A fully abstract semanticsfor a
concurrent functional language with monadic types

Alan Jeffrey
School of Cognitive and Computing Sciences
University of Sussex, Brighton BN1 9QH, UK
alanje@cogs.susx.ac.uk

Abstract

This paper presents a typed higher-order concurrent func-
tional programming language, based on Moggi’s monadic
metalanguage and Reppy’s Concurrent ML. We present an op-
erational semantics for the language, and show that a higher-
order variant of the traces model is fully abstract for may-
testing. This proof uses a program logic based on Hennessy—
Milner logic and Abramsky’s domain theory in logical form.

1 Introduction

This paper presents an operational semanticsfor a concurrent
functional programming language, based on Reppy’s[26, 27]
Concurrent ML, and Moggi’s [22] monadic metalanguage.

CML is aconcurrent extension of New Jersey ML, which
adds communication primitives based on CCS [19] and
CSP[11]. Reppy introduces a new type constructor of events,
which can spawn concurrent processes, and communicate
with them along channels.

Three of the constructors for the event type are:

always . 00— Oevent
wrap @ (devent x 0 —[3) — (Bevent)
sync . Oevent —q
These are:

e alwayse isan event which alwaysreturnse,

e wrap(e, f) is an event which evaluates e and applies f
to the result, and

e synce startsthe evauation of aevent.

Moggi has proposed a more radical type system for computa-
tion, where all computation isindicated in the type system by
atype constructor, here denoted C. So whereasnat in Moggi’s
setting isatype whose expressions are integers, Cnat isatype
whose expressions are computations of integers. For example,
37 isof type nat where 37 + 52 is of type Cnat.

Moggi has shown that a simple programming language
called the monadic metalanguage, equipped with certain
equations forms a strong monad [16, for examplg], that is

a category C with afunctor T : C — C with natural transfor-
mations:

nx : X—TX
H © T2X —TX
txy : XXTY =T (X xY)

subject to certain commuting diagrams. Thereisaclose corre-
spondence between Reppy’s operatorsfor CML and the struc-
ture of a monad:

CML gadget Monadic gadget
event T on objects
wrap T onarrows

always n
sync u
A(X,y) .wrap(y,Az. (X,2)) t

In this paper, we shall show how the practice of CML and the
theory of MML can be brought together. We present a con-
current programming language CMML whose type system is
based on MML, and whose concurrent features are based on
a subset of CMML. We present an operational and denota-
tional semantics for CMML, and show that the denotational
semanticsis fully abstract.
The new results of this paper are:

e Applying Moggi's theory in an operational, rather than
denotational, setting. Moggi has concentrated on the
equational and denotational semantics for MML, for
example expressing nondeterminism as powerdomain
rather than operationally. The use of monads in lazy
functional programming, pioneered by Wadler [31] and
since used in specifying 10 [6, 7] for Haskell [14] has
concentrated on the algebraic properties of computation
types.

e Providing an operational semantics for a CML-like
language in the form of a labelled transition system.
Reppy’s operational semantics for CML uses a reduc-
tion system more like Standard ML [21] than CCS.

e Giving a fully abstract semantics for a typed higher-
order concurrent language. Hennessy [10] has proved

full abstraction for untyped higher-order processes, and
there has been much work on translating higher-order
languages like CHOCS [29, 30] or Facile [4, 28] into
basic languages like the T-calculus [20]. Bolignano and
Debabi [5] have presented an operational and denota-
tional semantics, which is more complex than that given
here, but do not have afull abstraction result.

This paper is an extended abstract of part of [15]. That paper
also contains foundational material on the categorical struc-
ture formed by various algebras of programming languages,
and a trandlation of a subset of CML into CMML, which is
correct up to weak bisimulation. All proofs are only given in
sketch form, and are detailed in the full paper.

2 Syntax

The language we shall consider in this paper is atyped func-
tional programming language with concurrent and nondeter-
ministic features.

The type system is based on MML, and includes a compu-
tation type constructor Ct.

The communication mechanism is based on CML, how-
ever, our treatment is missing a number of features, most im-
portantly dynamic channel creation. Thisisallowed in CML,
and is addressed operationally in languages such as Milner,
Parrow and Walker’'s[20] m-calculus, and Thomsen’s [29, 30]
CHOCS. Pitts and Stark [24] have investigated denotational
models of such languages, but there is not (yet) a fully ab-
stract model for such languages in Alg or a similar category
of domains. Since we areinterested in showing fully abstrac-
tion for the traces semantics, we shall not attempt a treatment
dynamic name creation for the moment.

A signature with booleans, channels and deconstructors is
asignature with:

e aset of sorts ranged over by A, B, and C,

e aset of constructors ranged over by ¢, with sorting ¢ :
Ai,...,An—B,

e a set of deconstructors ranged over by d, with sorting
d:Asg,...,A,—B,

e asort bool with constructors true, false : — chan, and

e a sort chan with deconstructor eq : chan,chan — bool
such that the term algebrafor chan is countably in£nite.

a sort chan such For example, we can defne a signature
NatList with sorts:

bool nat list
constructors.
true,false : — bool
zero . —nat
succ : nat—nat
nil : —list
cons : nat,list — list

and deconstructors:

eq : nat,nat— bool

pred : nat—nat
isnil : list — bool
hd : list—nat
tl o list—list

and we can use nat as the sort of channels.

Let SigBCD be the category of signatures with booleans,
channels and deconstructors, together with morphisms which
respect the booleans, channels, and sorting of constructors
and deconstructors.

Given a signature with booleans, channels and deconstruc-
tors %, we can defne the language CMML X to be the concur-
rent monadic metalanguage over 3 given by the grammar:

e = x|c(e1,...,en) | d(e1,...,en) | (e,e) |V
| [e] |letx<eine|Ax.e|ee|ifetheneelsee
|d|eOe|fix(x=¢e)|ele|e? |e|e|e|€
V = X|VL]|VR

where x ranges over a set of variables. We shall call expres-
sionsv Ivalues. These expressions are:

e x istheonly closed term of unit type.

e C(&) isthe application of a constructor, to build a value
of base type.

e d(€) istheapplication of adeconstructor, to build acom-
putation of base type.

e (e, f)ispairing.

e VL and VR are the left and right projections. We shall
see later that restricting projections to lvalues alows us
to know the syntactic form of terms from just the type
information.

e [e] isacomputation which immediately terminates with
result e. Thisissimilar to ‘exit’ in LOTOS[1], and ‘re-
turn’ in CML.

e letx<ein f isacomputation which evaluates e until it

returns a value, which is then bound to x in f. For ex-

ample, letx <= [zero] in [succX] isthe same as [succzero].

AXx . e isfunction binding.

ef isfunction application.

0 is a deadlocked term, which has no reductions.

eO f givesthe external choice between e and f. Thisis

similar to CSP's external choice, and CML’s‘ choose'.

fix(x = e) givesthe £xed point of e at x.

e el f outputs the expression f of type T along channel e
and then returns . Thisissimilar to CML's ‘send’.

e 7 inputs any expression f of type T along channel e
and then returns f. Thisissimilar to CML’s ‘accept’.

e ¢|| f performse and f in parallel, allowing them to com-
municate. It will return any value that f returns. This
can be defned in terms of CML’s ‘ spawn’.

e ¢ fy,..., fy behaves like e but can only communicate
on the channels f;. Thisis similar to SCCS's [18] re-
striction, but does not have an analogue in CML, where
channel scopeistreated asin the T-calculus.

We can give CMML X a static type system, with types:
=1 [[Al|t@t|Ct|t—=CT

These types are:

| isthe unit type, whose only closed term is x,
o®Tisthetypeof pairsof o and T,

[A] isabase type taken from Z,

Ctisacomputation, which returns an expression of type
T, and

e 0— Crt is afunction, which when applied to a an ex-
pression of type o returns an expression of type Ct.

The type judgements for CMML are of the fom Me: 1
given by rulesin Table 1, where " ranges over contexts of the
formxy : T1,..., % : Th.

For example, succzero is an expression of type [nat],
whereas pred(succzero) isan expression of type C[nat]. This
corresponds to the intuition that whereas 1 is data, and can
be stored in an implementation as a bit string, 1 — 1 is com-
putation, and has to be stored as a pointer to code (until it is
evaluated, at which point the result zero is of type [nat]).

Moggi has shown how the call-by-value A-calculus can be
tranglated into the monadic metalanguage, and the full version
of this paper contains a trandation of a subset of CML into
CMML, which is correct up to weak bisimulation.

Note that we are only allowing functions to return compu-
tations, for example thereisno typel — 1, only I — CI. This
corresponds to our intuition that the only terms which involve
computation are terms of type Ct, and this would not be true
if we allowed functionsto return arbitrary type.

Thisrestriction, coupled with the restriction of projections
v.L and VR to Ivalues allows us to show that:

e any term of type | iseither an lvalue or x,
e any term of type [A] is either an Ivalue or of the form

c(e1,...,en),

e any term of type c ® T is either an Ivalue or of the form
(e, f), and

e any term of type o — Ct iseither an Ivalue or of theform
AX.e.

In particular, the only closed terms of type [A] are taken from
theterm algebrafor =, so CMML X isaconservative extension
of theterm algebrafor Z.

We have only defned projections on Ivalues, however we
know that any term I" e : 0 ® T is either apair or an Ivalue,
and sowe candefnerl T : 0, Te : T as syntactic sugar:

v
114"

vL T1i(e,f) = e
VR Ti(e,f) = f

We can use this to defne substitution e[f /x] in the normal
fashion, except that we substitute for |values as:

(O[T = TV[E/) (W[/X = (V[T /)

We have only deEned recursion on computations rather than
on functions. However, we can deEne recursive functions as
syntactic sugar:

fix(x =Ay.e) = [fix(z = (Ax.[Ay.€])[z])]

where:
le] =Ay.letx<=einxy
These have typing:
MNx:o—Ctyy:ote:Ct
IHfix(x=Ay.e):0—Crt

M-e:C(c—Cr)
M-le]:o—Crt

We can also write A(X) . e as syntactic sugar, for example:
A(X,y).e=Az.e[zL/X,ZR/Y]

For example, arecursive function to add an element to theend
of alistis:

[list] ® [nat] — Cllist]
fix(u=A(v,w). letx<isnilvin
if
then[cons(w, nil)]
elselety <=hd(v)in
lety’ < tl(v)i
letz<=v(y',w)in
[cons(y,2)])

and an unbounded buffer can be deEned by maintaining alist
of elements:

snoc

snoCc =

buff [chan] ® [chan] ® [list] — CT
buff = fix(u=A(X,y,y). letW<=X?,in
letz <=snoc(z,w)in
u(x,y,z)
Oletw<=hdzin
letv <yl tWin
letz<«<tlzin

u(xy,z))

Note that programsin CMML are often more verbose than in
CML, due to the number of let statements required. Thisis
the cost of making the evaluation order syntactically explicit,
rather than implicit asin ML.

3 Operational semantics

In this section we defne the operational semantics of
CMMLZ. This is given as a higher-order symbolic value
production system, that is:

N-e:oc TEf:t

MEsxc:l Me=(e,f):o®t
M-er: A M-en:|A M-er;: A M-en:[A
lw[égel,...7en>.[An1 Pl oA rll—[dzil,...,en):C[Z\][0 Ao A
MEv:(o®t) Tkv:(o®T) MeFy:t X 2]
M-vL:o FFVR:T MNx:oFx:o TI,x:okFy:t
N-e:t N-e:Co Mx:oFf:Crt MNx:okFe:Ct N-e:o—Crt,f:o
Flel:Ct Ik letx<einf:Ct M-Ax.e:0—Ct M-ef:Ct
MFe:fbool] FHf:Ct Fkg:Ct MFe:Cirkf:Ct Mx:Crtke:Ct
Itk ifethen felseg: Ct Nr=o6:Ct MrFeof:Crt Ikfix(x=e):Ct
MFe:[chan],f:t T[ke:fchan] TFe:Co,f:Ct TFe:Ct,fi:[chan],..., fy: [chan]
el f:Cl MlN-e?:Ct M-e|lf:Ct I'Fe[fl,...,fn.CT

Table 1: Typing rulesfor CMML X

an internal transition relatione — €/,
atermination relamlon e ﬂ e/,

an output relation e % e
an input relation e 9%,
adeadlocked term o,

eand

with the typing:

e ife —e'thenFe:CtandF¢e': Cr,
. |feL>e thene:Ct,F f:1,and¢e : Cr,

o ife e ¢/thent-e:CT,F f:[chan],Fg:0,andF ¢ :
Crt, and
o ife X ¢/ thente:CT,Ff: [chan],andx:ol—e’:CT,

where & has no reductions, and where % has the properties:

o ife Yhe thene' ¥4,

. |fe—*L>He thenen—>AL>e and

o if e e’ and e M5 ¢ are distinct transitions, then
e -5 ¢ and e’ % ¢” for somee”,

where we write e =5
given by:

e’ for the early operational semantics

er—eiffe ¢,
VANY iffeﬂe:,
YL |ffe—f>e and

el e/[f'/x] iff e T%

Letarangeover visibleactionse! f and e, let a range over
aand ~, and let | range over all actions.

We can defne an operational semantics for terms of the
form d& or 9, such that the reductions of eq are (whene # f):

eq(e,e) LS5 eq(e, f) LRke 5

For example, the operational semantics for NatList is:

eq(e,e) e, & eq(e, f) Vhalse 5
isnil(nil) " & isnil (cons(e, f)) ~/fls, 5
hd(cons(e, f)) %% & tl(cons(e, f)) L5 &

pred(succe) VEs

Note that we have not given any reductions for pred zero,
hd nil or tInil, and so they deadlock.

Given ahigher-order symbolic vpsfor terms of the form dg&
and o, we can extend it to CMML X asin Table 2.

Writee =% ¢/ fore — - ¢/, and e =& ¢ fore = ¢ or
e=¢andpu="

For example, one reduction of the buffer buff(i, o, nil) is

buff(i,0,nil)
= letw <=4t in
letz < snoc(nil,w)in
buff(i,0,2)
Oletw < hdnilin
letv<=0!,tWin
letz <tlnilin
buff(i,0,2)
letw<=[n]in
letz <=snoc(nil,w)in
buff(i,0,2)
letz <=snoc(nil,n)in
buff(i,0,z)
= buff(i,0,cons(n,nil))

i”n
—

elef &b [4]

e L ¢

e? E55 [x]

[e] 53
e Vo

letx<einf -5 letx<ein f

letx<einf — e’ f[g/X]

(Ax.e)f — e[f/X]

fix(x=e) — el[fix(x=¢)/x] iftrue()then felseg — f iffalse()then felseg— ¢

e—¢ e3¢ e V9 ¢ ff f-2f f O,
e0f —eOf eDf-He¢ eOf—e|[g eOf—enf eof-2f edf— f|]g
e-L¢ e g f %X g/ f e Pt g f OGN ¢/
el|f e | f e||f—e|fh/x e|ftself e|f—elh/x|f
e ¢ e V9 ¢ e X ¢f LY

el f—e|f

el F 8 F elf,f, i e f

el f f, %o f, 1

Table 2: Operational semanticsfor CMML X

letw <= i?,atin
letz <=snoc(cons(n, nil),w) in
buff(i,0,z)
Oletw < hd(cons(n,nil)) in
letv<0!,,Win
letz < tl(cons(n,nil))in
buff(i,0,2)
letW < i?4tin
letz <=snoc(cons(n, nil),w) in
buff(i,0,z)
Oletv<o0!,,tnin
letz < tl(cons(n,nil))in
buff(i,0,2)
letv < [#]in
letz <=tl(cons(n,nil)) in
buff(i,0,z)
letz < tl(cons(n,nil)) in
buff(i,0,z)
buff(i, 0, nil)

oln
—

—

Defne may-testing for CMMLZ asT |=eCo f : Tiff Cle] =4
« impliesC[f] 2% for any closing context C of type CI.

4 Biimulation

We can defne a notion of higher-order late bisimulation for
CMML %, based on Abramsky’s [2] applicative simulation for
the untyped A-calculus, Milner, Parrow and Walker's[20] late
bisimulation for the T-calculus, and Howe's [13] simulation
for lazy computation.

A (higher-order late) simulation on CMMLZX is a type-
indexed family of relations % . C {(e, f) |F e, f : 1} such that:

. ifeﬂ(w f thene=f.
o if (,&') R e (f,f')thener , fande’ g, f/,
o if (AX.€) R g_ct (Ay. f)thenfor al g : o wehave

ela/x] ® ¢t F9/Y],
o ifeRc fande— e thenf= f'ande’ R ¢ f,
o ifeR . fande Y% e then f 2L 7 and
(¢/,€") Ryacr (', 1),
o ifer, fande 2% ¢” then f L2 £ and
(¢/.€") R gucr (', 1), and
o ife® . fande % ¢ then f LoL {/ and
(AX.€) R o cr (AY.).
A bisimulation is a simulation whose inverse is also a simu-
lation. Then defne:

e simulation preorder < isthelargest smulation,
e mutual simulation equivalence < is<n:>.
e bisimulation equivalence ~ isthe largest bisimulation.

Given atype-indexed relation . of closed terms, let £ ¢ ; be
the corresponding relation on open terms:

Ryo.=1{(ef)[V-g:0.e[g/x] = f[g/x]}

We shall often elide the indexes from these relations, writing
eR fraherthane® f ande . ° f fore ® ; ; f when context
makes the typing obvious. '

Note that bisimulation is strictly £ner then mutual simula-
tion, for example:

a?0letx<a?ind =< a?
a?0letx<=a?ind # a?

As this example shows, mutual simulation does not have the
power to detect deadlock, which iswhy Milner [19, exercise
14] chose to use bisimulation rather than mutual simulation
for CCS.

In earlier versions of this paper, it was necessary to use
mutual simulation rather than bisimulation, because | was un-
able to £nd a proof that bisimulation was a congruence for

CMMLZ. However, Andy Pitts has since shown me an un-
published proof of Howe's[12] which can be adapted to show
that bisimulation is a congruence for CMMLX.

The full paper uses Gordon's variant [8] of Howe's proof
technique [13, 12] to show that bisimulation is a congruence
for CMMLZ.

Let CMMLZX be the signature with types as sorts, and
judgements X : G e : T as constructors 6 — T, viewed up
to bisimulation. Any signature morphism f : ¥ — %' ex-
tends homomorphically to a signature morphism CMML f :
CMMLZ— CMMLZ/, and it isroutine to show that CMML :
SigBCD — SigBCD isafunctor.

The equationsin Table 3 include Moggi’s equations for the
monadic metalanguage, and so we can show that CMMLZXZ
has categorical structure given by Table 4.

Proposition 1 CMMLZ forms a category with £nite prod-
ucts, amonad T : CMMLZ — CMMLZ, and all T-exponen-
tials.

Proof The equationsin Table 3 are suf£cient to show that the
structure defned in Table 4 has the required properties. This
isshown in [22] and the full version of this paper. |

5 Denotational semantics

Let Alg bethe category of algebraic dcpo’s, together with con-
tinuous morphisms (we are not requiring dcpo’s to have least
elements). Let Alg, ,, bethe category of algebraic dcpo’swith
al £nite joins, together with continuous morphisms which
respect the joins. Let X —Y be the continuous function
space between X and Y, and let X — Y be the continuous
V-respecting function space between X and Y.

For any indexing sets J and K and for any object (T)
in Alg™ x AlgX x Alg, a pre-process domain over (T,0,V)
isan object P in Alg ,, with morphisms:

0,V
6.V

injc : (Ij—=P)—yP
outyC : Oy—P—yP
val : V—-P—,P

for each ¢ € [[chan], j € J and k € K. A pre-process domain
morphism isan Alg, ,, morphism which respectsin;jc, outyc
and val. A process domain is a pre-process domain where:

injc(f;valv) < valv(injcf)
outgcd(valvp) < valv(outycdp) (1)
valv(valwp) = valvp
Let Proc(T,0,V) betheinitial process domain over (T,0,V).

Proposition 2 Proc is a continuous and locally continuous
functor Alg— Alg.

Proof Given in the full version of this paper. m|

Hennessy [10] has proposed a domain for higher-order pro-
cesses which is the canonical £xed point of the functor:

X = X =X)L x []X @rX)

where ®, isthe left adjoint to —,:

curry, Alg, [X ®,Y,Z] ~ Alg[X,Y — Z]

We can e>§tend this to typed processes by defning
PreProc(1,0,V) to be the canonical £xed point of the
functor:

X = |_| j— X)X D(ok®rX)LX(V®X)L
,C

Proposition 3
1. PreProcgr,é,V) is the initial pre-process domain.
2. Proc(1,0,V) is PreProc(l,0,V) quotiented by the pro-
cess domain preorder (1).

Proof Given in the full version of this paper. O

Defne the traces Trace(1,0,V) C Proc(I,0,V) as the ele-
ments given by the grammar:

s = L|injc(d=s)|outkcds|valvu
u = 1 |injc(d=-u) |outxcdu

for compact d and v.

Proposition 4 p is compact iff p =51V --- Vs, for traces s;.

Proof ‘If’ follows from showing by induction on s that s is
compact. ‘Only if’ follows by showing that any p isthe join
of all the traces below it. O

Any continuous function is determined by its effect
on compact elements, and so we can defne functions
Proc(T,0,V) — ., D by giving their effect on traces. For
example, the restriction operator:

]

_I- : Proc(I,0,V) = [chan]" — Proc(T,0,V)

isdefned by its action on traces:

(injc(d=s)) ¢ = {ijic(d:‘(sré’)) ifcec

otherwise
. [(outked(s[T)) ifcec
(outceds) [¢ = { 1 otherwise

(valvu) [T = valv(u|C)

We can defne concurrency, and the monad natural transfor-
mations similarly:

|- ¢ Proc(T,0 V)—>VProc(T,0,W) —, Proc(T,0,W)
x 1 (V—=W)—Proc(I,0,V)— ., Proc(T,O,W)
D,V))— .\ Proc(D,D,V)

u : Proc(D,D,Proc(D, D
n : V—Proc(I,0,V)

X &° %
(VL,VR) =~° v
letx<[e]inf =~° fle/x]
letx<ein[x] =° e
lety< (letx<einf)ing =° letx<ein(lety< fing)
(Ax.e)f =° e[f/X]
Ay.(gy) ~° ¢

Table 3: Some bisimulations for CMML X (y not freein g)

ide = (X:TEX:1)
(x:pFe:o)(y:okf:1) = (x:pkfle/x]:1)

I
lp = (X:Thk=*:1)
OXT = 0®T

M= X:00TFXL:0)

M = (X:0QTFXR:T)

Tt = C1

T(x:oke:1) = (y:Cokletx=yinle]: C1)

ne = (x:t-[x]:C1)

Hr = (x:CCtklety<xiny: Cr1)

tor = (X:0@Ctklety<=xRin[(xL,y)]: C(o®1))
Tt = 0—Ct

curry(x:p@otke:Ct) (y:pFAz.letx<=([(y,z)]ine:0—C1)
curry Y(x:pke:0—C1t) = (y:p®oke(yRr):C1)

Table 4: Categorical structure of CMMLX

Proposition 5 Proc(D,D,) : Alg— Alg is a monad. e [«] and (e, f)] are given by the productsin Alg,
Proof Given in the full version of this paper. o o [l a;nd [letx «<ein f] are given by the monadic struc-
ture of Proc,

Given a semantics] : = — Alg for 2, we extend it ©0 | 13y o and [ef] are given by the Proc-exponentials in

CMMLZX by giving the an object [t]] in Alg for each type Alg
T o [ifethen f elseg] is given by the coproductsin Alg,
N =1 e [[0] and [e O] are given by bottom and join in Proc[T],
[o®1] = [o] x [1] o [fix(x =¢)] istheleast £xed point of x — [e], and

e [e7], [e!], [e] f] and [e | f] are given as above.

lo=Ct) = o] ~ctl Thi tics is de€ned in full in the full version of th
is semanticsis defned in full in the full version of the pa-
[C] = Proc({[o] o€ T).([o] o€ T).[T) o P
whereT istheset of all CMML types, and for eachX:GFe:1 We shall sometimes elide the type information, and write
amorphism: [e] for [I" F e :] wherethisis unambiguous.
A semantics [.] : £ — Alg isadequate iff:

12

[X1:01,....,Xp:0pFe:1]: [o1] x -+~ x [oa] — [T]

given by: [d&: C[A]] = \/{[F [f]: CIA]] | d& =% f}

A semantics [[] : Z— Alg is expressive iff for any compact
a € [A] we can £nd termsis, and test, such that:

[Fisa: Al =a [Ftesta: [A]—Cl] = (a=nl)

A semantics [] : CMML X — Algiscorrect iff:
[FTRe:T]<[FEf:t]impliesl FeCo f:1
The semantics for CMML X is fully abstract iff:
[FTre:tf<[F-f:1]iff(EeCof:T

We will now sketch the proof that if a semantics for X is ad-
equate then its extension to CMML X is correct, and that if a
semanticsfor Z is adequate and expressive, then its extension
to CMMLZ isfully abstract.

6 Program logic

In order to show the relationship between the operational and
denotational semantics of CMML X, we shall use a program
logic similar to that used by Abramsky [2] and Ong [23] in
modelling the untyped A-calculus, based on Abramsky’s [3]
domain theory in logical form.

The program logic for CMML X has propositions:

pr=x| (W) ||l |w|e AW | o= | (c%)0] (cle)@] (V)@

These can be statically typed, so the propositions for type T
arethose where @: LT, given by the type system in Table 5.

The operational characterization of the logic has judge-
ments |= e : ¢ given for closed terms by Table 6. This can
be generalized to open terms as:

XipEe:piffve o =e[f/x:p
Let A range over propositional contexts of the form x; :
@1,...,%n : Gy, and write A: LT for:
(X1 @1, Xn i @) i L(X1 :T1,...,Xn : Tn)
iff @ :27q,...,¢0: LTy

We can also defne a denotational semantics for propositions,
sothat if @: £1 then [@] € [T]:

[x] = L [(ew] = ([¢l, [w])
[0 = L [orw] = [¢] Vvl
[la] = a [o=uw] = [¢]= W]
[{c?%)9] = inc[q] [{cto) (@ W)] = outc[@][Y]
[V (@W)] = val[¢][y]

Whenever A: 2T, we can defne [A] € [[] as:
1@, i @] = (@l [o])

Proposition 6 a € [t]] is compact iff 3¢: £1.a = [q].

Proof ‘If’ isan induction on @. ‘Only if’ relies on Proposi-
tion 4. a

7 Full abstraction

We can now show that the semantics for CMMLZ is fully
abstract. We begin by showing that if ~ is expressive, then so
isCMMLZ.

The primes of the logic are given by:

U =
v

w| (c?Z) (9= | {c!')(®, 1) [(V)(®,V)
w| (c?)(e=V) | (c!1)(®V)

Note that 7] is atrace, and so by Proposition 4 for any ¢ €
£(Ct)wecan£nd T suchthat =T A --- AT,
Proposition 7 If the semantics for X is expressive, then for
any @: £T we can £nd a term - term@: T such that [¢] =
[termq].

Proof Let term; @ be deEned asin Table 7, where result isan
unused channel, and when te £ (Ct) thenTte £ (Cl) is:

@ = [4
(%) (@=1) = (clo)(® T
(clo)(@.m) = (c%)(9=T)
(W)(@,v) = (result?)(@=V)

Then show by induction on @ that [[term @] = [¢]. O

We can then verify that: [@] = [term; @: 1] This expressiv-
ity result isused in showing that the semanticsfor CMML X is
fully abstract. The relationship between expressivity and full
abstraction has been long known [17, 25].

Proposition 8

1. If a semantics for X is adequate, then [¢] < [e][A] im-

pliesAE=e: .
2. If a semantics for X is expressive and adequate, then
[¢] < [e][a] iff A = e @
Proof The £rst part of this proof is a straightforward correct-
ness proof, and follows by induction on e.

The proof of the second part begins by showing by induc-
tion on @ that if =e: @then [@] < [e] L. This requires ex-
pressiveness, for example to prove the case when o= =X
we reason:

EA.e:P=X
= = (M.e)(termy) 1 X (Expressiveness)
= [X] <[N-e]ftermy] (Induction)
= [XxI < [A-e][w] (Expressiveness)
= [y=x] <[r.e]L (Defn of =)
The result then follows. O

We can combine these propositions to prove full abstraction
for CMML.

Theorem 9 (full abstraction)

1. If a semantics for Z is adequate, then its extension to
CMMLZ is correct.

QL0 Y:LT
«:Ll (g):L(0®T) |a]:L[A]
@:£(Ct) Y:L(Cr) QLT

[a € [A],a is compact]

w: £(C1) oAy L(CT) [: £(CT)
@:L(0—Ct) Y:(6—Ct) o@:20 Y:(C1)
w: £L(0—C1) OAW: L(0—CT) o=UP:2(0—C1)

ce€[chan] @:2(0—Ct) cechan] ¢:L(0®Ct) @:L£(txCT)
(€%)@: L(C1) (clg)@: (CT) (V)@: L(CT1)

Table 5: The type system for the progam logic

Fe:g =f:y a<[re:[A] Ferg Fexy ehe (felg):e@
Fxix (o) (o) =e:lal Ferw Ferony Fe:{v)e
e—e e Vefiglef:p efehe =(fe)ip eZXe Erx.e:9
Ee:@ Ee:p=y Ee:{clg)® Ee: (%)

Table 6: The operational characteriation of the program logic

term* = *
termggr (@, Q) = (termg@,termqy)
termpa [a] = isa

termct W = O
termcr(@AW) = termcy@Otermc Y
termc[@ = [term{ (]
termg_ct®W = AX.0
termg_ct(@AW) = AX. (termg_ct @)X O (termg_.ct W)X
termi_cr(x=X) = AX.termceX

termpszo—ct((W, @) =X) = AX. lety < (termp_ci (Y= [*]))(xL)
in(termg_ct(®=X))(XR)

termja_cc([al|=X) = AX.lety <= (testaX)intermcrX
termg_ct(W=X) = AX.termccX

termg_ct(@AWY=X) = AX. lety<termg_c|(@=[*])x
intermg_ct(P=-X)X
termcooct([@=X) = AX.lety<Xintermg_crty

term(p_co)~ct((@= W) =X) = Ax.(termcocr(W=X))(X(termp®))

Table 7: Expressiveness result for CMML

2. If a semantics for X is expressive and adequate then its
extension to CMML X is fully abstract.

Proof Follows from the results that:
e [[1] isalgebraic,
e the compact elements of [[t]] are characterized precisely
as the denotations ¢ of formulae of type ¢: £1, and
o theoperational and denotation characterizations of when
aterm satisEes aformula are equivalent |

8 Conclusions

This paper has shown that it is possible to combine some of
the categorical structure used in giving denotational semantics
of functional programming languages with the operational
view of programs used to model process algebras.

In the full paper, the monadic strucuture is shown to be
exactly the structure required to give denotational models for
a programming language with monadic types. Thereisalso a
translation of asubset of CML into CMML, based on Moggi’s
trandation of the call-by-value A-calculusinto MML.

There are anumber of outstanding issuesfor thislanguage:

e Is there a fully abstract semantics for CMML with
unique name generation? (This is the most important
feature of CML or CHOCS missing from CMML.)

e Is there a fully abstract semantics for must-testing [9]
based on acceptance trees[9] or failures sets[11]?

Acknowledgements

This work is funded by SERC project GR/H 16537, and is
carried out in the context of Esprit BRA 7166 Concur 2.
Many thanks to Bill Ferreira, Andy Gordon, Matthew Hen-
nessy, Andy Pitts and Edmund Robinson for discussions on
this material.

References

[1] 1SO 8807. LOTOS—A formal description technique based on the
temporal ordering of observational behaviour, 1989.

[2] Samson Abramsky. The lazy lambda calculus. In David Turner,
editor, Declarative Programming. Addison-Wesley, 1989.

[3] Samson Abramsky. Domain theory in logical form. Ann. Pure Appl.
Logic, 51:1-77, 1991.

[4] Roberto M. Amadio. Translating core facile. Technical Report
ECRC-1994-3, ECRC, 1994.

[5] Dominique Bolignano and Mourad Debabi. A semantic theory for
concurrent ML. In Proc. TACS "94, 1994.

[6] Andrew Gordon. Functional Programming and Input/Output. Ph.D
thesis, Cambridge University, 1992.

[7] Andrew Gordon et al. A proposal for monadic i/o in Haskell 1.3.
WWW document, Haskell 1.3 Committee,
http://www.cl.cam.ac.uk/users/adg/io.html, 1994.

[8] Andrew D. Gordon. Bisimilarity as a theory of functional
programming. Submitted to MFPS 95, 1994.

[9]1 M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[10] Matthew Hennessy. A denotational model for higher-order processes.

Technical Report 6/92, University of Sussex, 1992.

[11] C. A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

Douglas Howe. Proving congruence of simulation orderings in
functional languages. Unpublished manuscript, 1989.

[12]

[13] Douglas J. Howe. Equality in lazy computation systems. In Proc.

LICS 89, pages 198-203, 1989.

P. Hudak, S. L. Peyton Jones, P. Wadler, et al. A report on the
functional language Haskell. SIGPLAN Notices, 1992.

Alan Jeffrey. A fully abstract semantics for a higher-order functional
concurrent language. A draft copy is available in
ftp://ftp.cogs.susx.ac.uk/pub/users/alanje/cmml/draft.ps, 1994.

[14]

[15]

[16] S. Mac Lane. Categories for the Working Mathematician. Graduate

Texts in Mathematics. Springer-Verlag, 1971.

[17] Robin Milner. Fully abstract semantics of typed A-calculi. Theoret.

Comput. Sci., 4:1-22, 1977.

Robin Milner. Calculi for synchrony and asynchrony. Theoret.
Comput. Sci., pages 267-310, 1983.

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[18]

[19]

[20] Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes. Technical reports ECS-LFCS-89-86 and -87,

LFCS, University of Edinburgh, 1989.

Robin Milner, Mads Tofte, and Robert Harper. The De£nition of
Standard ML. MIT Press, 1990.

Eugenio Moggi. Notions of computation and mondad. Inform. and
Computing, 93:55-92, 1991.

C.-H. Luke Ong. The Lazy Lambda Calculus: An Investigation into
the Foundations of Functional Programming. PhD thesis, Imperial
College, London University, 1988.

A. M. Pitts and I. D. B. Stark. On the observable properties of higher
order functions that dynamically create local names (preliminary
report). In Workshop on State in Programming Languages,
Copenhagen, 1993, pages 31-45. ACM SIGPLAN, 1993. Yale Univ.
Dept. Computer Science Technical Report YALEU/DCS/RR-968.

Gordon Plotkin. LCF considered as a programming language.
Theoret. Comput. Sci., 5:223-256, 1977.

J. H. Reppy. A higher-order concurrent langauge. In Proc. SIGPLAN
91, pages 294-305, 1991.

J. H. Reppy. Higher-Order Concurrency. Ph.D thesis, Cornell
University, 1992.

B. Thomsen, L. Leth, S. Prasad, T. M. Kuo, A. Kramer, F. Knabe, and
A. Giacalone. Facile antigua release programming guide. Technical
Report 93-20, ECRC, 1993.

Bent Thomsen. A calculus of higher order communicating systems.
In Proc. POPL 89, pages 143-154, 1989.

Bent Thomsen. Calculi for Higher-Order Communicating Systems.
Ph.D thesis, Imperial College, 1990.

Philip Wadler. Comprehending monads. In Proc. 1990 ACM Conf.
Lisp and Functional Programming, pages 61-78, 1990.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

