
A categorical and graphical treatment of closure conversion

Ralf Schweimeier, University of Sussex
Alan Jeffrey, University of Sussex and DePaul University

COGS, University of Sussex
Brighton BN1 9QH, UK

CTI, DePaul University
243 South Wabash Ave
Chicago IL 60604, USA

http://www.cogs.susx.ac.uk/users/ralfs/mfps99/
http://klee.cs.depaul.edu/mfps99/

November 1998

Abstract

This paper gives a formal basis for the closure conversion phase of
functional programming languages with imperative features, using
a graphical semantics for the language. We present normal forms
of graphs, one corresponding to procedural languages, and one cor-
responding to object-oriented languages. Using closure conversion,
we can prove normalization results for both normal forms. Thus, we
obtain sound algorithms for compiling the language into either pro-
cedural or object-oriented code. We discuss efficiency issues of the
translation and suggest some improvements on the algorithm.

1 Introduction

This paper describes a categorical formalization of an important step
in compiling higher-order languages: closure conversion.

Closure conversion is a compilation step which takes nested proce-
dures such as:

proc f (x : X1) : X2 {
rec g;

proc g (y : Y1) : Y2 {
return G (g, x, y);

}
return F (g, x);

}

and lifts the nested procedures up to top level:

rec g_lift;
proc g_lift (x : X1, y : Y1) : Y2 {

return G (mkc (g_lift, x), x, y);
}
proc f (x : X1) : X2 {

return F (mkc (g_lift, x), x);
}

This uses a constructor mkc(f ,e) which builds a closure of type
X � Y from a function f : (E,X) � Y and an environment e : E.

Closures have long been recognized as a compilation technique for
functional languages such as SML, or object-oriented languages with
nested class definitions such as Java 1.1. See (Appel, 1992) or (Ap-
pel, 1998) for an introduction to closures and closure conversion.

Recent work on the soundness of closure conversion has tended to be
operational in nature, for example Wand and Steckler (1994), Han-
nan (1995) and Minamide, Morrisett and Harper (1996).

In this paper, we propose using categorical models of computation
to justify closure conversion. In particular, we propose an extension
of Power and Robinson’s (1996) premonoidal categories, a gener-
alization of Moggi’s (1991) monadic models of computation. We
extend premonoidal categories with partial closure to model func-
tions, based on Moggi’s (1989) computational lambda-calculus, and
partial traces to model recursion, based on Joyal, Street and Ver-
ity’s (1996) traced monoidal categories. These extensions are similar
to Hasegawa’s (1997) categorical semantics of letrec and Selinger’s
(1998) co-control categories.

One example of this categorical model is flow graphs, similar to
Hasegawa’s (1997) sharing graphs and the graphical presentation of
Milner’s (1996) action calculi. In this graphical representation, data
and control lines flow from left to right (except for recursive defini-
tions which form loops), function bodies are represented by boxes
enclosing the scope of the arguments and results, and primitives are
represented by nodes. For example the above example of closure
conversion is drawn:

G

F =

mkc
G

mkc
F

Jeffrey (1998) has shown that these graphs form the initial model,
and so rather than reasoning syntactically about programs, we can

1

reason graphically. This makes proofs much more readable (for
example see the normalization proofs in the appendices) and also
avoids a large number of syntactic steps which are just graph iso-
morphisms.

In this paper, we:

� Sketch how partially traced, partially closed premonoidal cate-
gories can be used to model computation, and show how they
can be viewed graphically.

� Formalize the notion of closure conversion as conversion into
normal form.

� The first result is that with the addition of an extra axiom (a co-
herence condition between trace and currying) we can compile
ML-like languages into C-like languages.

� The second result is that even without the extra axiom we can
compile ML-like languages into Java 1.0-like languages (that is
OO languages with no nested classes).

� We conclude with some discussion of efficiency issues and fur-
ther work.

We provide fairly detailed proofs of these results, since we contend
that the graphical presentation of programs is much more readable.

2 Graphical and categorical semantics

2.1 Premonoidal categories

Power and Robinson’s (1996) premonoidal categories are a general-
ization of Moggi’s (1991) monadic model of computation. Rather
than present the definition of a premonoidal category directly, we
shall provide a graphical presentation, which Jeffrey (1998) has
shown to be equivalent.

We shall present three categories of graphs, modelling three different
kinds of programs:

� Value expressions which are guaranteed to terminate, are deter-
ministic, and have no side effects.

� Central expressions which may be nondeterministic, or have
side effects, as long as the order of evaluation is unimportant.

� Process expressions which can have any behaviour.

For example, in a simple programming language with assignment to
integer variables:

� Constants such as 1, 2,... or deterministic constructors such as
+ are values.

� The constructor to create a new ref cell ref is a central, since it
has a side-effect (allocating some memory) but order of evalu-
ation is unimportant.

� The constructor to update := or dereference ! a ref cell are pro-
cesses.

We can construct flow graphs of programs as directed acyclic graphs,
where the data flow edges are labelled with types, nodes are labelled
with constructors, and each edge has one source node but any num-
ber of target nodes. Since order of evaluation is important for process
constructors, we add a control flow edge between them to indicate
order of evaluation. For example the program:

let r:ref = ref(x);
r := (1 + !(r));
r

has flow graph (with one incoming data line representing the free
variable x, one outgoing data line representing the result r, and a
control line):

ref
1

!
+ :=

Note that we insist that each edge has a unique source, but not a
unique target, to model sharing as in the example above. We view
graphs up to graph isomorphism, factored by two additional equa-
tions (in (Jeffrey, 1998) this equivalence is presented directly, as
a form of bisimulation), where G is a graph containing only value
nodes:

Naturality of diagonal: G =
G

G

Naturality of terminal: G =

We can form categories of graphs, where:

� Vectors of sorts are objects.

� Graphs with incoming edges labelled X and outgoing edges la-
belled Y are morphisms from X to Y.

In particular, we have three categories:

� VGraph where the nodes are value constructors, and there are
no control lines.

� CGraph where the nodes are value or central constructors, and
there are no control lines.

� PGraph where the nodes are any kind of constructor, and there
is one incoming and one outgoing control line.

These form categories since we have identity and composition given
by:

G H in VGraph

G H in CGraph

G H in PGraph

2

The category VGraph has finite products, given by:

Tensor:
G

H

Symmetry:

Diagonal:

Terminal:

The category CGraph has symmetric monoidal structure, defined
similarly.

The category PGraph has symmetric premonoidal structure, since it
has two natural tensor operations:

Tensor left (
�

):
G

H

Tensor right (�):
G

H

Symmetry:

Moreover we have obvious embeddings:

VGraph � � CGraph � � PGraph

where the inclusions respect the product/monoidal/premonoidal
structure.

Jeffrey (1998) shows that these categories of graphs are the initial
such triple of categories, and so this graphical presentation is equiv-
alent to the categorical presentation of premonoidal categories with
cartesian subcategories.

2.2 Recursive functions

In order to be a useful model of functional programming, we need to
allow recursive functions. We do this in a similar way to the graph-
ical presentation of control structures by introducing function types,
a new kind of value node representing function bodies, and a new
kind of process node representing function application.

We allow edges to be labelled with function types:

A,B,C ::= X | A1,...,Am � B1,...,Bn

and allow application nodes:

@ : ((B � C), B) � C in PGraph

and function nodes which capture the arguments, results and control
line of the function body:

G : A � (B � C) in VGraph

where the function body has type:

G : (A, B) � C in PGraph

For example the function:

proc foo (x:int) : ref {
let r:ref = ref(x);
r := (1 + !(r));
r

}

has flow graph:

ref
1

!
+ :=

These graphs are factored up to the equivalence required for the ad-
junction:

VGraph[A, B � C] � PGraph[A � B, C]

Graphically (where G is in VGraph and H is in PGraph):

Beta:
H

@
= H

Eta: @ =

Naturality:
G

H =
G

H

To allow for recursive functions, we allow graphs to be recursive, as
long as any cycle through the graph:

� only contains value nodes

3

� contains at least one edge of function type

These restrictions are equivalent to the usual syntactic restrictions on
recursion in call-by-value programming languages, where recursion
is only allowed over function declarations.

Such cyclic graphs (similar to Milner’s (1994) reflexive action cal-
culi) form a variant of Joyal, Street and Verity’s (1996) traced
monoidal category: their structure is recovered by making all types
traceable. Graphically, a partial trace is a feedback operation:

G : A � B

where:

G : A, C � B, C

and C is a traceable type: in this paper we shall regard only function
types as traceable.

In (Jeffrey, 1998), partial traces are provided with an axiomatiza-
tion, but since this axiomatization is sound and complete for graph
isomorphism, we shall elide it here. In the presence of the naturality
properties for diagonal and terminal, we require an additional uni-
formity property, but this is not required for the results which follow.

In this paper, we shall show that:

� The axioms of a partially traced, partially closed premonoidal
category are enough to validate the closure conversion step of
compiling a functional language to an object-oriented language
without nested classes.

� The axioms of a partially traced, partially closed premonoidal
category together with an extra coherence condition are enough
to validate the closure conversion step of compiling a functional
language to a procedural language.

In the next section, we shall formalize this statement.

3 Level n normal forms

3.1 Definition of level n normal form

A level 0 normal form is a graph with no use of recursion or func-
tions: we shall call such graphs trace and lambda free (tlf).

A level n+1 normal form is a graph consisting of a number of mu-
tually recursive functions, a tlf initialization expression i and a tlf
result expression g, where the bodies of the functions, are required
to be level n normal forms:

i

f_1

f_n

g

Definition (Level n normal form).

� A graph is in level 0 normal form if it is trace and lambda free.

� A graph from PGraph is in level n normal form if it is of the
form:

level_n ::= i fnf_n g

where a level n body is given by the grammar:

fnf_n ::=

| fnf_n
f

where i and g are trace and lambda free, and f is in level (n-1)
normal form. We can define level n normal forms for CGraph
and VGraph similarly.

A term in level 1 normal form is a flat collection of recursive function
declarations, together with some initialization and result code, so
is in the form of a C-like program, or a Java-like class body. For
example the level 1 graph:

ref
!

:=

corresponds (with appropriate annotations for mutable variables) to
the Java class body:

private int r = x;
public int get () { return r; }
public void set (int x) { r = x; }

A function with a level 1 body is a function which expects some
arguments, and returns a collection of methods which can access the

4

parameters: this is a restricted form of a Java class definition, where
the function is the constructor for the class. For example, the level 2
graph:

ref
!

:=

corresponds to the Java class definition:

public class Cell {
private int r;
public Cell (int x) { r = x; }
public int get () { return r; }
public void set (int x) { r = x; }

}

A level 2 normal form is a flat collection of recursive class declara-
tions, together with some initialization and result code, so is in the
form of a Java program.

We shall now show how an arbitrary program containing nested
function declarations can be converted into level 2 normal form, us-
ing just the axioms of a partially traced, partially closed premonoidal
category. We shall also show that in the presence of an additional co-
herence condition, any program can be converted into level 1 normal
form.

3.2 Closure Conversion

The main results of this paper show that every graph has a certain
level n normal form, making use of closure conversion. We model
closures by adding a new constant:

mkc : (((X, Y) � Z), X) � (Y � Z)

defined as:

mkc = @

This constant satisfies the property:

f =
f

mkc

(cc)

The reason for adding the new constant is that we regard mkc as trace
and lambda free, so it can be used in the bodies of level 1 normal
forms.

3.3 Coherence between trace and closure

In order to prove that every graph has a level 1 equivalent, we needed
to add an extra equation (tr/fn) which allows feedback loops inside
functions to be lifted to top level.

Syntactically this is simple to write down:

fix f . fn x . M
= mkc (fix g . fn (x,y) . M [mkc(g,x) / f] , x)

This axioms says that we can make constant free variables of a recur-
sive function into variable parameters of a recursive function, pro-
vided we supply this function with its original actual parameters ev-
ery time it is used.

Graphically this is slightly more complex:

M =
mkc M

mkc

It remains an open problem whether this axiom is necessary to prove
level 1 normalization (it is not necessary for level 2 normalization).
In the next section, we shall show that it is sufficient.

First, however, we will show that the (tr/fn) axiom is implied by the
more familiar notion of Plotkin uniformity (see e.g. Gunter (1992)).

We reformulate Plotkin uniformity in the graphical setting, in an in-
dexed form (modelling free variables of expressions).

Definition (Plotkin uniformity). Let S be a sub-cartesian category
of VGraph of strict morphisms. A partial trace on VGraph is indexed
Plotkin uniform if for any f: X � Y � Y, g: X � Z � Z in VGraph,
and strict h: X � Y � Z in S (where Y and Z are traceable) such
that

f

h
=

h

g

we have

f

h
= g

Proposition. Let mkc be strict. Then indexed Plotkin uniformity
implies (tr/fn).

Proof. See Appendix C in the online version of this paper
(Schweimeier and Jeffrey, 1998). �

5

4 Level 1 normalization

Level 1 normal forms correspond to programs where all function
definitions and recursion are at top level. Thus, they can be imple-
mented in a procedural programming language without nested func-
tions, such as C.

In this section, we will show that every graph is equal to a graph
in level 1 normal form, using the (tr/fn) coherence condition. The
proof is constructive, thus providing an algorithm for transforming
any graph into a level 1 normal form.

The rest of this section will be concerned with the proof of the fol-
lowing theorem:

Theorem 1 (Level 1 normalization). Every graph is provably equal
to a level 1 normal form, using the (tr/fn) axiom.

The following definition and lemmas are used in the proof of Theo-
rem 1.

Definition. Let cl stand for a series of mkclosures, generated by the
following grammar:

cl ::=

| cl mkc

Let a permutation be a graph built from tensor, symmetry, identity
and composition (it is easy to prove that such permutations are in 1-1
correspondence with isomorphisms on 1...n).

Lemma 1 (Normalization of tensor). Let f and g be level n bodies.
Then there exists a level n body h and a permutation p such that:

f

g
= h p

Proof. By induction on the structure of f and g. �

Lemma 2 (Normalization of composition with a function). Let f
be a level n body, and g a level (n-1) normal form. Then there is a
level n body f1 such that:

f
g = f1

Proof. Using the previous lemma, and some rewiring. �

Lemma 3 (Normalization of composition with a tlf value). Let f
be a trace lambda free (tlf) graph in VGraph and g be a level n body.
Then there exists a level n body h such that:

f g = h
f

Furthermore, the numbers of functions in g and h are equal.

Proof. By copying f into the function bodies in g. �

The following lemma is the heart of the proof. It shows how clo-
sure conversion can be used to lift function definitions outside an
enclosing function.

Lemma 4 (Level 1 closure conversion).

(i) Let f be a level 1 body. Then there is a level 1 body f1 and a series
of closures cl such that:

f =
f1

cl

(ii) Let f be a level 1 body. Then there is a level 1 body f1 and a series
of closures cl such that:

f =
f1

cl

Proof. See Appendix A (and note that this proof uses tr/fn). �

We are now able to prove Theorem 1.

Proof (of Theorem 1). Let f be a graph. The proof is by
induction on the structure of f (we do not cover all cases here, but
the others are similar).

1. Trace and lambda free:

If f is trace and lambda free, then it is already in level 1 normal
form.

2. Tensor right:

f =
f1

f2

By induction, f1 and f2 have level 1 normal forms:

f1 = i1 ; fnf1 ; g1 f2 = i2 ; fnf2 ; g2

where fnf1 and fnf2 are level 1 bodies and i1, g1, i2 and g2 are
tlf. Then:

f

=
i1

i2

fnf1

fnf2

g1

g2
(above)

6

=
i1

i2
fnf p

g1

g2

(Normalization of tensor)

where fnf is a level 1 body and p is a permutation. This is a
level 1 normal form.

3. Function:

f = f1

By induction, f1 has a level 1 normal form:

f1 = i ; fnf ; g

where fnf is a level 1 body and i and g are tlf. Then:

f

= i fnf
g (above)

=

fnf1

i

cl g

(Level 1 closure conversion(ii) and naturality of fn)

=
fnf2

p

i

cl g

(Normalization of tensor and naturality of fn)

where fnf1 and fnf2 are level 1 bodies, p is a permutation, and
cl is a series of closures. By Normalization of composition with
a function, this has a level 1 normal form.

4. Composition:

f = f1 f2

By induction, f1 and f2 have level 1 normal forms:

f1 = i1 ; fnf1 ; g1 f2 = i2 ; fnf2 ; g2

where fnf1 and fnf2 are level 1 bodies and i1, g1, i2 and g2 are
tlf. Then:

f

= i1 fnf1 g1 i2 fnf2 g2

(above)

=
i1

fnf3

fnf1 g1 i2
cl g2

(Level 1 closure conversion (ii))

=
i1

fnf4 p

g1 i2
cl g2

(Normalization of tensor)

where fnf3 and fnf4 are level 1 bodies, p is a premutation, and
cl is a series of closures. This is a level 1 normal form.

5. Trace:

f = f1

By induction f1 has a level 1 normal form i;fnf1;g. Then:

f

= i fnf1 g (above)

= fnf2
i

g

(Normalization of composition with a tlf value)

= fnf2
i

g

i

g

(Naturality of trace and diagonal)
=

fnf2 i
g

@

i

g

(Eta)

7

where fnf2 is a level 1 body. This is a level 1 normal form.

�

5 Level 2 normalization

Level 2 normal forms correspond to programs with a recursive block
of functions containing level 1 normal forms. Thus, they can be
implemented in an object oriented programming language without
nested classes, such as Java 1.0.

In this section, we will show that every graph is equal to a graph in
level 2 normal form, without using the (tr/fn) coherence condition.
The proof is constructive, thus providing an algorithm for transform-
ing any graph into a level 2 normal form.

The rest of this section will be concerned with the proof of the fol-
lowing theorem:

Theorem 2 (Level 2 normalization). Every graph is provably equal
to a level 2 normal form, without using the (tr/fn) axiom.

Definition. Let recl stand for a loop of mkclosures, generated by the
following grammar:

recl ::=

| recl
mkc

We will use the following lemmas in the proof.

Lemma 5 (Level 2 closure conversion).

(i) Let f be a level 2 body. Then there is an level 2 body f1, a loop of
mkclosures recl and a permutation p such that:

f =
f1

p

recl

(ii) Let f be a level 2 body. Then there is a level 2 body f1, a loop of
mkclosures recl and a permutation p such that:

f =
f1 p

recl

Proof. See Appendix B in the online version of this paper
(Schweimeier and Jeffrey, 1998). Note that this proof does not use
(tr/fn). �

Lemma 6 (Normalization of loops of closures). Every loop of clo-
sures has a level 1 normal form.

Proof. By eta-converting the mkclosure nodes. �

Proof (of Theorem 2). Let f be a graph. The proof is by
induction on the structure of f. All but one of the cases are similar to
the level 1 case:

f = f1

By induction, f1 has a level 2 normal form i;fnf;g. Then:

f

= i fnf
g (above)

=

fnf1 p

i

recl g

(Level 2 closure conversion and naturality of fn)

=
fnf2 p1

p

i

recl g

(Normalization of tensor and naturality of fn)

where fnf1 and fnf2 are level 2 bodies, p and p1 are permutations,
and recl is a loop of mkclosures.

By Normalization of composition with a function and Normalization
of loops of closures, this has a level 2 normal form. �

6 Efficiency issues

In the previous sections we have shown that the graphical semantics
allows us to formalize closure conversion. We have proven that it is
possible, and that it is correct. We have not, so far, talked about the
quality of the translation. In this section, we describe possible future
work to address some efficiency problems.

6.1 Global variables

Consider a program like the following:

8

i
f g

proc h(w:W):V {
let y:Y = i(w);
proc k(z:Z):U { return f(x,y,z); }
return g(x,y,k);

}

The function k uses a global variable x; however, if we closure con-
vert the program according to our algorithm, all the free variables in
k will be bound, yielding the following program:

f

i

mkc g

proc k1(x:X, y:Y, z:Z):U {
return f(x,y,z);
}
proc h1(w:W):V {
return g(x,y,mkc(k1,x,y));
}

In order to lift k outside h, it would, however, be sufficient to close
off only y because x occurs free in h. The resulting program would
be

f i
mkc g

proc k2(y:Y, z:Z):U {
return f(x,y,z);
}
proc h1(w:W):V {
return g(x,y,mkc(k1,y));
}

For the efficiency of a compiler, variables should not be included
in a closure unless necessary. If an (entire) program contains free
variables (such as library functions), we know that they will (and
should) not be bound at any time. A way of ensuring this is working
with indexed graphs.

Given a type X, an X-indexed graph is a graph with incoming edges
of type X (and possibly more). The edges in X are to be understood
as global variables, and by working with X-indexed graphs only, we
ensure that

1. every node in the graph has access to the global variables;

2. the global variables can not be bound or traced.

Categorically, indexed graphs arise as co-Kleisli categories for the
comonads X � -, X � - and X � - , respectively. We conjecture
that these co-Kleisli categories inherit the partially traced, partially
closed structure from the underlying categories, and so all of the
normalization proofs still hold in this context. Thus we obtain a
translation where global variables never get bound.

These co-Kleisli categories are similar to the indexed categories
studied by Moggi (1997) in his work on 2-level languages.

6.2 Closure Sharing

One of the reasons for investigating level 2 normal forms rather than
level 1 normal forms, is that they allow for increased closure shar-
ing (Appel, 1992, Appel and Jim, 1989, Minamide, Morrisett and
Harper, 1996). For example, a function containing two mutually re-
cursive functions is not in level 1 normal form:

f

g
h

proc a(x:X) {
rec b,c;
proc b(y:Y) { return f(x,b,c,y); }
proc c(z:Z) { return g(x,b,c,z); }
return h(b,c,x);
}

To normalize this, the two functions would have to be lifted sepa-
rately out of their enclosing context, and each recursive call would
require a new closure to be built. However, the above term is in level
2 normal form, and when executed only one closure has to be built,
which is then shared between each mutual call to f and g.

For example in the introduction we showed the level 1 normalization:

G

F =

mkc
G

mkc
F

This is not particularly efficient, since every recursive call to G
causes a new closure to be built. Better would be the level 2 nor-
malization:

G @
F

It seems that level 2 normal forms represent closure sharing better
than level 1 normal forms, but this is left for future work.

6.3 Closure representation

In this paper we have referred to the process of lifting functions to
top level as closure conversion. In fact, this paper is part-way be-
tween closure conversion and lambda-lifting (Johnsson, 1985), since
although we are explicitly representing closures as mkc nodes, clo-
sures have function type, and so we cannot directly extract the func-
tion and environment part from a closure.

We can still address some issues in closure representation, for exam-
ple we can flatten some closures using the transformation:

mkc1 mkc2 = mkc

but this transformation can only be applied to constant closures, not
to variables of closure type.

In order to perform type-safe access to the components of a clo-
sure, we would need to introduce existential polymorphism, as used
by Minamide, Morrisett and Harper (1996). Then the representa-
tion of a closure of type A � B would be

�
a . (a, ((a, A) � B)).

This would separate the representation of closures from that of na-
tive functions, and it may be possible to follow Minamide, Morrisett

9

and Harper’s ‘closures as objects’ strategy together with Pierce and
Turner’s (1994) use of existential types for objects to provide a bet-
ter translation from functional programs to level 2 OO programs than
that described here.

7 Conclusion

This paper has demonstrated that:

� Categorical models based on partially traced, partially closed
premonoidal categories can be used to verify the closure con-
version phase of a compiler.

� Compilation to procedural languages appears to require an ex-
tra coherence condition, allowing loops to be lifted out of func-
tions.

� Compilation to OO languages does not require this extra condi-
tion.

� Using a sound and complete graphical model makes proofs
much simpler to present.

There are a number of questions left as open problems:

� The algorithm described by the proof given here produces very
inefficient code: can we apply the same techniques to ‘industrial
strength’ compilation strategies?

� Is the (tr/fn) coherence axiom necessary to the proof of level 1
normalization? If so, is there a simpler formulation with equal
expressive power?

� Can the categorical semantics be extended with existential poly-
morphism to support the type-based analysis of explicit clo-
sures described by Minamide, Morrisett and Harper (1996)?

� Hannan (1995) has shown that typed closure conversion can be
verified in LF (Hannan and Pfenning, 1992). Such proofs are
syntactically driven, and it is not obvious how these techniques
could be adapted to graphical proofs such as those described
here. Does the categorical presentation of flow graphs pro-
vide a way to combine human-readable graphical proofs with
machine-checkable syntax?

� The categorical semantics has been implemented as a graph-
drawing applet (which drew the graphs in this paper). Can this
implementation be adapted to show the normalization process?

These problems are left as future work.

A Normalization proof - level 1 normal
form

To shorten the proof, we use the following consequence of the (tr/fn)
axiom, which we state without proof.

Lemma (tr/fn 2) Let M0 and M1 be graphs in PGraph. Then the
axiom (tr/fn) implies

M1

M0 =

mkc

M0

mkc M1

Lemma (Level 1 closure conversion)

(i) Let f be a level 1 body. Then there is a level 1 body f1 and a series
of closures cl such that:

f =
f1

cl

(ii) Let f be a level 1 body. Then there is a level 1 body f1 and a series
of closures cl such that:

f =
f1

cl

Proof. By induction on the number of functions in f. We prove (i)
using the induction hypothesis (ii), and then prove (ii) using (i).

Base case:

f =

trivial, with f1 and cl both the identity.

Inductive step:

(i)

f

=
fnf

g (Defn of level 1 body)

10

=

fnf

fnf

g

(naturality of copy)

=

mkc

fnf

mkc

fnf

g

(tr/fn 2)

=

fnf1
mkc

fnf1
mkc g

(Normalization of composition with a tlf value)

= fnf2

cl mkc

cl mkc g

(induction hypothesis (ii) and naturality of copy and fn)

= fnf2

cl1 g

cl1

(definition of cl)

(ii)

f

=

f

@
(beta)

=

f1
cl

@
(By i.)

=
f1

cl
(beta)

�

11

B Bibliography

Appel, A., Compiling with Continuations. CUP, 1992.

Appel, A., Modern Compiler Implementation in (Java|ML|C). CUP,
1998.

Appel, A. and Jim, T., Continuation-Passing, Closure-Passing Style,
in Proc. POPL 1989.

Gunter, C., Semantics of Programming Languages. MIT Press,
1992.

Hannan, J., Type systems for closure conversion, in Proc. Workshop
on Types for Program Analysis, 1995.

Hannan, J. and Pfenning, F., Compiler Verification in LF, in Proc.
LICS 1992.

Hasegawa, M., Models of Sharing Graphs (A Categorical Semantics
of Let and Letrec), Ph.D thesis, Univ. Edinburgh, LFCS report ECS-
LFCS-97-360, 1997.

Hasegawa, M., Recursion from cyclic sharing: traced monoidal cat-
egories and models of cyclic lambda calculi, in Proc. 3rd Inter-
national Conference on Typed Lambda Calculi and Applications
(TLCA’97), Springer LNCS 1210, pp. 196-213, 1997.

Jeffrey, A.S.A., Premonoidal categories and a graphical view of pro-
grams, available from http://klee.cs.depaul.edu/premon/, 1998.

Johnsson, T., Lambda Lifting: Transforming Programs to Recursive
Equations, in Proc. FPCA 1985.

Joyal, A., Street, R.H. and Verity, D., Traced monoidal categories,
in Math. Proc. Cambridge Philosophical Soc. 119(3), pp. 425-446,
1996.

Milner, R., Action Calculi V: Reflexive Molecular forms, Manuscript
1994.

Milner, R., Calculi for interaction, Acta Informatica 33(8), pp. 707-
737, 1996.

Minamide, Y., Morrisett, G. and Harper, R., Typed closure conver-
sion, in Proc. POPL 1996.

Moggi, E., Computational lambda-calculus and monads, in Proc.
LICS 1989.

Moggi, E., Notions of computation and monad, in Information and
Computation 93(1), pp. 55-92, 1991.

Moggi, E., A categorical account of two-level languages, in Proc.
MFPS 97, Electronic notes in computer science 5, Springer Verlag.

Pierce, B.C. and Turner, D.N., Simple type-theoretic foundations for
object-oriented programming, in J. Functional Programming 4(2),
pp. 207-247, 1994.

Power, A.J. and Robinson, E.P., Premonoidal categories and notions
of computation, to appear in Math. Struct. in Comput. Science.

Schweimeier, R. and Jeffrey, A.S.A., A categorical
and graphical treatment of closure conversion, avail-
able from http://www.cogs.susx.ac.uk/users/ralfs/mfps99 or
http://klee.cs.depaul.edu/mfps99 .

Selinger, P., Control Categories: an Axiomatic Approach to the Se-

mantics of Control in Functional Languages, presented at MFPS 98.

Wand, M. and Steckler, P., Selective and lightweight closure conver-
sion, in Proc. POPL 1994

12

