
Semantics for a fragment of LOTOS with
functional data and abstract datatypes

Alan Jeffrey, University of Sussex

Input document of ISO/IEC JTC1/SC21/WG7/1.21.20.2.3
‘Enhancements to LOTOS’

Liège meeting, December 1995

Abstract

This paper presents static and dynamic semantics for a fragment of LOTOS
with a functional (rather than algebraic) data language. We present a ‘core’ func-
tional data language (which is explicitly and monomorphically typed), and show
how it can be integrated into the LOTOS behavioural model. We then introduce
data abstraction, and discover that data abstraction fits badly with the LOTOS com-
munication model, which assumes that the data space is ‘flat’. We propose three
possible solutions: 1) accepting the loss of data abstraction, 2) banning abstract
types from communication, or 3) allowing the specifier to determine the behaviour
of each type in output synchronization and input hiding. We then show that both
of the last two options allow gates to be treated as first-class values (ending the
distinction between gates and data), and the 3rd has the expressive power of the
π-calculus.

Contents

1 Introduction 2

2 Data language 3
2.1 Syntax . 3
2.2 Static semantics . 4
2.3 Dynamic semantics . 6

3 Behavioural language 7
3.1 Syntax . 8
3.2 Static semantics . 9
3.3 Dynamic semantics . 11

4 Introducing data abstraction 14
4.1 Common ground between the 3 options 15
4.2 Option 1: Abstract datatypes treated as concrete datatypes 16
4.3 Option 2: Abstract datatypes banned from communication 16
4.4 Option 3: Specifier given control . 18

1

5 Gates as first-class citizens 22
5.1 Common ground between the 2 options 23
5.2 Option 1: Non-mobile gates . 25
5.3 Option 2: Mobile gates . 25

6 Conclusions 29

1 Introduction

This paper presents static and dynamic semantics for a fragment of LOTOS with a
functional (rather than algebraic) data language.

The fragment considered is based on the core languages discussed in [2], but does
not consider many of the ‘difficult’ features: polymorphism, overloading, exceptions,
modularity, and subtyping are not discussed in this document. They are left for future
development.

This paper is concerned with the integration of a functional data language with the
LOTOS behavioural language. In particular:

� In Section 2 we present a ‘core’ functional language based on [2]. This is given
a static and dynamic semantics in the style of the SML formal language defini-
tion [5].

� In Section 3 we show how this core language can be incorporated into the LO-
TOS behavioral model. We give a static and dynamic semantics to a fragment of
LOTOS with ACT ONE expressions replaced by expressions from the core func-
tional language. The resulting semantics is much simpler than that of the ISO
standard.

� In Section 4 we introduce a simple form of data abstraction, and discuss the prob-
lems that this poses. In particular, the LOTOS output synchronization and input
hiding models make it difficult to work with abstract datatypes, since they assume
a ‘flat’ data model. We present three possible solutions to this problem:

1. Keep the existing semantics, and accept the loss of data abstraction.

2. Ban abstract datatypes from communications (and the other contexts such as
choice which cause problems).

3. Allow specifiers to define how each abstract datatype behaves in an output
synchronization or an input hiding.

� In Section 5 we show how LOTOS gates can be viewed as an abstract datatype.
This simplifies the behavioural model considerably, since we do not need separate
gate- and data-parameterization and -instantiation for processes. We show how
two of the possible solutions to abstract datatypes produce different models of
gates:

1. One model has gates as ‘static’ entities which cannot be communicated. The
resulting language is more powerful than existing LOTOS, but does not have
the expressive power of Milner’s π-calculus.

2

2. The other model has gates as ‘mobile’ entities which can be communicated
between processes. The resulting language is as powerful as the π-calculus.

This paper uses syntax and definitions from [2], to which the reader is referred for an
introduction to the language, examples of its use, and motivation for the design choices
made.

2 Data language

2.1 Syntax

The fragment of the functional language we consider here is monomorphic, explicitly
typed, and allows anonymous records. Future extensions of this language should inves-
tigate implicit typing, modularization, and polymorphism or overloading.

The terminals of the abstract syntax are:

symbol domain meaning abbreviations
Var variable identifiers x
Fun operation identifiers f
Con constructor identifiers c
Srt sort identifiers S
Lab field identifiers l

The type expressions are:

T :: � S� �
l1 : T1 ��������� ln : Tn �

The declarations are:

D :: � datatype S : � c1 of T1
�	�����
�

cn of Tn endtype�
function f p : T : � e endfun�

�
DD

The expressions are:

e :: � x�
error T�
case e of p1 � e1

�	�������
pn � en endcase�

ce�
f e� �
l1 � e1 ��������� ln � en ��

e � � l � e �

3

The patterns are:

p :: � x : T�
any T�
cp� �
l1 � p1 ������� � ln � pn �

2.2 Static semantics

The static semantics is given by judgements:

� C
�

e � T ‘In the context C, expression e has type T .’
� C

�
D � C � ‘In the context C, declaration D gives context C � .’

� C
���

p � T ��� C � ‘In the context C, binding pattern p to type T gives context C � .’
� C

�
T � type ‘In the context C, T is a type.’

A context is a multiset of bindings:

C :: � x � T�
f � T � T ��
c � T � S�
S � type�

�
C � C

with the restriction that each binding must be unique, that is:

if C � C1 � x � T � C2 � x � � T � � C3 then x �� x �
and similarly for the other bindings. We view contexts up to ‘ � ’ being a commutative
monoid.

Let C 	 C � be context overriding, that is:

C 	 � � � C
�
C
 � x � T ���
	 �

C � � x � T � � � �
C � x � T � ��	 C �

and similarly for the other bindings.
Write C

�
x � T for C � �

C � � x � T � , and similarly for the other bindings.

2.2.1 Static semantics of expressions

The static semantics of expressions is given by inference rules:

C � x � T
�

x � T

C
�

T � type
C
�

error T � T

C
�

e � T
C
���

p0 � T ��� C0
�����

C
���

pn � T ��� Cn

C 	 C0
�

e0 � T � �����
C 	 Cn

�
en � T �

C
�

case e of p0 � e0
� �������

pn � en endcase � T �

4

C
�

c � T � S
C
�

e � T

C
�

ce � S

C
�

f � T � T �
C
�

e � T

C
�

f e � T �
C
�

e1 � T1
�����

C
�

en � Tn

C
� �

l1 � e1 ������� � ln � en � � �
l1 : T1 ��������� ln : Tn �

C
�

e � �
l1 : T1 ������� � ln : Tn �

C
�

e � � Ti

C
�

e � � li � e � � � �
l1 : T1 ������� � ln : Tn �

Note that this type system does not allow empty case statements: this is to ensure that
every expression is uniquely typed. If we allowed empty type expressions, then ‘case� � of endcase’ would be ambiguously typed. The expression ‘error T ’ is equivalent to
an empty case statement with type T .

2.2.2 Static semantics of declarations

The static semantics of declarations is given by inference rules:

C
�

Ti � type
�����

C
�

Ti � type
C
���

datatype S : � c1 of T1
�	����� �

cn of Tn endtype �
� �

S � type � c1 � T1 � S ������� � cn � Tn � S �
C
��� �

p � T � ��� C � �
C 	 C � � e � T

C
���

function f p : T : � e endfun � � �
f � T � � T �

C
��� � � � �

C
�

D1 � C1 C
�

D2 � C2

C
�

D1D2 � C1 � C2

These rules do not explicitly support recursive declarations: these are handled by rules
such as those for specifications in Section 3.2.1 which close declarations by checking
for judgements of the form C

�
D � C.

2.2.3 Static semantics of patterns

The static semantics of patterns is given by inference rules:

C
�

T � type
C
��� �

x : T � � T � � �
x � T �

C
�

T � type
C
���

any T � T � � � �

C
�

c � T � S
C
� �

p � T � � C �
C
� �

cp � S � � C �
C
���

p1 � T1 ��� C1
�����

C
� �

pn � Tn � � Cn

C
��� �

l1 � p1 ������� � ln � pn � � �
l1 : T1 ������� � ln : Tn � � � �

C1 ��������� Cn �

2.2.4 Static semantics of type expressions

The static semantics of type expressions is given by inference rules:

C � S � type
�

S � type
C
�

T1 � type
�����

C
�

Tn � type
C
� �

l1 : T1 ������� � ln : Tn � � type

5

2.3 Dynamic semantics

The dynamic semantics is given by judgements:

� E
�

e � v ‘In the environment E , expression e returns value v.’
� E

�
D � E � ‘In the environment E , declaration D returns environment E � .’

� E
� �

p � v � � σ ‘In the environment E , binding pattern p to value v returns
substitution σ.’

� E
���

p � v � � fail ‘In the environment E , binding pattern p to value v fails.’

An environment is a multiset of bindings for function identifiers:

E :: � f � λp � e�
�

E � E
with the same restrictions as contexts. Let environment overriding E 	 E � be defined as
for contexts. Let E

�
f � λp � e be defined as for contexts.

The values are normal forms for expressions:

v :: � cv� �
l1 � v1 ������� � ln � vn �

A substitutions is a list of bindings for variable identifiers:

σ :: � x : � v�
�

σ � σ
Let e
 σ � be the usual definition of syntactic substitution (but note that values are closed
expressions, so no alpha-conversion is necessary).

2.3.1 Dynamic semantics of expressions

The dynamic semantics of expressions is given by inference rules:

E
�

e � v
E
���

p � v � � σ
E
�

e �
 σ � � v �
E
�

case e of p � e � � ����� end � v �

E
�

e � v
E
���

p � v � � fail
E
�

case e of
�����

end � v �
E
�

case e of p � e � �	����� end � v �

E
�

e � v

E
�

ce � cv

E
�

f � λp � e �
E
�

e � v
E
� �

p � v � � σ
E
�

e �
 σ ��� v �
E
�

f e � v �
E
�

ei � vi
�����

E
�

ei � vi

E
� �

l1 � e1 ������� � ln � en � � �
l1 � v1 ������� � ln � vn �

6

E
�

e � �
l1 � v1 ������� � ln � vn �

E
�

e � � v �
E
�

e � � li � ei � � �
l1 � v1 ������� � li � v � ����� � ln � vn �

Note that the error statement has no inference rules: in this simple semantics, reaching
an error state is the same as diverging. We may wish to use a finer semantics for the
final standard.

2.3.2 Dynamic semantics of declarations

The dynamic semantics of declarations is given by inference rules:

E
���

datatype ����� endtype � � � �

E
���

function f p : T : � e endfun � � �
f � λp � e �

E
��� ��� � �

E
�

D1 � E1 E
�

D2 � E2

E
�

D1D2 � E1 � E2

Note that the rule for function declarations is only sound because there are no partially
applied functions: if there were, we would have to include closures in the semantics.

2.3.3 Dynamic semantics of patterns

The dynamic semantics of patterns is given by inference rules:

E
��� �

x : T � � v � � �
x : � v � E

� �
any T � v � � � �

E
���

p � v � � σ
E
���

cp � cv � � σ
c �� c �
E
� �

cp � c � v � � fail

E
���

p1 � v1 � � σ1
�����

E
� �

pn � vn � � σn

E
��� �

l1 � p1 ������� � ln � pn � � �
l1 : v1 ������� � ln : vn � � � �

σ1 ������� � σn �
E
���

pi � vi � � fail
E
��� �

l1 � p1 ������� � ln � pn � � �
l1 : v1 ������� � ln : vn � � � fail

3 Behavioural language

In this section, we present a simple behavioural language based on current LOTOS, but
using the core functional language for data rather than ACT ONE. We show how it can
be given a static and dynamic semantics in a similar style to the core functional language
(except that the operational semantics is given by a labelled transition system rather than
a ‘big step’ convergence relation).

Not all of the features of LOTOS are present in this behavioural language. Some
(such as nesting of declarations) are best treated by the modules facility. Most (such as
allowing any in exit statements) can be included without difficulty.

7

3.1 Syntax

The terminals extend those of Section 2.1 with:

symbol domain meaning abbreviations
Gate gate identifiers g
Proc process identifiers P

A specification is:

S :: � specification P where D endspec

This syntax is simpler than that in existing LOTOS, but we can view the specification:

specification P ����� behaviour B where D endspec

as an abbreviation for:

specification P where process P ����� : � B endproc D endspec

The only important difference between this form and the existing LOTOS specification
is that P can be used as a process identifier in D, which it cannot in existing LOTOS.
(This is in line with an existing suggested enhancement to LOTOS [1].)

The declarations are extended:

D :: � . . . as in Section 2.1. . .�
process
 g1 : gate T1 ������� � gn : gate Tn � p : exit T : � B endproc

The behaviours are:

B :: � stop�
exit o�
go
 e � ;B�
B1
�� B2�
B1

�
 g1 ������� � gn �
�
B2�

hide g : gate T in B�
choice p
�� B�
B1

� accept p in B2�
case e of p1 � B1

�	����� �
pn � Bn endcase�

P
 g1 ������� � gn � e
The offers are:

o :: � !e�
?p�
co� �
l1 � o1 ��������� ln � on �

Note that the syntax for exit has been simplified to use the same offers as for commu-
nication. This makes the semantics simpler, but for the final version we should use the
existing syntax, writing ‘exit (e, any T)’ rather than ‘exit (!e, ?any T)’.

8

3.2 Static semantics

The static semantics assumes the existence of two “standard” types:

datatype Bool := true
�
false endtype

datatype None := endtype

(using the syntactic sugar for constant constructors given in [2].) In the full language,
these types will be defined in modules in the standard library.

The static semantics extends that of Section 2.2 with judgements:

� C
�

B � exit T ‘In context C, behaviour B has functionality exit T .’
� C

� �
o � T � � C � ‘In the context C, binding offer o to type T gives context C � .’

�
�

S � C ‘The specification S is well-typed, with typing given by context C.’

Contexts are extended with process and gate identifiers:

C :: � . . . as in Section 2.2. . .�
P �
 gate T1 ������� � gate Tn � � T � exit T ��
g � gate T

In this semantics, we treat the functionality ‘noexit’ as a synonym for ‘exit None’ and
‘exit’ as a synonym for ‘exit

� � ’. This simplifies the semantics, but is not compatible
with existing specifications, for example it fails to type ‘stop

� �
exit 0’ (this example was

provided by Charles Pecheur). This problem is left for future work.

3.2.1 Static semantics of specifications

The static semantics of specifications is given by the inference rule:

C
�

D � C
C
���

P �
 gate T1 ������� � gate Tn � � T � exit T � ����
specification P where D endspec �
� �

P �
 gate T1 ������� � gate Tn � � T � exit T � �
Note that this rule includes the fact that the declaration D is allowed to be recursive.

3.2.2 Static semantics of declarations

The static semantics of declarations extends that of Section 2.2.2 with:

C
�

T1 � type
�����

C
�

Tn � type
C
���

p � T � � � C �
C 	 �

g1 � gate T1 ������� � gn � gate Tn ��	 C � � B � exit T

C
���

process P
 g1 : gate T1 ��������� gn : gate Tn � p : exit T : � B endproc �
� �

P �
 gate T1 ������� � gate Tn � � T � � exit T �

9

3.2.3 Static semantics of behaviours

The static semantics of behaviours is given by inference rules:

C
�

stop � exit None

C
���

o � T � convC �
C
�

exit o � exit T

C
�

g � gate T
C
� �

o � T � � C �
C 	 C � � e � Bool
C 	 C � � B � exit T �
C
�

go
 e � ;B � exit T �
C
�

B1 � exit T C
�

B2 � exit T
C
�

g1 � gate T1
�����

C
�

gn � gate Tn

C
�

B1
�
 g1 ������� � gn �

�
B2 � exit T

C
�

B1 � exit T C
�

B2 � exit T

C
�

B1
�� B2 � exit T

C
�

T � type
C 	 �

g � gate T � � B � exit T �
C
�

hide g : gate T in B � exit T �

C
� �

p � T � � C �
C 	 C � � B � exit T �
C
�

choice p
�� B � exit T �
C
�

B � exit T
C
���

p � T � � C �
C 	 C � � B � � exit T �
C
�

B
� accept p in B � � exit T �

C
�

e � T
C
���

pi � T ��� Ci

C 	 C0
�

B0 � exit T � �����
C 	 Cn

�
Bn � exit T �

C
�

case e of p0 � B0
�	�����
�

pn � Bn endcase � exit T �
C
�

P �
 gate T1 ������� � gate Tn � � T � exit T �
C
�

g1 � gate T1
�����

C
�

gn � gate Tn

C
�

e � T

C
�

P
 g1 ��������� gn � e � exit T �

3.2.4 Static semantics of offers

The static semantics of offers is given by inference rules:

C
�

e � T

C
���

!e � T � � � �
C
� �

p � T ��� C �
C
� �

?p � T ��� C �
C
�

c � T � S
C
���

o � T � � C �
C
���

co � S � � C �
C
���

o1 � T1 ��� C1
�����

C
� �

on � Tn � � Cn

C
��� �

l1 � o1 ��������� ln � on � � �
l1 : T1 ��������� ln : Tn � � � �

C1 ������� � Cn �

10

3.3 Dynamic semantics

The dynamic semantics extends that of Section 2.3 with judgements:

� E
�

B a
� � B � ‘In the context C and the environment E , B can perform an a action

and reduce to B � .’
� E

���
o � v � � σ ‘In environment E , binding offer o to value v returns substitution

σ.’

The actions are:

a :: � i�
gv�
δv

Environments are extended with process identifiers and the type information of con-
structors:

E :: � . . . as in Section 2.3. . .�
P � λ
 g1 ������� � gn � � λp � B�
c � �

T � S �

The type information for constructors is needed because constructs such as choice and
input can ‘invent’ new elements of any type. In order to make sure that processes are
type-safe, this means we have to be able to type any value.

Substitutions are extended with gate identifier bindings:

σ :: � . . . as in Section 2.3. . .�
g1 : � g2

Note that this semantics uses gate substitution rather than gate relabelling. This is sim-
pler (since gate bindings and value bindings are treated identically) but does require α-
conversion of gates bound by hide. It is left for a future decision whether α-conversion
or explicit relabelling should be used in E-LOTOS.

3.3.1 Dynamic semantics of specifications

The dynamic semantics of specifications is given by inference rules:

�
D � E

E
�

B a
� � B �

specification P where D endspec
�

B a
� � B �

For any g �1 ������� � g �n and v, the specification S � specification P where D endspec deter-
mines a labelled transition system rooted at S

�
P
 g �1 ������� � g �n � v a1

� � B1
a2

� � B2 �����

11

3.3.2 Dynamic semantics of declarations

The dynamic semantics of declarations extends that of Section 2.3.2 with:

E
���

process P
 g1 : gate T1 ������� � gn : gate Tn � p : exit T : � B endproc �
� �

P � λ
 g1 ������� � gn � � λp � B �
and replaces the rule for datatype declarations by:

E
���

datatype S : � c1 of T1
�	�������

cn of Tn endtype �
� �

c1 � T1 � S ��������� cn � Tn � S �

3.3.3 Dynamic semantics of behaviours

The dynamic semantics of behaviours is given by inference rules:

E
���

o � v � � σ
E
�

exit o δv
� � stop

E
� �

o � v ��� σ
E
�

e
 σ � � true

E
�

go
 e � ;B gv
� � B
 σ �

E
�

Bi
a

� � B �i
E
�

B1
�� B2
a

� � B �i
E
�

B1
gv

� � B �1 E
�

B2
gv

� � B �2
g ���g

E
�

B1
�
 �g � � B2

gv
� � B �1

�
 �g � � B �2
E
�

B1
δv

� � B �1 E
�

B2
δv

� � B �2
E
�

B1
�
 �g � � B2

δv
� � B �1

�
 �g� � B �2
E
�

B1
gv

� � B �1
g ����g
E
�

B1
�
 �g � � B2

gv
� � B �1

�
 �g � � B2

E
�

B2
gv

� � B �2
g ����g
E
�

B1
�
 �g � � B2

gv
� � B1

�
 �g � � B �2
E
�

B1
i

� � B �1
E
�

B1
�
 �g � � B2

i
� � B �1

�
 �g � � B2

E
�

B2
i

� � B �2
E
�

B1
�
 �g � � B2

i
� � B1

�
 �g � � B �2
E
�

B gv
� � B �

E
�

hide g : gate T in B i
� � hide g : gate T in B �

E
�

B a
� � B �

a �� gv

E
�

hide g : gate T in B g � v
� � hide g : gate T in B �

E
���

p � v � � σ
E
�

B
 σ � a
� � B �

E
�

choice p
�� B a
� � B �

E
�

B1
a

� � B �1
a �� δv

E
�

B1
� accept p in B2

a
� � B �1 � accept p in B2

12

E
�

B1
δv

� � B �1
E
���

p � v � � σ
E
�

B1
� accept p in B2

i
� � B2
 σ �

E
�

e � v
E
���

p � v � � σ
E
�

B
 σ � a
� � B �

E
�

case e of p � B
� �����

end a
� � B �

E
�

e � v
E
���

p � v � � fail
E
�

case e of
�����

end a
� � B �

E
�

case e of p � e � � ����� end a
� � B �

E
�

P � λ
 g1 ������� � gn � � λp � B
E
�

e � v
E
���

p � v � � σ
E
�

B
 σ � g1 : � g �1 ������� � gn : � g �n � a
� � B �

E
�

P
 g �1 ������� � g �n � e a
� � B �

3.3.4 Dynamic semantics of offers

The dynamic semantics of offers is given by inference rules:

E
�

e � v

E
���

!e � v � � � �
E
���

p � v � � σ
E
���

?p � v � � σ
E
� �

o � v � � σ
E
� �

co � cv ��� σ

E
���

o1 � v1 � � σ1
�����

E
���

on � vn ��� σn

E
��� �

l1 � o1 ������� � ln � on � � �
l1 � v1 ��������� ln � vn � � � �

σ1 ������� � σn �

3.3.5 Dynamic semantics of type checking

Because of choice and input, we have to be able to type-check values at ‘run-time’,
which means carrying type-checking information around. The dynamic semantics of
type-checking values is given by inference rules:

E
�

c � T � S
E
�

v � T

E
�

cv � S

E
�

v1 � T1
�����

E
�

vn � Tn

E
� �

l1 � v1 ������� � ln � vn � � �
l1 : T1 ������� � ln : Tn �

Moreover, we have to perform type-checking during pattern-matching, otherwise choice
and communication can produce type errors:

E
�

v � T

E
��� �

x : T � � v � � �
x : � v �

E
�

v � T

E
� �

any T � v � � � �

13

4 Introducing data abstraction

In Sections 2 and 3 declarations are ‘flat’, and there is no method for hiding imple-
mentation details. One of the goals for E-LOTOS is to investigate module systems to
implement such hiding, and we will consider some of its effects here.

For the sake of simplicity, we will not consider an entire module system, but instead
just add a new construct for local declarations. This presents many of the problems
of giving a semantics for data abstraction, for example we can define a ‘NatSet’ type
implementing sets of natural numbers with:

local
datatype NatList := nil

�
cons of Nat * NatList endtype

function
nil merge ns := ns�
ms merge nil := ms�
(m cons ms) merge (n cons ns) :=
if m � n
then m cons (ms merge (n cons ns))
else n cons ((m cons ms) merge ns)
endif

endfun
function

m in nil := false�
m in (n cons ns) := (m = n) or (m � n and m in ns)

endfun
in

datatype NatSet := hidden of NatList endtype
function singleton n := hidden (n cons nil) endfun
function (hidden ms) union (hidden ns) := hidden (ms merge ns) endfun
function m member (hidden ns) := m in ns endfun

endloc

(This specification uses some of the syntactic sugar for the core language discussed
in [2].)

The dynamic semantics given below will type-check this as producing the context:

NatSet � type

hidden � NatList � NatSet

singleton � Nat � NatSet

union � NatSet � NatSet � NatSet

member � Nat � NatSet � Bool

Note that in this context, ‘NatSet’ is visible, but ‘NatList’ is not, so the implementation
of ‘NatSet’ is hidden.

If we allow abstract datatypes such as ‘NatSet’ in communications, then the opera-
tional semantics of Section 3.3 has two problems:

1. Using a hidden input such as:

14

hide g : gate NatSet in g?x; exit x

we can nondeterministically generate any element of ‘NatSet’, including elements
such as ‘hidden (cons 1 (cons 0 nil))’ which violate the invariant that ‘NatSet’ is
implemented as a sorted list.

2. Synchronization on output also presents problems, since the definition in Sec-
tion 3.3.3 (which allows output expressions to synchronize when they have the
same normal form) causes the following to deadlock:

g!(singleton 0); exit
�
[g]

�
g!((singleton 0) union (singleton 0)); exit

since ‘singleton 0’ has normal form ‘hidden (cons 0 nil)’ whereas ‘(singleton 0)
union (singleton 0)’ has normal form ‘hidden (cons 0 (cons 0 nil))’.

In this section we discuss how abstract types such as ‘NatSet’ can be integrated into
LOTOS, in three different ways:

1. Abstract datatypes can be treated in the same way as concrete datatypes, which is
simple but produces the problems noted above.

2. Abstract datatypes can be barred from communication (and similar problem cases
such as choice) which prevents any problems from arising, but is very restrictive.

3. Specifiers can decide the communication possibilities of abstract types. This is
the most flexible solution, but does require a user-specified function to be called
every time a synchronization or hiding occurs.

One of the decisions to be taken in designing the E-LOTOS abstract types system is
which (if any) of the above solutions to adopt.

4.1 Common ground between the 3 options

The three options are all based on the same syntactic extension: allowing local declara-
tions. This has syntax:

D :: � . . . as in Section 3.1. . .�
local D1 in D2 endloc

static semantics:

C � C1
�

D1 � C1 C � C1
�

D2 � C2

C
�

local D1 in D2 endloc � C2

and dynamic semantics:

E
�

D1 � E1 E
�

D2 � E2

E
�

local D1 in D2 endloc � E1 � E2

Note that this “flattening” of a declaration to produce an environment may require α-
conversion, for example the declaration:

15

local function foo (x,y) := x endfun
in function bar x := foo x endfun endloc
local function foo (x,y) := y endfun
in function baz x := foo x endfun endloc

produces the environment:

foo1 � λ
�
x � y � � x

bar � λx � foo1x

foo2 � λ
�
x � y � � y

baz � λx � foo2x

Since there is no overloading in this fragment of the language, such α-conversion can
be carried out syntactically, without requiring any type information.

4.2 Option 1: Abstract datatypes treated as concrete datatypes

The first option is not to change the semantics of Section 3.3 at all. This is simple, but
breaks data abstraction as discussed above.

4.3 Option 2: Abstract datatypes banned from communication

The second option is to use the static semantics to ban abstract datatypes from commu-
nications and choice. There are a number of ways in which this can be achieved, but
probably the simplest is to add a new ‘abstract type’ declaration which specifies that a
datatype is not for use in communications.

This restriction is still fairly simple, but is very restrictive: all types are declared
as either concrete (all their structure is visible) or abstract (none of their structure is
visible).

4.3.1 Option 2: Syntax

One possible syntax for abstract type declarations is:

D :: � . . . as in Section 3.1. . .�
abstype S : � c1 of T1

�	�����
�
cn of Tn endtype

For example, the declaration of the ‘NatSet’ type would now be:

abstype NatSet := hidden of NatList endtype

4.3.2 Option 2: Static semantics

The static semantics is enriched with judgements:

� C
�

T � concrete ‘In the context C, T is a concrete type.’

16

and contexts are similarly enriched:

C :: � . . . as in Section 3.2. . .�
S � concrete

A type is then defined to be concrete iff it is a concrete sort, or a record of concrete
types:

C � S � concrete
�

S � concrete
C
�

T1 � concrete
�����

C
�

Tn � concrete
C
� �

l1 : T1 ������� � ln : Tn � � concrete

The static semantics for abstract datatype declaration is:

C
�

T1 � type
�����

C
�

Tn � type
C
���

abstype S : � c1 of T1
�	�����
�

cn of Tn endtype �
� �

S � type � c1 � T1 � S ������� � cn � Tn � S �
The static semantics of datatype declaration says that a datatype is concrete iff all of its
components are. This is achieved by adding the inference rule:

C
�

T1 � concrete
�����

C
�

Tn � concrete
C
���

datatype S : � c1 of T1
�	����� �

cn of Tn endtype �
� �

S � type � S � concrete � c1 � T1 � S ������� � cn � Tn � S �
We replace the condition ‘T � type’ by ‘T � concrete’ in the places where we do not
wish to allow abstract types:

C
�

T1 � concrete
�����

C
�

Tn � concrete
C
���

p � T � � � C �
C 	 �

g1 � gate T1 ������� � gn � gate Tn ��	 C � � B � exit T

C
���

process P
 g1 : gate T1 ��������� gn : gate Tn � p : exit T : � B endproc �
� �

P �
 gate T1 ������� � gate Tn � � T � � exit T �

C
�

T � concrete
C 	 �

g � gate T � � B � exit T �
C
�

hide g : gate T in B � exit T �

C
�

T � concrete
C
� �

p � T � � C �
C 	 C � � B � exit T �
C
�

choice p
�� B � exit T �
C
���

o � T � � C �
C
�

T � concrete
C
�

exit o � exit T

For example, the ‘NatSet’ abstype declaration is not concrete, and so we cannot use
‘NatSet’ inside choice or communication.

4.3.3 Option 2: Dynamic semantics

There is no change required to the dynamic semantics of Section 3.3.

17

4.4 Option 3: Specifier given control

The final option is to allow the specifier to state how a type can be used in communica-
tions. Again, there are a number of ways this can be specified, but one is to allow the
specifier to say when a value of a datatype is ‘valid’ (and so can be produced by hide or
choice) and when two output values can synchronize.

4.4.1 Option 3: Syntax

One syntax for allowing specifiers to define the validity and synchronization possibilities
of a type is:

D :: � . . . as in Section 3.1. . .�
datatype S : � c1 of T1

�	����� �
cn of Tn

valid x : � e

sync
�
x1 � x2 � : � e

endtype

We can replace datatype declarations with the above extension, by regarding:

datatype S : � c1 of T1
�	����� �

cn of Tn endtype

as syntactic sugar for (assuming we can find an appropriate semantics for equality, which
we will ignore for the moment):

datatype
S : � c1 of T1

�	����� �
cn of Tn

valid x : � true
sync

�
x1 � x2 �
 x1 � x2 � : � x1

endtype

For example, the communication rules for ‘NatSet’ are:

� A list is valid iff it is sorted.
� Two lists can synchronize if they contain the same elements in the same order.

These can be specified as (using the same syntactic sugar as for defining pattern-
matching functions):

local
...
function

sorted (x cons (y cons ys)) := (x � = y) and sorted (y cons ys)�
sorted any := true

endfun
function

(x cons (y cons ys)) combine zs [x=y] := (y cons ys) combine zs�
xs combine (y cons (z cons zs)) [y=z] := xs combine (z cons zs)�
(x cons xs) combine (y cons ys) [x=y] := xs combine ys

18

endfun
in

datatype
NatSet := hidden of NatList
valid (hidden xs) := sorted xs
sync (hidden xs, hidden ys) := hidden (xs combine ys)

endtype
...

endloc

With this semantics, hide and choice can only generate sorted lists, for example:
�
choice

�
x : NatSet �
�� exit x � δhidden � cons � 0 � cons � 1 � nil �����

� � � � � � � � � � � � � � � � stop

but: �
choice

�
x : NatSet �
�� exit x � δhidden � cons � 1 � cons � 0 � nil �����

� � � � � � � � �� � � � � � � � � stop

Similarly, values can be synchronised on output to produce the result given by the sync
specification, for instance:

g!
�
singleton 0 � ;exit

�
 g � � g!
� �

singleton 0 � union
�
singleton 0 � � ;exit

g!hidden � cons � 0 � nil ���
� � � � � � � � � � � � exit

�
 g � � exit

This option is the most flexible of the three, but it does require the specifier to provide
‘reasonable’ valid and sync functions, and it does require the execution of arbitrary user
code whenever a choice occurs, and whenever synchronization on output happens.

4.4.2 Option 3: Static semantics

The only addition to the static semantics of Section 3.2 is to type-check the extended
datatype declarations:

C
�

Ti � type
�����

C
�

Ti � type
C 	 �

x � S � � e1 � Bool C 	 �
x1 � S � x2 � S � � e2 � S

C
���

datatype S : � c1 of T1
�	����� �

cn of Tn

valid x : � e1 sync
�
x1 � x2 � : � e2 endtype �

� �
S � type � c1 � T1 � S ������� � cn � Tn � S �

4.4.3 Option 3: Dynamic semantics

The dynamic semantics we will give is rather different from that in Section 3.3. In that
semantics, there is no distinction between input and output, but for abstract datatypes
there is a great difference between them.

We do this by decorating the actions a process can perform with !’s and ?’s indicating
whether the data was being output or input. We replace the actions in Section 3.3 by:

a :: � i�
gm�
δm

19

where m ranges over messages:

m :: � cm� �
l1 � m1 ������� � ln � mn ��

!v�
?v

We view messages up to the equivalence given by:�
l1 � !

�
v1 : T1 � ������� � ln � !

�
vn : Tn � � � !

� �
l1 � v1 ������� � ln � !vn � :

�
l1 : T1 ������� � ln : Tn � ��

l1 � ?
�
v1 : T1 � ������� � ln � ?

�
vn : Tn � � � ?

� �
l1 � v1 ������� � ln � !vn � :

�
l1 : T1 ������� � ln : Tn � �

The dynamic semantics extends that of Section 2.3 with judgements:
� E

�
B a

� � B � ‘In the environment E , B can perform an a action and reduce to B � .’
� E

� �
o � m � � σ ‘In the environment E , binding offer o to message m returns

substitution σ.’
� E

�
valid v � true ‘In the environment E , v is a valid value.’

� E
�

valid m � true ‘In the environment E , m is a valid message.’
� E

�
sync

�
v1 � v2 � � v ‘In the environment E , values v1 and v2 can synchronize

together to produce value v.’
� E

�
sync

�
m1 � m2 � � m ‘In the environment E , messages m1 and m2 can synchro-

nize together to produce message m.’

We have to extend the environments to include the valid and sync declarations:

E :: � . . . as in Section 3.3. . .�
valid
 S � � λx � e�
sync
 S � � λ

�
x1 � x2 � � e

For example, the environment generated by the ‘NatSet’ declaration is:

nil � NatList

cons � Nat � NatList � NatList

hidden � NatList � NatSet

valid
NatList � � λx � true

sync
NatList � � λ
�
x1 � x2 �
 x1 � x2 � � x1

valid
NatSet� � λx � sorted x

sync
NatSet� � λ
�
x1 � x2 � � x1 combine x2

...

Dynamic semantics of declarations. We extend the semantics of Section 3.3.2 to take
account of the valid and sync declarations:

E
���

datatype S : � c1 of T1
�	�������

cn of Tn

valid x : � e1 sync
�
x1 � x2 � : � e2 endtype �

� �
c1 � T1 � S ��������� cn � Tn � S � valid
 S �
� λx � e1 � sync
 S � � λ

�
x1 � x2 � � e2 �

20

Dynamic semantics of behaviours. This is the same as in Section 3.3.3, except for
the following rules for termination, communication, synchronization, hiding, choice and
sequential composition:

E
���

o � m ��� σ
E
�

exit o δm
� � stop

E
� �

o � m ��� σ
E
�

e
 σ � � true

E
�

go
 e � ;B gm
� � B
 σ �

E
�

B1
gm1

� � � B �1 E
�

B2
gm2

� � � B �2
E
�

sync
�
m1 � m2 � � m

g ���g

E
�

B1
�
 �g � � B2

gm
� � B �1

�
 �g � � B �2

E
�

B1
δv1

� � B �1 E
�

B2
δv2

� � B �2
E
�

sync
�
v1 � v2 ��� v

E
�

B1
�
 �g � � B2

δv
� � B �1

�
 �g� � B �2
E
�

B gm
� � B �

E
�

valid m � true

E
�

hide g : gate T in B i
� � hide g : gate T in B �

E
���

p � v � � σ
E
�

valid v � true
E
�

B
 σ � a
� � B �

E
�

choice p
�� B a
� � B �

E
�

B1
δm1

� � � B �1
E
���

?p � m2 ��� σ
E
�

sync
�
m1 � m2 ��� m

E
�

valid m � true

E
�

B1
� accept p in B2

i
� � B2
 σ �

Dynamic semantics of offers. The new dynamic semantics of offers is given by in-
ference rules:

E
�

e � v

E
���

!e � !v � � � �
E
� �

p � v � � σ
E
� �

?p � ?v � � σ
E
���

o � m � � σ
E
���

co � cm � � σ

E
���

o1 � m1 � � σ1
�����

E
���

on � mn ��� σn

E
��� �

l1 � o1 ������� � ln � on � � �
l1 � m1 ������� � ln � mn � � � �

σ1 ������� � σn �

Dynamic semantics of value validation. The semantics of value validation is to apply
the user-specified valid function recursively:

E
�

valid v � true
E
�

c � T � S
E
�

valid
 S � � λx � e
E
�

e
 x : � cv � � true

E
�

valid cv � true

E
�

valid v1 � true
�����

E
�

valid vn � true

E
�

valid
�
l1 � v1 ������� � ln � vn � � true

Dynamic semantics of message validation. We can inductively define message vali-
dation from value validation:

E
�

valid !v � true

E
�

valid v � true

E
�

valid ?v � true

E
�

valid m � true

E
�

valid cm � true

E
�

valid m1 � true
�����

E
�

valid mn � true

E
�

valid
�
l1 � m1 ������� � ln � mn � � � true

21

Note that output messages do not need to be validated, only input messages. This means
that a protocol which ensures that every input is matched by at least one output will
never need to call the valid functions.

Dynamic semantics of value synchronization. The semantics of value synchroniza-
tion is to apply the user-specified sync function on sorts, and to recursively descend
through records:

E
�

c1 � T � S E
�

c2 � T � S
E
�

sync
 S � � λ
�
x1 � x2 � � e

E
�

e
 x1 : � c1v1 � x2 : � c2v2 � � v

E
�

sync
�
c1v1 � c2v2 ��� v

E
�

sync
�
v1 � v �1 ��� v � �1

�����
E
�

sync
�
vn � v �n � � v � �n

E
�

sync
� �

l1 � v1 ������� � ln � vn � � � l1 � v �1 ������� � ln � v �n � � � �
l1 � v � �1 ������� � ln � v � �n �

Dynamic semantics of message synchronization. We can inductively define message
validation from value validation:

E
�

sync
�
v� v � � � v � �

E
�

sync
�
!v� !v � � � !v � � E

�
sync

�
?v� !v ��� !v

E
�

sync
�
!v� ?v � � !v E

�
sync

�
?v� ?v � � ?v

E
�

sync
�
m � !v � � m �

E
�

sync
�
cm � !cv � � cm �

E
�

sync
�
m � ?v ��� m �

E
�

sync
�
cm � ?cv ��� cm �

E
�

sync
�
!v� m � � m �

E
�

sync
�
!cv� cm � � cm �

E
�

sync
�
?v� m � � m �

E
�

sync
�
?cv� cm � � cm �

E
�

sync
�
m � m � � � m � �

E
�

sync
�
cm � cm � ��� cm � �

E
�

sync
�
m1 � m �1 ��� m � �1

�����
E
�

sync
�
mn � m �n � � m � �n

E
�

sync
� �

l1 � m1 ������� � ln � mn � � � l1 � m �1 ������� � ln � m �n � ��� �
l1 � m � �1 ������� � ln � m � �n �

Note that input messages do not need to be synchronized, only output messages. This
means that a protocol which ensures that processes will never try to synchronize on
output will never need to call the sync functions.

5 Gates as first-class citizens

As an example of including abstract datatypes into specifications, we will show how
gates can be regarded as ‘first class citizens’—thus increasing the expressive power of
LOTOS, as discussed in [2].

We will show two ways in which this can be done: one based on Option 2 from
the previous section, which does not allow gates to be communicated; the other based
on Option 3 from the previous section, which allows gates to be communicated, thus
gaining the expressive power of the π-calculus.

22

5.1 Common ground between the 2 options

The two possibilities have the same syntax and (almost) the same static semantics. Both
of them simplify the previous syntax by abolishing the difference between gate identi-
fiers and identifiers of any other type. For example, a process which spawns a set of
one-place buffer processes can be defined:

datatype
InOutList := nil

�
cons of (Nat gate * Nat gate) * InOutList

endtype
process

Cell (in,out) := in?(x:Nat); out!x; Cell (in,out)
endproc
process

Cells nil := stop�
Cells ((in,out) cons gs) := Cell (in,out)

� � �
Cells gs

endproc

This has type:

InOutList � type
nil � � � � InOutList

cons � �
Nat gate � Nat gate � � InOutList

Cell � Nat gate � Nat gate � noexit
Cells � InOutList � noexit

Although this uses a different syntax for pattern-matching gate parameters, the existing
syntax (using square brackets) can be maintained for backward compatibility.

5.1.1 Syntax

We combine the syntactic categories ‘Gate’ and ‘Var’ (although for clarity we will con-
tinue to use g to range over variables of gate type).

We add a new type constructor for gates:

T :: � . . . as in Section 2.1. . .�
gate T

We simplify process specification by unifying gate- and data-parameters into one pat-
tern:

D :: � . . . as in Section 3.1, except. . .�
process Pp : exit T : � B endproc

and similarly we can simplify process instantiation by combining gate- and data-
instantiation:

B :: � . . . as in Section 3.1, except. . .�
Pe

23

An extension we will not investigate for the moment is allowing gate expressions rather
than gate identifiers, for example:

process Split (in,even,odd) :=
in?x;
(if iseven x then even else odd endif)!x ;
Split (in,even,odd)

endproc

Such processes do not add any expressive power to the language (since they can be
coded up using appropriate let statements) and add to its complexity.

5.1.2 Static semantics

The static semantics for the language with gates as first-class citizens is simpler than
that in Section 3.2.

Contexts are:

C :: � . . . as in Section 2.2. . .�
P � T1 � exit T2

The static semantics for the new process declarations and instantiation are simpler than
in Section 3.2:

C
�

D � C
P � T � exit T ����

specification P where D endspec � � �
P � T � exit T � �

C
���

p � T � � C �
C 	 C � � B � exit T �
C
���

process Pp : exit T � : � B endproc � � �
P � T � exit T � �

C
�

P � �
T � exit T � �

C
�

e � T

C
�

Pe � exit T �

5.1.3 Dynamic semantics

The dynamic semantics for the extended functional language is the same as in Sec-
tion 2.3, with the addition of a new normal form for gates:

v :: � . . . as in Section 2.3. . .�
g

The environment a reduction is carried out in is enriched with the names of the free
gates:

E :: � . . . as in Section 3.3. . .�
g � gate T

The dynamic semantics for data expressions containing gates then just needs a rule
saying that if a gate is free then it is in normal form:

24

E
�

g � gate T

E
�

g � g

The dynamic semantics for the new form of process instantiation is the same as for
function application:

E
�

P � λp � B
E
�

e � v
E
���

p � v � � σ
E
�

B
 σ � a
� � B �

E
�

Pe a
� � B �

5.2 Option 1: Non-mobile gates

The semantics for non-mobile gates is simple: we just add one type rule to the semantics
in Section 4.3.2. This type rule says that any data communicated on a gate must be
concrete:

C
�

T � concrete
C
�

gate T � type

Note that we do not add a rule saying that gates are concrete types. This stops them
being communicated between processes, so giving a non-mobile semantics.

5.3 Option 2: Mobile gates

The static semantics for mobile gates is also simple: we allow any type to be used in
gates (including other gates, for example):

C
�

T � type
C
�

gate T � type

The dynamic semantics, however, is more complex, since we have to deal with π-
calculus scope extrusion, for example:

hide g in
�
g?x;B

�
 g � � hide h in g!h;B � �
i

� � hide g � h in
�
B
 x : � h � �
 g � � B � �

As in the lts semantics for the π-calculus [4], we allow labels to contain the names of
hidden gates, for example:

hide h in g!h;B �
g � hide h in !h �

� � � � � � � � � B �
This gives the syntax of messages as being:

m :: � . . . as in Section 4.4.3. . .�
hide g : gate T in m

25

We view messages up to the structural congruence for scope extrusion (see, for example,
[3]): �

l1 � m1 ������� � li � hide g : gate T in mi ������� � ln � mn �� hide g : gate T in
�
l1 � m1 ��������� li � mi ������� � ln � mn �

c
�
hide g : gate T in m �

� hide g : gate T in cm

with appropriate uses of α-conversion to avoid capturing free names. Define the syntac-
tic sugar:

hide g1 ������� � gn : gate T1 ������� � Tn in m
� hide g1 : gate T1 in

�����
hide gn : gate Tn in m

hide g1 ������� � gn : gate T1 ������� � Tn in B
� hide g1 : gate T1 in

�����
hide gn : gate Tn in B

We can then extend the dynamic semantics of Section 4.4.3 to cope with gate mobility.
Since communication can now output fresh gates using scope extrusion, computa-

tions have to extend their scope. A computation of a behaviour is therefore a series of
reductions:

E1
�

B1
a1

� � B2
�����

En
�

Bn
an

� � Bn � 1

where:

Ei � 1 �
�

Ei � �g : gate
�
T if ai � g

�
hide �g : gate

�
T in m � and m contains no hides

Ei otherwise

we can write such a computation as:

E1
�

B1
a1

� � B2
a2

� � ����� an
� � Bn � 1

For example, one possible computation is:

g : gate gate Nat
� �

hide h : gate Nat in g!h;h!0; stop�
g � hide h:gate Nat in !h �

� � � � � � � � � � � � � � �
h!0; stop �

h!0
� � stop

since:

g : gate gate Nat
� �

hide h : gate Nat in g!h;h!0; stop�
g � hide h:gate Nat in !h �

� � � � � � � � � � � � � � �
h!0; stop �

g : gate gate Nat � h : gate Nat
� �

h!0; stop �
h!0

� � stop

Dynamic semantics of behaviours We add a condition to the dynamic semantics for
communication in Section 4.4.3 to ensure that any communication is on a free gate:

E
�

g � gate T
E
���

o � m ��� σ
E
�

e
 σ � � true

E
�

go
 e � ;B gm
� � B
 σ �

26

We replace the dynamic semantics for hiding in Section 4.4.3 with rules which incorpo-
rate scope extrusion:

E � g � gate T
�

B a
� � B �

g �� a

E
�

hide g : gate T in B a
� � hide g : gate T in B �

E � g � gate T
�

B g � m
� � B �

g �� g � g � m

E
�

hide g : gate T in B g � � hide g:gate T in m �
� � � � � � � � � � � � � B �

E � g � gate T
�

B δm
� � B �

g � m

E
�

hide g : gate T in B δ � hide g:gate T in m �
� � � � � � � � � � � � B �

E � g � gate T
�

B g � hide �g:gate �T in m �
� � � � � � � � � � � � B �

E � g � gate T
�

valid m � true

E
�

hide g : gate T in B i
� � hide g : gate T � �g : gate

�
T in B �

We replace the sequential composition rule for accept in Section 4.4.3 with a rules which
includes scope extrusion:

E
�

B1
δm1

� � � B �1
E
���

?p � m2 � � σ
E
�

sync
�
m1 � m2 � � hide �g : gate

�
T in m

E
�

valid m � true

E
�

B1
� accept p in B2

i
� � hide �g : gate

�
T in B2
 σ �

Dynamic semantics of validation We do not add any extra rules for validation. In
particular, this means that no value message containing gates is valid. This is very
important, as it stops behaviours from being able to ‘guess’ the names of gates which
are outside their scope.

Dynamic semantics of synchronization The dynamic semantics for synchronization
of gates is given by inference rules:

E
�

g � gate T

E
�

sync
�
g � g � � g

E � g � gate T
�

sync
�
m1 � m2 � � m

E
�

sync
�
hide g : gate T in m1 � m2 � � hide g : gate T in m

E � g � gate T
�

sync
�
m1 � m2 � � m

E
�

sync
�
m1 � hide g : gate T in m2 � � hide g : gate T in m

This allows behaviours to synchronize on gates they have in common, and to exchange
new gates, for example:

hide g in
� �

hide h1 in g
�
!h � !h1 � ?x2 � ;B1 �

�
 g � � � hide h2 in g
�
!h � ?x1 � !h2 � ;B2 � �

i
� � hide g � h1 � h2 in

�
B1
 x2 : � h2 �

�
 g � � B2
 x1 : � h1 ���

27

Encoding the π-calculus This semantics is powerful enough to encode the π-calculus,
although not in a very pleasant way. The coding is given by introducing a new type for
one-to-many signals:

datatype OneToMany := yes
valid x := false
sync (x,y) := error
endtype

Since these signals cannot be ‘guessed’ or synchronized, any communication involving
the sending of a OneToMany signal must be one-to-many. These can be used to code up
a monadic π-calculus expression using a global channel ‘it’:

π-calculus term translation
0 stop

B
�
B � B

�
 it � � B �
x!y � B it

�
chan � !x � data � !y � send � !yes � ack � ?any � ;B

x?y � B it
�
chan � !x � data � ?y � send � ?any � ack � !yes � ;B

νx � B hide x : gate None in B

This translation works by using gates just as capabilities: all communication happens
along the gate ‘it’, and the other gates are just used to control which synchronizations can
happen. Since one-to-many send and acknowledge channels are used, communication
is guaranteed to be one-to-one.

This translation is not very pleasant, since it puts all communication onto one global
channel. For example the π-calculus reduction:

νx � � � νy � x!y � B1 �
�
x?z � B2 �

τ
� � νx � y � � B1

�
B2
 z : � y ���

becomes the LOTOS reduction:

hide x in
�
hide y in

�
it
�
chan � !x � data � !y � send � !yes � ack � ?yes � ;B1 ��
 it� � it � chan � !x � data � ?z � send � ?yes � ack � !yes � ;B2 �

it hide x � y in
�
chan� !x � data � !y � send � !yes � ack � !yes �

� B1
�
 it � � B2
 z : � y �

A better translation can be given if we are allowed to introduce a new concurrency
operator B1

�
B2 with the operational semantics:

B1
� �

B2
a

� � B �1
� �

B �2
B1

�
B2

a
� � B �1

�
B �2

B1
� � �

B2
a

� � B �1
� � �

B �2
B1

�
B2

a
� � B �1

�
B �2

We then translate the monadic π-calculus as:

π-calculus term translation
0 stop

B
�
B � B

�
B �

x!y � B x
�
send � !name y � ack � ?yes � ;B

x?y � B x
�
send � ?name y � ack � !yes � ;B

νx � B hide x : gate
�
send : Name � ack : OneToMany � in B

28

using the datatype ‘Name’ defined:

datatype Name := name of gate
�

send : Name, ack : OneToMany �
valid x := false
sync (x,y) := error
endtype

For example the π-calculus reduction:

νx � � � νy � x!y � B1 �
�
x?z � B2 �

τ
� � νx � y � � B1

�
B2
 z : � y ���

becomes the LOTOS reduction:

hide x in
�
hide y in

�
x
�
send � !name y � ack � ?yes � ;B1 ��

x
�
send � ?name y � ack � !yes � ;B2 �
i

� � hide x � y in
�
B1

�
B2
 z : � y � �

We conjecture that this translation is adequate (although it might not be fully abstract).

6 Conclusions

In this paper we have presented semantics for LOTOS with functional data, present-
ing the static semantics for LOTOS in a style which will be familiar to designers of
functional languages.

We investigated data abstraction, and found that it clashes with the existing semantics
of communication in LOTOS, and suggested three possible approaches to rectify the
problem. Two of the approaches allow for gates to be treated as data, which makes the
semantics much simpler, and allows a greater expressive power.

Further work to be carried out includes: deciding which semantics for data abstrac-
tion to adopt; integrating data abstraction with modularization; and investigating poly-
morphism, overloading, subtyping, and other variants to the type system.

References

[1] Hubert Garavel. Six improvements to the process part of LOTOS. In Working Draft
on Enhancements to LOTOS, ISO/IEC JTC1/SC21/WG1 N1349, Annexe K. 1994.

[2] Alan Jeffrey, Hubert Garavel, Guy Leduc, Charles Pecheur, and Mihaela Sighire-
anu. Towards a proposal for datatypes in E-LOTOS. In Revised Working Draft on
Enhancements to LOTOS (v2), ISO/IEC JTC1/SC21/WG7 N1053, Annexe A. 1995.

[3] Robin Milner. Functions as processes. Math. Struct. in Comput. Science, 2:119–
141, 1992.

[4] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile proceses.
Inform. and Comput., 100(1):1–77, 1992.

[5] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, 1990.

29

