling
p) to listen for an input interaction (cf. the labelled tran-
sition rule for output, any subsequent action at this thread
must be an input). Having successfully observed an input
interaction, the line of interrogation in this thread is com-
plete so it must reset itself by returning to a state in which it
makes an indirect call to � $4�2$.��

#%2$

. Similar definitions are
given for each type of action.

We provide no synchronisation in the
�
=���#: �

∆ � s :$&�	���(�
Θ

�
component so that there is no guarantee that the

reductions will follow the precise sequence of calls needed
to exhibit the trace. However, with respect to may testing,
this is irrelevant as we are only looking for one possible
successful sequence of execution. We do guarantee the ex-
istence of this in Proposition 4.6.

Theorem 4.7 (Completeness of traces for may testing)
If ∆ � � C1 �� may C2 : Θ
then
 � ���"��8(�

∆ � C1 : Θ
���
 � ���"��8(�

∆ � C2 : Θ
�
.

Proof: Choose any trace s1 such that:
�
∆ � C1 : Θ

� � �s1 � �
∆ 	 � C 	1 : Θ 	 �

By Proposition 4.2 we have that ∆ � s1 :
$&� ���"�

Θ, and so
by Lemma 4.1 we have that Θ � s̄1 :

$&� ���"�
∆.

Pick a fresh b :
����� �

and let ω! be:

ω! � ν
�
n :

$&6��	�����1�=�
n
���(�����

b
� 8(%����������

!

and let C0 be:

C0 � �
=���#: �
Θ � b :

������� � s̄1ω! :
$&� ���"�

∆
�

Then by Proposition 4.6 we have:

�
Θ � b :

������� � C0 : ∆
� � � s̄1 � �

Θ 	 � b :
����� � � C 	0 : ∆ 	 � ω!�

and so C 	0 � b. Thus, by Lemma 3.1, Proposition 3.3, and
Lemma 3.2 we have

�
C1 � C0

� � b, and so
�
C2 � C0

� � b which
means that

�
C2 � C0

� �
C 	 	�� b. Thus, by Lemma 3.1 and

Proposition 3.3 we can find s2 such that:

�
∆ � b :

������� � C2 : Θ
� � �s2 � �

∆ 	 	 � Φ 	 	 � C 	 	2 : Θ 	 	 � Σ 	 	 �
�
Θ � b :

������� � C0 : ∆
� � � s̄2 � �

Θ 	 	 � Φ 	 	 � C 	 	0 : ∆ 	 	 � Σ 	 	 �

where: ν
�
∆ 	 	 � Θ 	 	 � Σ 	 	 � Φ 	 	 � ∆ � Θ � b :

����� ���=�"�
C 	 	2 ' C 	 	0 ���

C 	 	 .
Since C 	 	�� b and we chose b to be fresh, we have that

C 	 	0 � b and hence:
�
Θ � b :

����� � � C0 : ∆
� � �s̄2ω!�

so by Propo-
sition 4.6: Θ � b :

������� � s̄2ω! � s̄1ω! :
$&� ���"�

∆ and so by
Lemma 4.3 and weakening: ∆ � s1 � s2 :

$&�	���(�
Θ. Thus, by

Proposition 4.4 we have:
�
∆ � C2 : Θ

� ���s1 � �
∆ 	 � C 	2 : Θ 	 �

as required. �

5. Restricted sub-languages

The proof techniques use to obtain full abstraction here
are quite robust and can also be carried out for two restricted
sub-languages:

1. The single-threaded sub-language is given by only al-
lowing one name of type

$&6��/�2���
, and removing new

thread creation from the expression language. The de-
finability result for Proposition 4.6 does not use thread
creation, so the proof of full abstraction goes through
with only minor changes to the proof of Theorem 4.7.

2. The sub-language with only field update (and no
method update) can be given the same trace seman-
tics. The definability result for Proposition 4.6 only
uses field update, and so the proof of full abstraction
goes through unchanged.

Thus, not only do we have a full abstraction result for the
concurrent object calculus, we can also specialise the results
to become full abstraction result for other related languages.

One change which cannot easily be made is to re-
move the restriction that components be write closed, since
method, and even field, updates are not generally externally
observable. It is unlikely that traces which represent write
interactions will be definable in the current sense. How-
ever, we do believe that the restriction to write closed com-
ponents is a reasonable one, since it corresponds to existing
‘best practice’ for component design.

6. Conclusions and future work

In this paper we have presented the first fully abstract
semantics for concurrent objects. The semantics is fairly
simple, and corresponds loosely to some of the messages
used in UML interaction diagrams. We do need to road test
the trace semantics with some reasonably sized examples to
demonstrate that the calculation of traces is tractable.

There are a number of issues left open:
D Our semantics has much of the flavour of game seman-

tics [2, 13], and this connection should be investigated.

D The trace semantics characterise may testing, rather
than the more common must testing or bisimulation
equivalence.

D The object calculus presented here does not include
subtyping. We believe that the techniques of [11]
should be applicable to the provision of a fully abstract
semantics even in the presence of subtyping.

References

[1] M. Abadi and L. Cardelli. A Theory Of Objcets. Springer-Verlag,
1996.

[2] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for
PCF. Information and Computation, 163:409–470, 2000.

[3] P. Di Blasio and K. Fisher. A calculus for concurrent objects. In
Proc. CONCUR, volume 1119 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1996.

[4] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language: User Guide. Addison Wesley, 1999.

[5] W. Ferreira, M. Hennessy, and A. S. A. Jeffrey. A theory of weak
bisimulation for core CML. J. Functional Programming, 8(5):447–
491, 1998.

[6] M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the
π-calculus. In Proc. IEEE Conf. Logic in Computer Science. IEEE
Press, 1996.

[7] A. D. Gordon and P. D. Hankin. A concurrent object calculus: Re-
duction and typing. In Proc. High Level Concurrent Languages,
Electronic Notes in Computer Science. Elsevier, 1998.

[8] A. D. Gordon and G. D. Rees. Bisimilarity for a first-order calculus
of objects with subtyping. In Proc. ACM Symp. Principles of Pro-
gramming Languages, pages 386–395. ACM Press, 1996.

[9] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[10] M. Hennessy. A fully abstract denotational semantics for the π-
calculus. Technical report 96:04, Univ. Sussex, 1996.

[11] M. Hennessy and J. Rathke. Typed behavioural equivalences for
processes in the presence of subtyping. In Proc. Computing: Aus-
tralasian Theory Symposium, Electronic Notes in Theoretical Com-
puter Science. Elsevier, 2002.

[12] K. Honda and M. Tokoro. On asynchronous communication seman-
tics. In M. Tokoro, O. Nierstrasz, and P. Wegner, editors, Proc.
ECOOP Workshop on Object-Based Concurrent Computing, volume
612 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[13] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II,
and III. Information and Computation, 163:285–408, 2000.

[14] A. S. A. Jeffrey and J. Rathke. Towards a theory of weak bisimulation
for local names. In Proc. Logic In Computer Science, pages 56–66.
IEEE Computer Society Press, 1999.

[15] A. S. A. Jeffrey and J. Rathke. A theory of bisimulation for a frag-
ment of Concurrent ML with local names. In Proc. Logic in Com-
puter Science, pages 311–321. IEEE Press, 2000.

[16] A. Meyer and K. Sieber. Towards a fully abstract semantics for lo-
cal variables. In Proc. Symposium on Principles of Programming
Languages, San Diego, pages 191–203. ACM, 1988.

[17] R. Milner. Fully abstract semantics of typed λ-calculi. Theoret. Com-
put. Sci., 4:1–22, 1977.

[18] R. Milner. Communicating and Mobile Systems. Cambridge Univer-
sity Press, 1999.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses.
Inform. and Comput., 100(1):1–77, 1992.

[20] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. Int. Col-
loq. Automata, Languages and Programming, volume 623 of Lecture
Notes in Computer Science. Springer-Verlag, 1992.

[21] J.-H. Morris. Lambda calculus models of programming languages.
Dissertation, M.I.T., 1968.

[22] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile pro-
cesses. Mathematical Structures in Computer Science, 6(5):409–454,
1996.

[23] A. M. Pitts and I. D. B. Stark. Observable properties of higher order
functions that dynamically create local names, or: What’s new? In
Proc. MFCS 93, pages 122–141. Springer-Verlag, 1993. LNCS 711.

[24] G. Plotkin. LCF considered as a programming language. Theoret.
Comput. Sci., 5:223–256, 1977.

