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Abstract

This paper presents a typed higher-order concurrent func-
tional programming language, based on Moggi’s monadic
metalanguage and Reppy’s Concurrent ML. We present an op-
erational semantics for the language, and show that a higher-
order variant of the traces model is fully abstract for may-
testing. This proof uses a program logic based on Hennessy–
Milner logic and Abramsky’s domain theory in logical form.

1 Introduction

This paper presents an operational semantics for a concurrent
functional programming language, based on Reppy’s [26, 27]
Concurrent ML, and Moggi’s [22] monadic metalanguage.

CML is a concurrent extension of New Jersey ML, which
adds communication primitives based on CCS [19] and
CSP [11]. Reppy introduces a new type constructor of events,
which can spawn concurrent processes, and communicate
with them along channels.

Three of the constructors for the event type are:

always : α→αevent

wrap : (αevent×α→β)→ (βevent)
sync : αevent→α

These are:

• alwayse is an event which always returns e,
• wrap(e, f ) is an event which evaluates e and applies f

to the result, and
• synce starts the evaluation of a event.

Moggi has proposed a more radical type system for computa-
tion, where all computation is indicated in the type system by
a type constructor, here denoted C. So whereas nat in Moggi’s
setting is a type whose expressions are integers, Cnat is a type
whose expressions are computations of integers. For example,
37 is of type nat where 37+52 is of type Cnat.

Moggi has shown that a simple programming language
called the monadic metalanguage, equipped with certain
equations forms a strong monad [16, for example], that is

a category C with a functor T : C→C with natural transfor-
mations:

ηX : X→T X

µX : T 2X→T X

tX ,Y : X×TY →T (X×Y )

subject to certain commuting diagrams. There is a close corre-
spondence between Reppy’s operators for CML and the struc-
ture of a monad:

CML gadget Monadic gadget
event T on objects
wrap T on arrows
always η
sync µ

λ(x,y) .wrap(y,λz . (x,z)) t

In this paper, we shall show how the practice of CML and the
theory of MML can be brought together. We present a con-
current programming language CMML whose type system is
based on MML, and whose concurrent features are based on
a subset of CMML. We present an operational and denota-
tional semantics for CMML, and show that the denotational
semantics is fully abstract.

The new results of this paper are:

• Applying Moggi’s theory in an operational, rather than
denotational, setting. Moggi has concentrated on the
equational and denotational semantics for MML, for
example expressing nondeterminism as powerdomain
rather than operationally. The use of monads in lazy
functional programming, pioneered by Wadler [31] and
since used in specifying IO [6, 7] for Haskell [14] has
concentrated on the algebraic properties of computation
types.

• Providing an operational semantics for a CML-like
language in the form of a labelled transition system.
Reppy’s operational semantics for CML uses a reduc-
tion system more like Standard ML [21] than CCS.

• Giving a fully abstract semantics for a typed higher-
order concurrent language. Hennessy [10] has proved



full abstraction for untyped higher-order processes, and
there has been much work on translating higher-order
languages like CHOCS [29, 30] or Facile [4, 28] into
basic languages like the π-calculus [20]. Bolignano and
Debabi [5] have presented an operational and denota-
tional semantics, which is more complex than that given
here, but do not have a full abstraction result.

This paper is an extended abstract of part of [15]. That paper
also contains foundational material on the categorical struc-
ture formed by various algebras of programming languages,
and a translation of a subset of CML into CMML, which is
correct up to weak bisimulation. All proofs are only given in
sketch form, and are detailed in the full paper.

2 Syntax

The language we shall consider in this paper is a typed func-
tional programming language with concurrent and nondeter-
ministic features.

The type system is based on MML, and includes a compu-
tation type constructor Cτ.

The communication mechanism is based on CML, how-
ever, our treatment is missing a number of features, most im-
portantly dynamic channel creation. This is allowed in CML,
and is addressed operationally in languages such as Milner,
Parrow and Walker’s [20] π-calculus, and Thomsen’s [29, 30]
CHOCS. Pitts and Stark [24] have investigated denotational
models of such languages, but there is not (yet) a fully ab-
stract model for such languages in Alg or a similar category
of domains. Since we are interested in showing fully abstrac-
tion for the traces semantics, we shall not attempt a treatment
dynamic name creation for the moment.

A signature with booleans, channels and deconstructors is
a signature with:

• a set of sorts ranged over by A, B, and C,
• a set of constructors ranged over by c, with sorting c :

A1, . . . ,An→B,
• a set of deconstructors ranged over by d, with sorting

d : A1, . . . ,An→B,
• a sort bool with constructors true, false :→ chan, and
• a sort chan with deconstructor eq : chan,chan→ bool

such that the term algebra for chan is countably in£nite.

a sort chan such For example, we can de£ne a signature
NatList with sorts:

bool nat list

constructors:

true, false : →bool

zero : →nat

succ : nat→nat

nil : → list

cons : nat, list→ list

and deconstructors:

eq : nat,nat→bool

pred : nat→nat

isnil : list→bool

hd : list→nat

tl : list→ list

and we can use nat as the sort of channels.
Let SigBCD be the category of signatures with booleans,

channels and deconstructors, together with morphisms which
respect the booleans, channels, and sorting of constructors
and deconstructors.

Given a signature with booleans, channels and deconstruc-
tors Σ, we can de£ne the language CMMLΣ to be the concur-
rent monadic metalanguage over Σ given by the grammar:

e ::= ∗ | c(e1, . . . ,en) | d(e1, . . . ,en) | (e,e) | v
| [e] | letx⇐ e in e | λx . e | ee | if e then e else e

| δ | e2 e | fix(x = e) | e!τe | e?τ | e‖ e | e ¹~e
v ::= x | v.L | v.R

where x ranges over a set of variables. We shall call expres-
sions v lvalues. These expressions are:

• ∗ is the only closed term of unit type.
• c(~e) is the application of a constructor, to build a value

of base type.
• d(~e) is the application of a deconstructor, to build a com-

putation of base type.
• (e, f ) is pairing.
• v.L and v.R are the left and right projections. We shall

see later that restricting projections to lvalues allows us
to know the syntactic form of terms from just the type
information.

• [e] is a computation which immediately terminates with
result e. This is similar to ‘exit’ in LOTOS [1], and ‘re-
turn’ in CML.

• letx⇐ e in f is a computation which evaluates e until it
returns a value, which is then bound to x in f . For ex-
ample, letx⇐ [zero] in [succx] is the same as [succzero].

• λx . e is function binding.
• e f is function application.
• δ is a deadlocked term, which has no reductions.
• e2 f gives the external choice between e and f . This is

similar to CSP’s external choice, and CML’s ‘choose’.
• fix(x = e) gives the £xed point of e at x.
• e!τ f outputs the expression f of type τ along channel e

and then returns ∗. This is similar to CML’s ‘send’.
• e?τ inputs any expression f of type τ along channel e

and then returns f . This is similar to CML’s ‘accept’.
• e‖ f performs e and f in parallel, allowing them to com-

municate. It will return any value that f returns. This
can be de£ned in terms of CML’s ‘spawn’.



• e ¹ f1, . . . , fn behaves like e but can only communicate
on the channels fi. This is similar to SCCS’s [18] re-
striction, but does not have an analogue in CML, where
channel scope is treated as in the π-calculus.

We can give CMMLΣ a static type system, with types:

τ ::= I | [A] | τ⊗ τ | Cτ | τ→Cτ

These types are:

• I is the unit type, whose only closed term is ∗,
• σ⊗ τ is the type of pairs of σ and τ,
• [A] is a base type taken from Σ,
• Cτ is a computation, which returns an expression of type

τ, and
• σ→Cτ is a function, which when applied to a an ex-

pression of type σ returns an expression of type Cτ.

The type judgements for CMML are of the form Γ ` e : τ
given by rules in Table 1, where Γ ranges over contexts of the
form x1 : τ1, . . . ,xn : τn.

For example, succzero is an expression of type [nat],
whereas pred(succzero) is an expression of type C[nat]. This
corresponds to the intuition that whereas 1 is data, and can
be stored in an implementation as a bit string, 1− 1 is com-
putation, and has to be stored as a pointer to code (until it is
evaluated, at which point the result zero is of type [nat]).

Moggi has shown how the call-by-value λ-calculus can be
translated into the monadic metalanguage, and the full version
of this paper contains a translation of a subset of CML into
CMML, which is correct up to weak bisimulation.

Note that we are only allowing functions to return compu-
tations, for example there is no type I→ I, only I→C I. This
corresponds to our intuition that the only terms which involve
computation are terms of type Cτ, and this would not be true
if we allowed functions to return arbitrary type.

This restriction, coupled with the restriction of projections
v.L and v.R to lvalues allows us to show that:

• any term of type I is either an lvalue or ∗,
• any term of type [A] is either an lvalue or of the form

c(e1, . . . ,en),
• any term of type σ⊗ τ is either an lvalue or of the form

(e, f ), and
• any term of type σ→Cτ is either an lvalue or of the form

λx . e.

In particular, the only closed terms of type [A] are taken from
the term algebra for Σ, so CMMLΣ is a conservative extension
of the term algebra for Σ.

We have only de£ned projections on lvalues, however we
know that any term Γ ` e : σ⊗ τ is either a pair or an lvalue,
and so we can de£ne Γ ` πe : σ,π ′e : τ as syntactic sugar:

πv = v.L π(e, f ) = e
π′v = v.R π′(e, f ) = f

We can use this to de£ne substitution e[ f /x] in the normal
fashion, except that we substitute for lvalues as:

(v.L)[ f /x] = π(v[ f /x]) (v.R)[ f /x] = π′(v[ f /x])

We have only de£ned recursion on computations rather than
on functions. However, we can de£ne recursive functions as
syntactic sugar:

fix(x = λy . e) = bfix(z = (λx . [λy . e])bzc)c

where:
bec= λy . letx⇐ e in xy

These have typing:

Γ ` e : C(σ→Cτ)
Γ ` bec : σ→Cτ

Γ,x : σ→Cτ,y : σ ` e : Cτ
Γ ` fix(x = λy . e) : σ→Cτ

We can also write λ(~x) . e as syntactic sugar, for example:

λ(x,y) . e = λz . e[z.L/x,z.R/y]

For example, a recursive function to add an element to the end
of a list is:

snoc : [list]⊗ [nat]→C[list]

snoc = fix(u = λ(v,w) . letx⇐ isnilv in
if x
then[cons(w,nil)]
else lety⇐hd(v)in
lety′⇐ tl(v)in
letz⇐ v(y′,w)in
[cons(y,z)])

and an unbounded buffer can be de£ned by maintaining a list
of elements:

buff : [chan]⊗ [chan]⊗ [list]→Cτ
buff = fix(u = λ(x,y,y) . letw⇐ x?nat in

letz⇐ snoc(z,w) in
u(x,y,z)

2 letw⇐hdz in
letv⇐ y!natw in

letz⇐ tlz in
u(x,y,z))

Note that programs in CMML are often more verbose than in
CML, due to the number of let statements required. This is
the cost of making the evaluation order syntactically explicit,
rather than implicit as in ML.

3 Operational semantics

In this section we de£ne the operational semantics of
CMMLΣ. This is given as a higher-order symbolic value
production system, that is:



Γ ` ∗ : I
Γ ` e : σ Γ ` f : τ

Γ ` (e, f ) : σ⊗ τ
Γ ` e1 : [A1] · · · Γ ` en : [An]

Γ ` c(e1, . . . ,en) : [A]
[c : A1, . . . ,An→A]

Γ ` e1 : [A1] · · · Γ ` en : [An]

Γ ` d(e1, . . . ,en) : C[A]
[d : A1, . . . ,An→A]

Γ ` v : (σ⊗ τ)
Γ ` v.L : σ

Γ ` v : (σ⊗ τ)
Γ ` v.R : τ Γ,x : σ ` x : σ

Γ ` y : τ
Γ,x : σ ` y : τ

[x 6= y]

Γ ` e : τ
Γ ` [e] : Cτ

Γ ` e : Cσ Γ,x : σ ` f : Cτ
Γ ` letx⇐ e in f : Cτ

Γ,x : σ ` e : Cτ
Γ ` λx . e : σ→Cτ

Γ ` e : σ→Cτ, f : σ
Γ ` e f : Cτ

Γ ` e : [bool] Γ ` f : Cτ Γ ` g : Cτ
Γ ` if e then f elseg : Cτ Γ ` δ : Cτ

Γ ` e : CτΓ ` f : Cτ
Γ ` e2 f : Cτ

Γ,x : Cτ ` e : Cτ
Γ ` fix(x = e) : Cτ

Γ ` e : [chan], f : τ
Γ ` e!τ f : C I

Γ ` e : [chan]

Γ ` e?τ : Cτ
Γ ` e : Cσ, f : Cτ

Γ ` e‖ f : Cτ
Γ ` e : Cτ, f1 : [chan], . . . , fn : [chan]

Γ ` e ¹ f1, . . . , fn : Cτ

Table 1: Typing rules for CMMLΣ

• an internal transition relation e ´−→ e′,
• a termination relation e

√
g−→ e′,

• an output relation e f !σg−−→ e′,
• an input relation e f ?σx−−→ e′, and
• a deadlocked term δ,

with the typing:

• if e ´−→ e′ then ` e : Cτ and ` e′ : Cτ,
• if e

√
f−→ e′ then ` e : Cτ, ` f : τ, and ` e′ : Cτ,

• if e f !σg−−→ e′ then ` e : Cτ, ` f : [chan], ` g : σ, and ` e′ :
Cτ, and

• if e f ?σx−−→ e′ then ` e : Cτ, ` f : [chan], and x : σ ` e′ : Cτ,

where δ has no reductions, and where
√

f−→ has the properties:

• if e
√

f−→ e′ then e′
√

g−6−→,
• if e

√
f−→ µ7−→ e′ then e µ7−→

√
f−→ e′, and

• if e
√

f−→ e′ and e µ7−→ e′′ are distinct transitions, then
e′ µ7−→ e′′′ and e′′

√
f−→ e′′′ for some e′′′,

where we write e µ7−→ e′ for the early operational semantics
given by:

• e ´7−→ e′ iff e ´−→ e′,
• e

√
f7−→ e′ iff e

√
f−→ e′,

• e f !τ f ′7−−→ e′ iff e f !τ f ′−−−→ e′, and
• e f ?τ f ′7−−→ e′[ f ′/x] iff e f ?τx−−→ e′.

Let a range over visible actions e!τ f and e?τx, let α range over
a and ´, and let µ range over all actions.

We can de£ne an operational semantics for terms of the
form d~e or δ, such that the reductions of eq are (when e 6= f ):

eq(e,e)
√

true−−−→ δ eq(e, f )
√

false−−−→ δ

For example, the operational semantics for NatList is:

eq(e,e)
√

true−−−→ δ eq(e, f )
√

false−−−→ δ
isnil(nil)

√
true−−−→ δ isnil(cons(e, f ))

√
false−−−→ δ

hd(cons(e, f ))
√

e−→ δ tl(cons(e, f ))
√

f−→ δ
pred(succe)

√
e−→ δ

Note that we have not given any reductions for predzero,
hdnil or tlnil, and so they deadlock.

Given a higher-order symbolic vps for terms of the form d~e
and δ, we can extend it to CMMLΣ as in Table 2.

Write e µ=⇒ e′ for e =⇒ µ−→ e′, and e µ̂=⇒ e′ for e µ=⇒ e′ or
e = e′ and µ = ´.

For example, one reduction of the buffer buff(i,o,nil) is:

buff(i,o,nil)
=⇒ letw⇐ i?nat in

letz⇐ snoc(nil,w) in
buff(i,o,z)

2 letw⇐hdnil in

letv⇐o!natw in

letz⇐ tlnil in

buff(i,o,z)
i?n7−→ letw⇐ [n] in

letz⇐ snoc(nil,w) in
buff(i,o,z)

´−→ letz⇐ snoc(nil,n) in
buff(i,o,z)

=⇒ buff(i,o,cons(n,nil))



e!τ f e!τ f−−→ [∗] e?τ
e?τx−−→ [x] [e]

√
e−→ δ

e α−→ e′

letx⇐ e in f α−→ letx⇐ e′ in f
e

√
g−→ e′

letx⇐ e in f ´−→ e′ ‖ f [g/x] (λx . e) f ´−→ e[ f /x]

fix(x = e) ´−→ e[fix(x = e)/x] if true() then f elseg ´−→ f if false() then f elseg ´−→ g

e ´−→ e′

e2 f ´−→ e′ 2 f
e a−→ e′

e2 f a−→ e′
e

√
g−→ e′

e2 f ´−→ e′ ‖ [g]

f ´−→ f ′

e2 f ´−→ e2 f ′
f a−→ f ′

e2 f a−→ f ′
f

√
g−→ f ′

e2 f ´−→ f ′ ‖ [g]

e α−→ e′

e‖ f α−→ e′ ‖ f
e g!τh−−→ e′ f g?τx−−→ f ′

e‖ f ´−→ e′ ‖ f ′[h/x]
f µ−→ f ′

e‖ f µ−→ e‖ f ′
e g?τx−−→ e′ f g!τh−−→ f ′

e‖ f ´−→ e′[h/x]‖ f ′

e ´−→ e′

e ¹ ~f ´−→ e′ ¹~f

e
√

g−→ e′

e ¹ ~f
√

g−→ ¹~f

e f ?x−−→ e′

e ¹ ~f , f , ~f ′ f ?τx−−→ e′ ¹~f , f , ~f ′
e f !g−→ e′

e ¹ ~f , f , ~f ′ f !τg−−→ e′ ¹~f , f , ~f ′

Table 2: Operational semantics for CMMLΣ

=⇒ letw⇐ i?nat in

letz⇐ snoc(cons(n,nil),w) in
buff(i,o,z)

2 letw⇐hd(cons(n,nil)) in
letv⇐o!natw in

letz⇐ tl(cons(n,nil)) in
buff(i,o,z)

´−→ letw⇐ i?nat in

letz⇐ snoc(cons(n,nil),w) in
buff(i,o,z)

2 letv⇐o!natn in
letz⇐ tl(cons(n,nil)) in
buff(i,o,z)

o!n−→ letv⇐ [∗] in
letz⇐ tl(cons(n,nil)) in
buff(i,o,z)

´−→ letz⇐ tl(cons(n,nil)) in
buff(i,o,z)

´−→ buff(i,o,nil)

De£ne may-testing for CMMLΣ as Γ |= evO f : τ iff C[e]
√

=⇒
∗ implies C[ f ]

√∗=⇒ for any closing context C of type C I.

4 Biimulation

We can de£ne a notion of higher-order late bisimulation for
CMMLΣ, based on Abramsky’s [2] applicative simulation for
the untyped λ-calculus, Milner, Parrow and Walker’s [20] late
bisimulation for the π-calculus, and Howe’s [13] simulation
for lazy computation.

A (higher-order late) simulation on CMMLΣ is a type-
indexed family of relations R τ⊆ {(e, f ) | ` e, f : τ} such that:

• if e R [A] f then e = f .
• if (e,e′) R σ⊗τ ( f , f ′) then e R σ f and e′ R τ f ′,
• if (λx . e) R σ→Cτ (λy . f ) then for all ` g : σ we have

e[g/x] R Cτ f [g/y],
• if e R Cτ f and e ´−→ e′ then f =⇒ f ′ and e′ R Cτ f ′,
• if e R Cτ f and e

√
e′−−→ e′′ then f

√
f ′==⇒ f ′′ and

(e′,e′′) R τ⊗Cτ ( f ′, f ′′),
• if e R Cτ f and e g!σe′−−→ e′′ then f g!σ f ′==⇒ f ′′ and

(e′,e′′) R σ⊗Cτ ( f ′, f ′′), and
• if e R Cτ f and e g?σx−−→ e′ then f g?σy==⇒ f ′ and

(λx . e′) R σ→Cτ (λy . f ′).

A bisimulation is a simulation whose inverse is also a simu-
lation. Then de£ne:

• simulation preorder ¹ is the largest simulation,
• mutual simulation equivalence ³ is ¹∩º.
• bisimulation equivalence ≈ is the largest bisimulation.

Given a type-indexed relation R τ of closed terms, let R ◦
Γ,τ be

the corresponding relation on open terms:

R ◦
~x:~σ,τ= {(e, f ) | ∀`~g :~σ . e[~g/~x] = f [~g/~x]}

We shall often elide the indexes from these relations, writing
e R f rather than e R τ f and e R ◦ f for e R ◦

Γ,τ f when context
makes the typing obvious.

Note that bisimulation is strictly £ner then mutual simula-
tion, for example:

a?2 letx⇐a? inδ ³ a?

a?2 letx⇐a? inδ 6≈ a?

As this example shows, mutual simulation does not have the
power to detect deadlock, which is why Milner [19, exercise
14] chose to use bisimulation rather than mutual simulation
for CCS.

In earlier versions of this paper, it was necessary to use
mutual simulation rather than bisimulation, because I was un-
able to £nd a proof that bisimulation was a congruence for



CMMLΣ. However, Andy Pitts has since shown me an un-
published proof of Howe’s [12] which can be adapted to show
that bisimulation is a congruence for CMMLΣ.

The full paper uses Gordon’s variant [8] of Howe’s proof
technique [13, 12] to show that bisimulation is a congruence
for CMMLΣ.

Let CMMLΣ be the signature with types as sorts, and
judgements ~x : ~σ ` e : τ as constructors ~σ→ τ, viewed up
to bisimulation. Any signature morphism f : Σ→ Σ′ ex-
tends homomorphically to a signature morphism CMML f :
CMMLΣ→CMMLΣ′, and it is routine to show that CMML :
SigBCD→SigBCD is a functor.

The equations in Table 3 include Moggi’s equations for the
monadic metalanguage, and so we can show that CMMLΣ
has categorical structure given by Table 4.

Proposition 1 CMMLΣ forms a category with £nite prod-
ucts, a monad T : CMMLΣ→CMMLΣ, and all T -exponen-
tials.

Proof The equations in Table 3 are suf£cient to show that the
structure de£ned in Table 4 has the required properties. This
is shown in [22] and the full version of this paper. 2

5 Denotational semantics

Let Alg be the category of algebraic dcpo’s, together with con-
tinuous morphisms (we are not requiring dcpo’s to have least
elements). Let Alg⊥∨ be the category of algebraic dcpo’s with
all £nite joins, together with continuous morphisms which
respect the joins. Let X →Y be the continuous function
space between X and Y , and let X →∨ Y be the continuous
∨-respecting function space between X and Y .

For any indexing sets J and K and for any object (~I, ~O,V )
in Alg

opJ ×AlgK ×Alg, a pre-process domain over (~I, ~O,V )
is an object P in Alg⊥∨ with morphisms:

in j c : (I j→P)→∨ P

outk c : Ok→P→∨ P

val : V →P→∨ P

for each c ∈ [[chan]], j ∈ J and k ∈ K. A pre-process domain
morphism is an Alg⊥∨ morphism which respects in j c, outk c
and val. A process domain is a pre-process domain where:

in j c( f ;valv) ≤ valv(in j c f )

outk cd(valvp) ≤ valv(outk cd p) (1)

valv(valwp) = valvp

Let Proc(~I, ~O,V ) be the initial process domain over (~I, ~O,V ).

Proposition 2 Proc is a continuous and locally continuous
functor Alg→Alg.

Proof Given in the full version of this paper. 2

Hennessy [10] has proposed a domain for higher-order pro-
cesses which is the canonical £xed point of the functor:

X 7→∏
c

(X→X)⊥×∏
c

(X⊗r X)

where ⊗r is the left adjoint to→∨:

curryr : Alg∨[X⊗r Y,Z]' Alg[X ,Y →∨ Z]

We can extend this to typed processes by de£ning
PreProc(~I, ~O,V ) to be the canonical £xed point of the
functor:

X 7→∏
j,c

(I j→X)⊥×∏
k,c

(Ok⊗r X)⊥× (V ⊗X)⊥

Proposition 3

1. PreProc(~I, ~O,V ) is the initial pre-process domain.
2. Proc(~I, ~O,V ) is PreProc(~I, ~O,V ) quotiented by the pro-

cess domain preorder (1).

Proof Given in the full version of this paper. 2

De£ne the traces Trace(~I, ~O,V ) ⊆ Proc(~I, ~O,V ) as the ele-
ments given by the grammar:

s ::= ⊥ | in j c(d⇒ s) | outk cds | valvu

u ::= ⊥ | in j c(d⇒u) | outk cdu

for compact d and v.

Proposition 4 p is compact iff p = s1∨·· ·∨ sn for traces si.

Proof ‘If’ follows from showing by induction on s that s is
compact. ‘Only if’ follows by showing that any p is the join
of all the traces below it. 2

Any continuous function is determined by its effect
on compact elements, and so we can de£ne functions
Proc(~I, ~O,V )→⊥∨ D by giving their effect on traces. For
example, the restriction operator:

¹ : Proc(~I, ~O,V )→⊥∨ [[chan]]n→Proc(~I, ~O,V )

is de£ned by its action on traces:

(in j c(d⇒ s)) ¹~c =

{

in j c(d⇒ (s ¹~c)) if c ∈~c
⊥ otherwise

(outk cds) ¹~c =

{

(outk cd(s ¹~c)) if c ∈~c
⊥ otherwise

(valvu) ¹~c = valv(u ¹~c)

We can de£ne concurrency, and the monad natural transfor-
mations similarly:

‖ : Proc(~I, ~O,V )→∨Proc(~I, ~O,W )→∨Proc(~I, ~O,W )

∗ : (V →W )→Proc(~I, ~O,V )→⊥∨Proc(~I, ~O,W )

µ : Proc(~D,~D,Proc(~D,~D,V ))→⊥∨Proc(~D,~D,V )

η : V →Proc(~I, ~O,V )



x ≈◦ ∗
(v.L,v.R) ≈◦ v

letx⇐ [e] in f ≈◦ f [e/x]

letx⇐ e in [x] ≈◦ e

lety⇐ (letx⇐ e in f ) ing ≈◦ letx⇐ e in (lety⇐ f ing)

(λx . e) f ≈◦ e[ f /x]

λy . (gy) ≈◦ g

Table 3: Some bisimulations for CMMLΣ (y not free in g)

idτ = (x : τ ` x : τ)
(x : ρ ` e : σ);(y : σ ` f : τ) = (x : ρ ` f [e/x] : τ)

1 = I

!τ = (x : τ ` ∗ : I)

σ× τ = σ⊗ τ
π = (x : σ⊗ τ ` x.L : σ)

π′ = (x : σ⊗ τ ` x.R : τ)
T τ = Cτ

T (x : σ ` e : τ) = (y : Cσ ` letx = y in [e] : Cτ)
ητ = (x : τ ` [x] : Cτ)
µτ = (x : CCτ ` lety⇐ x in y : Cτ)

tσ,τ = (x : σ⊗Cτ ` lety⇐ x.R in [(x.L,y)] : C(σ⊗ τ))
T τσ = σ→Cτ

curry(x : ρ⊗σ ` e : Cτ) = (y : ρ ` λz . letx⇐ [(y,z)] in e : σ→Cτ)
curry−1(x : ρ ` e : σ→Cτ) = (y : ρ⊗σ ` e(y.R) : Cτ)

Table 4: Categorical structure of CMMLΣ

Proposition 5 Proc(~D,~D, ) : Alg→Alg is a monad.

Proof Given in the full version of this paper. 2

Given a semantics [[ ]] : Σ→ Alg for Σ, we extend it to
CMMLΣ by giving the an object [[τ]] in Alg for each type
τ:

[[I]] = 1

[[σ⊗ τ]] = [[σ]]× [[τ]]
[[σ→Cτ]] = [[σ]]→ [[Cτ]]

[[Cτ]] ' Proc(〈[[σ]] | σ ∈ T〉,〈[[σ]] | σ ∈ T〉, [[τ]])
where T is the set of all CMML types, and for each~x :~σ` e : τ
a morphism:

[[x1 : σ1, . . . ,xn : σn ` e : τ]] : [[σ1]]×·· ·× [[σn]]→ [[τ]]

given by:

• [[∗]] and [[(e, f )]] are given by the products in Alg,
• [[[e]]] and [[letx⇐ e in f ]] are given by the monadic struc-

ture of Proc,
• [[λx . e]] and [[e f ]] are given by the Proc-exponentials in

Alg,
• [[if e then f elseg]] is given by the coproducts in Alg,
• [[δ]] and [[e2 f ]] are given by bottom and join in Proc[[τ]],
• [[fix(x = e)]] is the least £xed point of x 7→ [[e]], and
• [[e?]], [[e! f ]], [[e‖ f ]] and [[e ¹ ~f ]] are given as above.

This semantics is de£ned in full in the full version of the pa-
per.

We shall sometimes elide the type information, and write
[[e]] for [[Γ ` e : τ]] where this is unambiguous.

A semantics [[ ]] : Σ→Alg is adequate iff:

[[` d~e : C[A]]] =
∨

{[[` [ f ] : C[A]]] | d~e
√

=⇒ f}



A semantics [[ ]] : Σ→Alg is expressive iff for any compact
a ∈ [[A]] we can £nd terms isa and testa such that:

[[` isa : [A]]] = a [[` testa : [A]→C I]] = (a⇒η⊥)

A semantics [[ ]] : CMMLΣ→Alg is correct iff:

[[Γ ` e : τ]]≤ [[Γ ` f : τ]] implies Γ |= evO f : τ

The semantics for CMMLΣ is fully abstract iff:

[[Γ ` e : τ]]≤ [[Γ ` f : τ]] iff Γ |= evO f : τ

We will now sketch the proof that if a semantics for Σ is ad-
equate then its extension to CMMLΣ is correct, and that if a
semantics for Σ is adequate and expressive, then its extension
to CMMLΣ is fully abstract.

6 Program logic

In order to show the relationship between the operational and
denotational semantics of CMMLΣ, we shall use a program
logic similar to that used by Abramsky [2] and Ong [23] in
modelling the untyped λ-calculus, based on Abramsky’s [3]
domain theory in logical form.

The program logic for CMMLΣ has propositions:

φ ::= ∗ | (φ,ψ) | |a| | ω | φ∧ψ | φ⇒ψ | 〈c?σ〉φ | 〈c!σ〉φ | 〈√〉φ

These can be statically typed, so the propositions for type τ
are those where φ : Lτ, given by the type system in Table 5.

The operational characterization of the logic has judge-
ments |= e : φ given for closed terms by Table 6. This can
be generalized to open terms as:

~x :~φ |= e : ψ iff ∀|= ~f :~φ . |= e[~f /~x] : ψ

Let ∆ range over propositional contexts of the form x1 :
φ1, . . . ,xn : φn, and write ∆ : LΓ for:

(x1 : φ1, . . . ,xn : φn) : L(x1 : τ1, . . . ,xn : τn)

iff φ1 : Lτ1, . . . ,φn : Lτn

We can also de£ne a denotational semantics for propositions,
so that if φ : Lτ then [[φ]] ∈ [[τ]]:

[[∗]] = ⊥ [[(φ,ψ)]] = ([[φ]], [[ψ]])
[[ω]] = ⊥ [[φ∧ψ]] = [[φ]]∨ [[ψ]]

[[|a|]] = a [[φ⇒ψ]] = [[φ]]⇒ [[ψ]]
[[〈c?σ〉φ]] = inc[[φ]] [[〈c!σ〉(φ,ψ)]] = outc[[φ]][[ψ]]

[[〈√〉(φ,ψ)]] = val[[φ]][[ψ]]

Whenever ∆ : LΓ, we can de£ne [[∆]] ∈ [[Γ]] as:

[[x1 : φ1, . . . ,xn : φn]] = ([[φ1]], . . . , [[φn]])

Proposition 6 a ∈ [[τ]] is compact iff ∃φ : Lτ .a = [[φ]].

Proof ‘If’ is an induction on φ. ‘Only if’ relies on Proposi-
tion 4. 2

7 Full abstraction

We can now show that the semantics for CMMLΣ is fully
abstract. We begin by showing that if Σ is expressive, then so
is CMMLΣ.

The primes of the logic are given by:

π ::= ω | 〈c?τ〉(φ⇒π) | 〈c!τ〉(φ,π) | 〈√〉(φ,ν)

ν ::= ω | 〈c?τ〉(φ⇒ν) | 〈c!τ〉(φ,ν)

Note that [[π]] is a trace, and so by Proposition 4 for any φ ∈
L(Cτ) we can £nd π i such that φ = π1∧·· ·∧πn.

Proposition 7 If the semantics for Σ is expressive, then for
any φ : Lτ we can £nd a term ` termφ : τ such that [[φ]] =
[[termφ]].

Proof Let termτ φ be de£ned as in Table 7, where result is an
unused channel, and when π ∈ L(Cτ) then π ∈ L(C I) is:

ω = [∗]
〈c?σ〉(φ⇒π) = 〈c!σ〉(φ,π)

〈c!σ〉(φ,π) = 〈c?σ〉(φ⇒π)

〈√〉(φ,ν) = 〈result?τ〉(φ⇒ν)

Then show by induction on φ that [[termφ]] = [[φ]]. 2

We can then verify that: [[φ]] = [[` termτ φ : τ]] This expressiv-
ity result is used in showing that the semantics for CMMLΣ is
fully abstract. The relationship between expressivity and full
abstraction has been long known [17, 25].

Proposition 8

1. If a semantics for Σ is adequate, then [[φ]] ≤ [[e]][[∆]] im-
plies ∆ |= e : φ.

2. If a semantics for Σ is expressive and adequate, then
[[φ]]≤ [[e]][[∆]] iff ∆ |= e : φ.

Proof The £rst part of this proof is a straightforward correct-
ness proof, and follows by induction on e.

The proof of the second part begins by showing by induc-
tion on φ that if |= e : φ then [[φ]] ≤ [[e]]⊥. This requires ex-
pressiveness, for example to prove the case when φ = ψ⇒χ
we reason:

|= λx . e : ψ⇒χ
⇒ |= (λx . e)(termψ) : χ (Expressiveness)
⇒ [[χ]]≤ [[λ . e]][[termψ]] (Induction)
⇒ [[χ]]≤ [[λ . e]][[ψ]] (Expressiveness)
⇒ [[ψ⇒χ]]≤ [[λ . e]]⊥ (Defn of⇒)

The result then follows. 2

We can combine these propositions to prove full abstraction
for CMML.

Theorem 9 (full abstraction)

1. If a semantics for Σ is adequate, then its extension to
CMMLΣ is correct.



∗ : LI
φ : Lσ ψ : Lτ
(φ,ψ) : L(σ⊗ τ) |a| : L [A]

[a ∈ [[A]],a is compact]

ω : L(Cτ)
φ : L(Cτ) ψ : L(Cτ)

φ∧ψ : L(Cτ)
φ : Lτ

[φ] : L(Cτ)

ω : L(σ→Cτ)
φ : L(σ→Cτ) ψ : L(σ→Cτ)

φ∧ψ : L(σ→Cτ)
φ : Lσ ψ : L(Cτ)
φ⇒ψ : L(σ→Cτ)

c ∈ [[chan]] φ : L(σ→Cτ)
〈c?σ〉φ : L(Cτ)

c ∈ [[chan]] φ : L(σ⊗Cτ)
〈c!σ〉φ : L(Cτ)

φ : L(τ⊗Cτ)
〈√〉φ : L(Cτ)

Table 5: The type system for the progam logic

|= ∗ : ∗
|= e : φ |= f : ψ
|= (e, f ) : (φ,ψ)

a≤ [[` e : [A]]]

|= e : |a| |= e : ω
|= e : φ |= e : ψ
|= e : φ∧ψ

e
√

f−→ e′ |= ( f ,e′ ‖ [g]) : φ
|= e : 〈√〉φ

e ´−→ e′ |= e′ : φ
|= e : φ

∀|= f : φ . |= e f : ψ
|= e : φ⇒ψ

e c!σ f−−→ e′ |= ( f ,e′) : φ
|= e : 〈c!σ〉φ

e c?σx−−→ e′ |= λx . e′ : φ
|= e : 〈c?σ〉φ

Table 6: The operational characteriation of the program logic

termI ∗ = ∗
termσ⊗τ(φ,ψ) = (termσ φ, termτψ)

term[A] |a| = isa

termCτ ω = δ
termCτ(φ∧ψ) = termCτ φ2 termCτ ψ

termCτ[φ] = [termτ φ]

termσ→Cτ ω = λx .δ
termσ→Cτ(φ∧ψ) = λx . (termσ→Cτ φ)x2 (termσ→Cτ ψ)x

termI→Cτ(∗⇒χ) = λx . termCτ χ
termρ⊗σ→Cτ((ψ,φ)⇒χ) = λx . lety⇐ (termρ→C I(ψ⇒ [∗]))(x.L)

in(termσ→Cτ(φ⇒χ))(x.R)

term[A]→Cτ(|a|⇒χ) = λx . lety⇐ (testax) in termCτ χ
termσ→Cτ(ω⇒χ) = λx . termCτ χ

termσ→Cτ(φ∧ψ⇒χ) = λx . lety⇐ termσ→C I(φ⇒ [∗])x
in termσ→Cτ(ψ⇒χ)x

termCσ→Cτ([φ]⇒χ) = λx . lety⇐ x in termσ→Cτ y

term(ρ→Cσ)→Cτ((φ⇒ψ)⇒χ) = λx . (termCσ→Cτ(ψ⇒χ))(x(termρ φ))

Table 7: Expressiveness result for CMML



2. If a semantics for Σ is expressive and adequate then its
extension to CMMLΣ is fully abstract.

Proof Follows from the results that:

• [[τ]] is algebraic,
• the compact elements of [[τ]] are characterized precisely

as the denotations [[φ]] of formulae of type φ : Lτ, and
• the operational and denotation characterizations of when

a term satis£es a formula are equivalent 2

8 Conclusions

This paper has shown that it is possible to combine some of
the categorical structure used in giving denotational semantics
of functional programming languages with the operational
view of programs used to model process algebras.

In the full paper, the monadic strucuture is shown to be
exactly the structure required to give denotational models for
a programming language with monadic types. There is also a
translation of a subset of CML into CMML, based on Moggi’s
translation of the call-by-value λ-calculus into MML.

There are a number of outstanding issues for this language:

• Is there a fully abstract semantics for CMML with
unique name generation? (This is the most important
feature of CML or CHOCS missing from CMML.)

• Is there a fully abstract semantics for must-testing [9]
based on acceptance trees [9] or failures sets [11]?
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