
A Fully Abstract May Testing Semantics for Concurrent
Objects

Alan Jeffrey∗

School of CTI
DePaul University
Chicago, IL, USA

ajeffrey@cs.depaul.edu

Bell Labs
Lucent Technologies

Lisle, IL, USA
ajeffrey@bell-labs.com

Julian Rathke†

School of Informatics
University of Sussex

Brighton, UK
julian.rathke@sussex.ac.uk

October 2004

Abstract

This paper provides a fully abstract semantics for a variant of the concurrent object calculus.
We define may testing for concurrent object components and then characterise it using a trace
semantics inspired by UML interaction diagrams. The main result of this paper is to show that
the trace semantics is fully abstract for may testing. This is the first such result for a concurrent
object language.

1 Introduction

Abadi and Cardelli’s [6] object calculus is a minimal language for investigating features of object
languages such as encapsulated state, subtyping, and self variables. Gordon and Hankin [10] added
concurrent features to the object calculus, to produce the concurrent object calculus.

Prior work on the object calculus has concentrated on the operational behaviour of object sys-
tems, and type systems which provide type safety guarantees. The closest paper to ours is Gordon
and Rees’s [11] fully abstract semantics for the immutable single-threaded object calculus. There
has been no work on providing fully abstract semantics for concurrent mutable objects.

In this paper, we present the first fully abstract testing semantics for a variant of Gordon and
Hankin’s concurrent object calculus without subtyping. The lack of subtyping here affords a simpler
presentation of the labelled transitions and traces but we anticipate that the proof techniques used
here are robust enough to cater for subtyping also. This semantics was inspired by UML interaction
diagrams [27], which are a common tool for visualising interactions with object systems.

1.1 Interaction diagrams

Interaction diagrams (in particular sequence diagrams) were developed by Jacobson, and are now
part of the Unified Modeling Language standard [27]. Interaction diagrams record the messages

∗This material is based upon work supported by the National Science Foundation under Grant No. 0430175
†Support provided by Nuffield Foundation Grant NAL/00226/G

1

sent between objects of a component in an object system. These messages include method calls
and returns (interaction diagrams include other forms of message, but we will not use these in this
paper).

A simple interaction with an integer reference object r of type IntRef has it receive two in-
coming method calls set(5) and get(), for which it produces appropriate return values:

r : IntRef

set (5)

get ()

5

A more complex interaction allows a method call on one object to call methods on other objects:

foo : Foo bar : Bar

fred ()
barney ()

betty
wilma

Here, the object foo has one incoming call to fred(), makes one outgoing call to barney(),
receives the result betty back, then returns wilma itself. This illustrates the four messages which
may be sent during an interaction: incoming and outgoing method calls, and matching outgoing
and incoming returns.

In this paper, we use a textual representation of an interaction, as a trace, which is just a sequence
of messages. In the above example, foo has the trace:

〈call foo.fred()〉?
〈callbar.barney()〉!
〈returnbetty〉?
〈returnwilma〉!

where we mark incoming messages with ? and outgoing messages with !. The object bar has the
matching trace:

〈callbar.barney()〉?
〈returnbetty〉!

and so composing these two traces together, we get that the whole system has the trace:

〈call foo.fred()〉?
〈returnwilma〉!

There are two additions we will make to the UML message notation: adding thread identifiers, and
making name scope more explicit.

2

Sequence diagrams can be used for multi-threaded applications, for example:

r : IntRef

set (5)

get ()

5

Here, two threads independently call methods of the object r, creating a race condition. In our
textual representation, we give the threads names, and we decorate each message with the thread
responsible for the message:

thread1〈call r.set(5)〉?
thread2〈call r.get()〉?
thread2〈return5〉!
thread1〈return〉!

The other addition we make to the notation is to make the scope of names more explicit. For ex-
ample, consider the following interaction with a factory object, which builds new integer reference
objects:

factory : IntRefFactory

build ()

result : IntRef«create»
result

set (5)

In the textual representation of this trace, we need to make clear that the result object has not
been seen before by the environment (it is a genuinely new object, not a recycled object). We do
this by decorating the label with ν to indicate that the result object is new:

thread1〈call factory.build()〉?
ν(result : IntRef) . thread1〈returnresult〉!
thread1〈call result.set(5)〉?
thread1〈return〉!

As well as allowing the system to generate new names on outgoing messages, we allow the en-
vironment to generate new names on incoming messages. This style of dealing with fresh names
comes originally from the π-calculus [22, 21], and has since been used in other languages, notably
the ν-calculus [25].

We have now presented informally all of the machinery required by our semantics for objects:

• The semantics of a system is given by a set of traces, where a trace is a sequence of messages
corresponding to one interaction.

3

• Messages are incoming or outgoing message calls, or matching outgoing or incoming returns.

• Messages are decorated with thread identifiers.

• Messages may include fresh names.

We have only used a very small subset of sequence diagrams, which in turn is a very small subset
of UML, but in this paper we will show that this small subset is very expressive, and in particular
provides a fully abstract semantics.

1.2 The object calculus

The object calculus is a minimal language for modelling object-based programming. Abadi and
Cardelli [6] provided a type system and operational semantics for a variety of object calculi, and
proved type safety for them. Gordon and Hankin [10] have since extended this language to include
concurrent features.

In this paper, we shall investigate a variant of Gordon and Hankin’s concurrent object calculus,
which includes:

• A heap of named objects and threads.

• Threads can call or update object methods, can compare object or thread names for equality,
can create new objects and threads and can discover their own thread name.

• An operational semantics based on the π-calculus [22, 21], and a simple type system.

• A trace semantics as discussed in Section 1.1.

We are not considering many of the more advanced features of the object calculus or the concurrent
object calculus, such as recursive types, object cloning and object locking. This is just for simplicity,
and we do not see any technical problems with incorporating these features into our language.

In another strand of research Di Blasio and Fisher [7] also designed a calculus for modelling
imperative, concurrent object-based systems. As with Abadi and Cardelli’s object calculus and its
various extensions, the emphasis in Di Blasio and Fisher’s work is again on type systems and safety
properties for them.

1.3 Full abstraction

The problem of full abstraction was first introduced by Milner [20], and investigated in depth by
Plotkin [26]. Full abstraction was first proposed for variants of the λ-calculus, but has since been
investigated for process algebras [12], the π-calculus [9, 13], the ν-calculus [25, 17], Concurrent
ML [8, 18], and the immutable object calculus [11].

One way to define a semantics for a programming language is to define:

• A language of typed components C which can be composed C1 ‖ C2. (In this paper, compo-
nents are programs in the concurrent object calculus.)

• A notion of when a component is successful. (In this paper, we use a special succ method
call to indicate a successful component although the theory is robust enough that any other
suitable observable would suffice).

4

We can then define the may testing preorder [24, 12] as C1 <∼may C2 whenever:

for any appropriately typed C
if C1 ‖C is successful then C2 ‖C is successful

Unfortunately, although it is very simple to define, and is quite intuitive, may testing is often very
difficult to reason about directly, because of the quantification over ‘any appropriately typed C’. In
practice, we require a proof technique which we can use to show results about may testing.

One approach is to use a trace semantics, given by defining possible executions of components

C ==
s
⇒ C′ where s is a sequence of messages. We then write Traces(C) for the set of all traces of

C. We say that:

• Traces are sound for may testing when
Traces(C1) ⊆ Traces(C2) implies C1 <∼may C2.

• Traces are complete for may testing when
C1 <∼may C2 implies Traces(C1) ⊆ Traces(C2).

• Traces are fully abstract for may testing when
they are both sound and complete.

A fully abstract trace model can be a useful tool in understanding a behavioural equivalence in the
sense that, in order to be sound, the traces used to build the model must, at minimum, account for
all of the possible interactions a system of objects may have with its environment and, in order to be
complete, the interactions described by the traces must be genuine. This is taken to mean that for
each interaction described by a trace there is an actual system of objects which can play the role of
the environment in that interaction. Therefore, to obtain a fully abstract trace model it is necessary
to describe all possible interactions accurately.

Establishing full abstraction for a language which includes features such as higher-order pro-
gramming, new name generation, and heap-based objects is often non-trivial. For example, Pitts
and Stark introduced the ν-calculus [25], as a minimal higher-order language with name genera-
tion, by extending the simply typed λ-calculus with an abstract type of names, together with a name
generator and an equality test. Even this minimal language is remarkably difficult to reason about,
and there is no known fully abstract semantics for it [18].

1.4 Contribution of this paper

In this paper, we present a variant of Gordon and Hankin’s concurrent object calculus, which is
in turn an extension of Abadi and Cardelli’s object calculus. The only significant departures from
Gordon and Hankin’s concurrent object calculus is that we use named threads, where they use
anonymous threads and we restrict the calculus to disallow subtyping and recursive types. Whilst
this latter restriction does move us away from the essence of object-oriented programming it is im-
posed so as to keep the technical presentation as simple as possible at this stage. The re-introduction
of these features into the type system would affect the behavioural theory in what we expect to be
a predictable way and anticipate that techniques employed in [14] and those presented here can be
combined to give a similar treatment for a concurrent object language with subtyping.

5

Components: C ::= 0 |C ‖C | ν(n : T) .C | n[O] | n〈t〉
Objects: O ::= l = M, . . . , l = M
Methods: M ::= ς(n : T) .λ(x : T, . . . ,x : T) . 〈t〉
Threads: t ::= v | stop | let x : T = e in t
Expressions: e ::= t | if v = v then e else e | v.l(v, . . . ,v) | n.l ⇐M |

new[O] | new〈t〉 | currentthread

Values: v ::= x | n
Types: T ::= thread | none | [l : L, . . . , l : L]
Method types: L ::= (T, . . . ,T)→T

We assume grammars for variables x,y, names n, p and method identifiers l.
In objects and object types, we require method identifiers l to be unique, and viewed up to

reordering.

Figure 1: Syntax of the concurrent object calculus

We provide the calculus with an operational semantics, and a trace semantics, and then show
that the trace semantics is fully abstract for may testing. This is the first full abstraction result for a
concurrent object-based language.

2 Concurrent objects

In this section, we will present the syntax, static semantics and dynamic semantics of our concurrent
object calculus. This is a variant of Gordon and Hankin’s concurrent object calculus with named
rather than anonymous threads.

2.1 Syntax

The syntax for the concurrent object calculus we will use in this paper is given in Figure 1. We make
use of a number of distinct syntactic categories of identifiers, namely, object and thread Names,
ranged over by n and p (the latter is typically used to indicate an object), Variables, ranged over by
x,y,z, and Method Identifiers, ranged over by l. The operators let and λ act as binders for Variables
and ς and ν act as binders for Names. Method Identifiers can not be bound. Note that, at the level of
components, there is no facility for binding variables. We will work with terms up to α-conversion
of both Names and Variables in the conventional way. We also make use of capture-free substitution
of values for variables or names for names, again defined in the conventional way, and written t[v/x]
or t[p/n] as appropriate.

In examples, we will often make use of base types such as integers and booleans: these are not
part of our formal system, but will make examples easier to present. They could be comfortably
included in the language without changing the theory significantly. We will also make use of some
syntax sugar:

We will elide types from variable and name binders, where they can be reconstructed. We
write e; t as syntax sugar for let x = e in t when x is a fresh variable. We use Abadi and Cardelli’s

6

definition of fields f as zero-argument methods:

• A field declaration f = v in an object is syntax sugar for a method declaration f = ς(n :
T) .λ() . 〈v〉.

• A field type f : T in an object type is syntax sugar for a method type f : ()→T .

• A field access expression v. f is syntax sugar for a method call v. f ().

• A field update expression n. f := v is syntax sugar for a method update n. f ⇐ (ς(p : T) .λ() .
〈v〉).

In addition, we have restricted many subexpressions of an expression to be values rather than full
expressions, for example in a method call v.l(~v) we require the object and the arguments to be
values rather than expressions e.l(~e). This makes the operational semantics much easier to define,
and does not restrict the expressivity of the language, for example we can define (e.l(~e)) ≡ (let x =
e in let ~x = ~e in x.l(~x)). Similarly, the distinction between threads and expressions makes the
operational semantics much simpler, but we can treat any expression as a thread by η-converting it:
〈e〉 ≡ 〈let x = e in x〉.

For the remainder of this section, we will provide an informal description of the syntax:
A component C is a collection of named objects n[O] and threads n〈t〉. For example, one possi-

ble component consisting of an integer reference p and a thread n which increments the reference
is:

p[contents = 5] ‖
n〈let x = p.contents in p.contents := x+1〉

We also use the ν-notation of the π-calculus [21] to indicate which names are private, and not
known to the outside world. By default, names are public, and have to be marked by ν in order to
be considered private. For example, n is private, and p is public in:

ν(n : thread) . (
p[contents = 5] ‖
n〈let x = p.contents in p.contents := x+1〉

)

An object [O] consists of a set of named methods, for example an integer reference with set and get

methods might be written:

[
contents = 5,
set = ς(this : IntRef) .λ(x : Int) . 〈this.contents := x;x〉,
get = ς(this : IntRef) .λ() . 〈this.contents〉

]

Each method M consists of a self name as well as a list of parameters and a body. For example, the
set method above has self name (this : IntRef), parameters (x : Int), and body (this.contents := x).
Readers familiar with Abadi and Cardelli’s work will note that we are taking parameterized methods
as primitive, rather than defining them as syntax sugar. This is necessary for our semantics, which
is based on method calls with arguments and return values.

7

A thread 〈t〉 consists of a stack of let-expressions, terminated either by a return value:

〈let x1 : T1 = e1 in · · · let xn : Tn = en in v〉

or by a deadlocked stop thread:

〈let x1 : T1 = e1 in · · · let xn : Tn = en in stop〉

Each expression is either itself a thread, or:

• an if expression if v1 = v2 then e1 else e2,

• a method call v.l(~v),

• a method update n.l ⇐M, on a named object

• a new object new[O],

• a new thread new〈t〉, or

• the current thread name currentthread.

Each value is simply a name or a variable and we defer the discussion of types until Section 2.2.

2.2 Static semantics

The static semantics for our concurrent object calculus is given in Figures 2–6. Most of the rules
are straightforward adaptations of those given by Abadi and Cardelli [6]. The main judgement is
∆ `C : Θ which is read as ‘the component C uses names ∆ and defines names Θ’. For example, if
we define C1(v), C2 and IntRef as:

C1(v) ≡ p[
contents = v,
set = ς(this : IntRef) .λ(x : Int) . 〈this.contents := x;x〉,
get = ς(this : IntRef) .λ() . 〈this.contents〉

]

C2 ≡ n〈
let x = p.get() in p.set(x+1);stop

〉

IntRef ≡ [
contents : Int,set : (Int)→ Int,get : ()→ Int

]

then we can deduce (if v : Int):

n : thread ` C1(v) : (p : IntRef)

p : IntRef ` C2 : (n : thread)

` (C1(v) ‖C2) : (p : IntRef,n : thread)

` ν(n : thread) . (C1(v) ‖C2) : (p : IntRef)

We will now introduce an important requirement of our components, that they be write closed:

8

∆ ` 0 : ()

;∆,n : T ` [O] : T
∆ ` n[O] : (n : T)

;∆,n : thread ` t : none

∆ ` n〈t〉 : (n : thread)

∆,Θ2 `C1 : Θ1 ∆,Θ1 `C2 : Θ2

∆ ` (C1 ‖C2) : (Θ1,Θ2)

∆ `C : Θ,n : T
∆ ` ν(n : T) .C : Θ

Figure 2: Rules for judgement ∆ `C : Θ

Γ;∆ ` M1 : T.l1 · · · Γ;∆ ` Mk : T.lk
Γ;∆ ` [l1 = M1, . . . , lk = Mk] : T

Figure 3: Rule for judgement Γ;∆ ` [O] : T (when T = [l1 : L1, . . . , lk : Lk])

Γ,x1 : T1, . . . ,xk : Tk;∆,n : T ` t : U
Γ;∆ ` ς(n : T) .λ(x1 : T1, . . . ,xk : Tk) . 〈t〉 : T.l

Figure 4: Rule for judgement Γ;∆ ` M : T.l (when T = [. . . , l : (T1, . . . ,Tk)→U, . . .] and T.l is the
record l selected from T)

Γ;∆ ` v1 : T1 Γ;∆ ` v2 : T1

Γ;∆ ` e1 : T2 Γ;∆ ` e2 : T2

Γ;∆ ` if v1 = v2 then e1 else e2 : T2

Γ;∆ ` v : [. . . , l : (T1, . . . ,Tk)→T, . . .]
Γ;∆ ` v1 : T1 · · · Γ;∆ ` vk : Tk

Γ;∆ ` v.l(v1, . . . ,vk) : T
Γ;∆ ` n : T Γ;∆ ` M : T.l

Γ;∆ ` n.l ⇐M : T

Γ;∆ ` [O] : T
Γ;∆ ` new[O] : T

Γ;∆ ` t : T
Γ;∆ ` new〈t〉 : thread Γ;∆ ` currentthread : thread

Γ;∆ ` e : T1 Γ,x : T1;∆ ` t : T2

Γ;∆ ` let x : T1 = e in t : T2 Γ;∆ ` stop : T Γ,x : T,Γ′;∆ ` x : T Γ;∆,n : T,∆′ ` n : T

Figure 5: Rules for judgement Γ;∆ ` e : T

Variable contexts: Γ ::= x : T, . . . ,x : T Name contexts: ∆,Θ,Σ,Φ ::= n : T, . . . ,n : T

In variable contexts, variables must be unique, and are viewed up to reordering.
In name contexts, names must be unique, types must not be none, and are viewed up to reordering.

Figure 6: Syntax of name and variable contexts

9

Whenever ∆ `C : Θ contains a subexpression of the form n.l ⇐M with n free, then n
appears in Θ.

This is intended to capture the common software engineering requirement that components should
not export mutable fields, instead they should export suitable get and set methods. For example, the
components C1 and C2 above are write closed, since the only updates are to this, but the following
component which writes directly to p.contents is not write closed:

C′
2 ≡ n〈let x = p.contents in p.contents := x+1;stop〉

For the remainder of the paper we will require components to be write closed. This makes de-
veloping a fully abstract semantics much simpler, since we do not need to model method update
directly.

2.3 Dynamic semantics

The dynamic semantics for our concurrent object calculus is given in Figures 7–10.
We define three relations between components:

• ≡, structural congruence, represents the least congruence on components which includes the
axioms in Figure 7.

• C
τ
→ C′ when C can reduce to C′ by the interaction of a thread and an object (either a method

call or a method update).

• C
β
→ C′ when C can reduce to C′ by a thread acting independently of any other threads or

objects.

We write C →C′ when either C
τ
→ C′ or C

β
→ C′; we write C ⇒C′ when C →∗ C′.

The important property of β-reductions is that they do not introduce race conditions (and hence
nondeterminism), where τ-reductions may introduce race conditions. This is discussed further in
Appendix B.1.

For example, recalling the definition of C1(v) from Section 2.2 we have:

C1(5) ‖ n〈let x = p.get() in p.set(x+1);stop〉
τ
→ C1(5) ‖ n〈let x = p.contents in p.set(x+1);stop〉
τ
→ C1(5) ‖ n〈let x = 5 in p.set(x+1);stop〉
β
→∗ C1(5) ‖ n〈p.set(6);stop〉

τ
→ C1(5) ‖ n〈p.contents := 6;6;stop〉
τ
→ C1(6) ‖ n〈p;6;stop〉
β
→∗ C1(6) ‖ n〈stop〉

as expected.

Proposition 2.1 (Subject Reduction) If ∆ `C : Θ and C ⇒C′ then ∆ `C′ : Θ

Proof: Straightforward. 2

10

0 ‖C ≡C (C1 ‖C2) ‖C3 ≡C1 ‖ (C2 ‖C3) C1 ‖C2 ≡C2 ‖C1

C1 ‖ ν(n : T) .C2 ≡ ν(n : T) . (C1 ‖C2) ν(n1 : T1) .ν(n2 : T2) .C ≡ ν(n2 : T2) .ν(n1 : T1) .C

Figure 7: Axioms for structural congruence (where n is not free in C1)

n〈let x : T = v in t〉
β
→ n〈t[v/x]〉

n〈let x : T = (let x1 : T1 = e1 in e2) in t〉
β
→ n〈let x1 : T1 = e1 in (let x : T = e2 in t)〉

n〈let x : T = (if v = v then e1 else e2) in t〉
β
→ n〈let x : T = e1 in t〉

n〈let x : T = (if v1 = v2 then e1 else e2) in t〉
β
→ n〈let x : T = e2 in t〉 (v1 6= v2)

n〈let x : T = new[O] in t〉
β
→ ν(p : T) . (p[O] ‖ n〈let x : T = p in t〉) (p 6∈ O or t)

n〈let x : T = new〈 f 〉 in t〉
β
→ ν(p : T) . (p〈 f 〉 ‖ n〈let x : T = p in t〉) (p 6∈ t or f)

n〈let x : T = currentthread in t〉
β
→ n〈let x : T = n in t〉

n〈let x : T = stop in t〉
β
→ n〈stop〉

p[O] ‖ n〈let x : T = p.l(~v) in t〉
τ
→ p[O] ‖ n〈let x : T = O.l(p)(~v) in t〉

p[O] ‖ n〈let x : T = p.l ⇐M in t〉
τ
→ p[O.l ⇐M] ‖ n〈let x : T = p in t〉

Figure 8: Axioms for reduction precongruence

C ≡
β
→ ≡C′

C
β
→ C′

C
β
→ C′

C ‖C′′ β
→ C′ ‖C′′

C
β
→ C′

ν(n : T) .C
β
→ ν(n : T) .C′

C ≡
τ
→ ≡C′

C
τ
→ C′

C
τ
→ C′

C ‖C′′ τ
→ C′ ‖C′′

C
τ
→ C′

ν(n : T) .C
τ
→ ν(n : T) .C′

Figure 9: Rules for reduction precongruence

(~l = ~M, l = M).l(p)(~v) = t[p/n,~v/~x] (~l = ~M, l = M′).l ⇐M = (~l = ~M, l = M)

Figure 10: Definition of O.l(p)(~v) and O.l ⇐M where M = ς(n : T) .λ(~x :~T) . 〈t〉

11

2.4 Testing preorder

We will now define the testing semantics for our concurrent object calculus. We will do this by
defining a notion of barb for a component, and let a successful component be one which communi-
cates on that barb. This is similar to the use of barbs in process algebra [23].

Let the type barb be defined:

barb = [succ : ()→none]

for some fresh method name succ. We say that a component strongly barbs on b : barb written C↓b

if and only if:
C ≡ ν(~n : ~T) . (C′ ‖ n〈let x : none = b.succ() in t〉)

for b 6∈~n and barbs on b : barb written C⇓b if and only if:

C ⇒C′↓b

For components C1 and C2 such that ∆ `C1 : Θ and ∆ `C2 : Θ, we define the may testing preorder
∆ |= C1 <∼may C2 : Θ if and only if:

for any ∆′,Θ,b : barb `C : ∆ if (C1 ‖C)⇓b then (C2 ‖C)⇓b

This is a straightforward adaptation of the standard [12] definition of may testing for concurrent
systems.

3 Trace semantics

The trace semantics for the concurrent object calculus is given by a labelled transition system (lts)
with judgements:

(∆ `C : Θ)
α
→ (∆′ `C′ : Θ′)

The lts is given for components extended by introducing two new expressions:

e ::= · · · | block | return(v : T)

These new threads are included purely to assist in the description of the lts and are intended to
represent a command for a thread to wait for some unknown interaction with the environment and
a command for a thread to report a value to the environment and then to go back to a blocked state.
There are no reductions associated with these commands and they may be typed as:

Γ;∆ ` block : T

Γ;∆ ` v : U

Γ;∆ ` return(v : U) : T

where T and U are any types. The lts for our concurrent object language are given in Figures 11–14.
The form of the actions is discussed in Section 1. The actions are generated using the axioms in
Figure 11, as follows:

12

(∆,n : thread `C : Θ)
n〈call p.l(~v)〉?

→ (∆ `C ‖ n〈let x : T = p.l(~v) in return(x : T)〉 : (n : thread,Θ))
(when ;∆,n : thread,Θ ` p.l(~v) : T and p ∈ Θ)

(∆ `C ‖ n〈let x : T = block in t〉 : Θ)
n〈call p.l(~v)〉?

→ (∆ `C ‖ n〈let y : U = p.l(~v) in let x : T = return(y : U) in t〉 : Θ)
(when ;∆,Θ ` p.l(~v) : U and p ∈ Θ)

(∆ `C ‖ n〈let x : T = block in t〉 : Θ)
n〈returnv〉?

→ (∆ `C ‖ n〈t[v/x]〉 : Θ)
(when ;∆,Θ ` v : T)

(∆ `C ‖ n〈let x : T = p.l(~v) in t〉 : Θ)
n〈call p.l(~v)〉!

→ (∆ `C ‖ n〈let x : T = block in t〉 : Θ)
(when p ∈ ∆)

(∆ `C ‖ n〈let x : T = return(v : U) in t〉 : Θ)
n〈returnv〉!

→ (∆ `C ‖ n〈let x : T = block in t〉 : Θ)

Figure 11: Axioms for labelled transition system (∆ `C : Θ)
α
→ (∆′ `C′ : Θ′)

C
τ
→ C′

(∆ `C : Θ)
τ
→ (∆ `C′ : Θ)

C
β
→ C′

(∆ `C : Θ)
β
→ (∆ `C′ : Θ)

(∆ `C : (Θ,n : T))
a
→ (∆′ `C′ : (Θ′,n : T))

(∆ ` ν(n : T) .C : Θ)
a
→ (∆′ ` ν(n : T) .C′ : Θ′)

(n is not free in a)

(∆ `C : (Θ,n : T))
γ!
→ (∆′ `C′ : Θ′)

(∆ ` ν(n : T) .C : Θ)
ν(n:T).γ!

→ (∆′ `C′ : Θ′)
(n is free in γ)

(∆,n : T `C : Θ)
γ?
→ (∆′ `C′ : Θ′)

(∆ `C : Θ)
ν(n:T).γ?

→ (∆′ `C′ : Θ′)
(n is free in γ,T is not none)

Figure 12: Rules for labelled transition system (∆ `C : Θ)
α
→ (∆′ `C′ : Θ′)

13

C ⇒C′

(∆ `C : Θ) ==
ε
⇒ (∆ `C′ : Θ)

(∆ `C : Θ)
a
→ (∆′ `C′ : Θ′)

(∆ `C : Θ) ==
a
⇒ (∆′ `C′ : Θ′)

(∆ `C : Θ) ==
s
⇒ (∆′ `C′ : Θ′) ==

s′

⇒ (∆′′ `C′′ : Θ′′)

(∆ `C : Θ) ==
ss′

⇒ (∆′′ `C′′ : Θ′′)

Figure 13: Rules for trace semantics (∆ `C : Θ) ==
s
⇒ (∆′ `C′ : Θ′)

Basic labels: γ ::= n〈call p.l(~v)〉 | n〈returnv〉 | ν(n : T) . γ
Visible labels: a ::= γ? | γ!
Labels: α ::= a | τ | β
Traces: q,r,s ::= a · · · a

Figure 14: Syntax of labels and traces

• A call input action, n〈call p.l(~v)〉?, represents the environment calling a method on an object
defined in the component. It can be generated by a component C in two ways: either the
thread n is not defined in C or it is a blocked thread in C. In both cases p is an object defined
in C for which the method call p.l(~v) is well-typed. Computation at thread n proceeds by
executing this call and returning any result to the environment.

• A return input action, n〈returnv〉?, represents the environment returning a result to the com-
ponent. It can be generated by a component C containing a blocked thread n waiting for a
result of appropriate type; the thread then unblocks. A thread can only reach such a blocked
state by previously having performed a call output action for which this is the corresponding
return.

• A call output action, n〈call p.l(~v)〉!, represents the component calling a method on an object
for which it does not have a definition and so is expecting the environment to provide an
appropriate definition. It can be generated by a component C containing a running thread n
whose next command is a method call p.l(~v). The calling thread then enters a blocked state
waiting for a response from the environment.

• A return output action, n〈returnv〉!, represents the component returning a result to the envi-
ronment. It can be generated by a component C containing a running thread n whose next
command is a return statement returnv. A thread can only reach such a return state by previ-
ously having received a call input action for which this is the corresponding return.

For example if we define:

Θ ≡ (p : IntRef)
Θ′ ≡ (p : IntRef,n : thread)

14

then (where C1(v) is defined in Section 2.2) we have:

(`C1(5) : Θ)
ν(n:thread).n〈call p.get()〉?

→

(` (C1(5) ‖ n〈let x = p.get() in returnx〉) : Θ′)

⇒

(` (C1(5) ‖ n〈return5〉) : Θ′)
n〈return5〉!

→

(` (C1(5) ‖ n〈block〉) : Θ′)
n〈call p.set(6)〉?

→

(` (C1(5) ‖ n〈let x = p.set(6) in returnx〉) : Θ′)

⇒

(` (C1(6) ‖ n〈return6〉) : Θ′)
n〈return6〉!

→

(` (C1(6) ‖ n〈block〉) : Θ′)

which corresponds to the interaction diagram:

p : IntRef

get ()

5

set (6)

6

Note that these traces are typed, in order to avoid undesirable traces, which correspond to interaction
with an ill-typed environment, such as:

(` (C1(5) ‖ n〈block〉) : Θ′)
n〈call p.set(“hello”)〉?

→

(` (C1(5) ‖ n〈let x = p.set(“hello”) in returnx〉) : Θ′)

⇒

(` (C1(“hello”) ‖ n〈return“hello”〉) : Θ′)
n〈return“hello”〉!

→

(` (C1(“hello”) ‖ n〈block〉) : Θ′)

For any component (∆ `C : Θ) we define its traces to be:

Traces(∆ `C : Θ) = {s | (∆ `C : Θ) ==
s
⇒ (∆′ `C′ : Θ′)}

We will now show that this trace semantics is fully abstract for may testing.

15

4 Soundness of traces for may testing

Having defined our trace semantics we must demonstrate that it provides a sound characterisation of
our notion of equivalence, that is, may testing. Specifically we must show that whenever the traces
of a well-typed component are contained in another’s then the components must be related in the
may testing preorder. We immediately see some difficulty in proving this directly as the traces are
defined using terms over an extended syntax whereas testing is defined purely in the base language.
However, the extensions made to the syntax represent interaction points, between a component and
a putative testing component. Therefore, given an actual testing component we may merge the
original component and the test together at these interaction points, thereby recovering the term in
the base language which would have been reached had the component and test actually interacted.
This operation of merging is defined below:

4.1 The merge operator

Define the partial merge operator C1 !C2 on components as the symmetric operator defined up to
≡ where:

0!C = C
(ν(p : T) .C1)!C2 = ν(p : T) . (C1 !C2)

(p[O] ‖C1)!C2 = p[O] ‖ (C1 !C2)

(p〈t〉 ‖C1)!C2 = p〈t〉 ‖ (C1 !C2)

(n〈t1〉 ‖C1)! (n〈t2〉 ‖C2) = n〈t1 ! t2〉 ‖ (C1 !C2)

when n 6∈ dom (C1,C2) and p 6∈ fn (C2).
We overload notation and define the partial merge operator t1 ! t2 on threads as the symmetric

operator where:

(let x : T = block in t)! stop = stop

(let x : T = block in t1)! (let y : U = return(v : T) in t2) = (let y : U = block in t2)! (t1[v/x])
(let x : T = block in t1)! (let y : U = e in t2) = let y : U = e in ((let x : T = block in t1)! t2)

when e is block/return free and y 6∈ fv (t1).

Lemma 4.1 If ∆ ` (C1 ‖C2) : Θ then (C1 !C2) ≡ (C1 ‖C2).

Proof: An induction on the definition of C1 !C2. 2

Lemma 4.2 If C1 !C2 ≡C and C1↓b then C↓b.

Proof: An induction on the definition of C1 !C2. 2

4.2 Trace composition and decomposition

Given a trace s we write s̄ for the complementary trace:

ε̄ = ε s1s2 = s̄1s̄2 γ̄? = γ! γ̄! = γ?

16

Proposition 4.3 (Trace composition/decomposition) For any components (∆,Φ `C1 : Θ,Σ) and
(Θ,Φ `C2 : ∆,Σ) such that C1 !C2 ≡C, we have:

1. If (∆,Φ `C1 : Θ,Σ) ==
s
⇒ (∆′,Φ `C′

1 : Θ′,Σ′)

and (Θ,Φ `C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′)
then C ⇒C′ where ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′

1 !C′
2) ≡C′.

2. If C ⇒C′ then there exists some trace s such that (∆,Φ `C1 : Θ,Σ) =
s
⇒ (∆′,Φ `C′

1 : Θ′,Σ′)

and (Θ,Φ `C2 : ∆,Σ) =
s̄
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′) where ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1 !C′

2) ≡C′.

Proof: Given in Appendix A. 2

Corollary 4.4 For any components (∆,Φ `C1 : Θ,Σ) and (Θ,Φ `C2 : ∆,Σ) such that C1 !C2 ≡C

and C⇓b there exists some trace s such that (∆,Φ `C1 : Θ,Σ) =
s
⇒ (∆′,Φ `C′

1 : Θ′,Σ′) and (Θ,Φ `

C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′) where either C′
1↓b or C′

2↓b.

Proof: We know that C⇓b which tells us that C ⇒C′′ for some C′′ such that C′′↓b. We use Proposi-
tion 4.3 Part 2, to obtain a trace s1 such that

(∆,Φ `C1 : Θ,Σ) ==
s1
⇒ (∆′′,Φ `C′′

1 : Θ′′,Σ′′)

(Θ,Φ `C2 : ∆,Σ) ==
s̄1
⇒ (Θ′′,Φ `C′′

2 : ∆′′,Σ′′)

where ν(∆′′,Θ′′,Σ′′ \∆,Θ,Σ) .(C′′
1 !C′′

2)≡C′′. Given that C′′↓b we know that (C′′
1 !C′′

2)↓b also. By
the definition of ! we see that one of the following (or their symmetric counterparts) must hold:

• C′′
1↓b and we are done, or

• C′′
1 ≡ ν(∆1) . (n〈t1〉 ‖C′′′

1) and C′′
2 ≡ ν(∆2) . (n〈t2〉 ‖C′′′

2) where n〈t1 ! t2〉↓b. We now proceed
by induction on the definition of t1 ! t2 to show that for all such C′′

1 and C′′
2 , we can find s2

where:

(∆′′,Φ `C′′
1 : Θ′′,Σ′′) ==

s2
⇒ (∆′,Φ `C′

1 : Θ′,Σ′)

(Θ′′,Φ `C′′
2 : ∆′′,Σ′′) ==

s̄2
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′)

and either C′
1↓b or C′

2↓b. There are two cases (up to symmetry of !):

– If t1 = let x : T = block in t ′1 and t2 = let y : U = b.succ() in t ′2 then C′′
2↓b.

– If t1 = let x : T = block in t ′1 and t2 = let y : U = return(v : T) in t ′2 then we have:

(∆′′,Φ `C′′
1 : Θ′′,Σ′′)

ν(∆′
2).n〈returnv〉?

→ (∆′′,∆′
2,Φ ` ν(∆1) . (n〈t ′1[v/x]〉 ‖C′′′

1) : Θ′,Σ′)

(Θ′′,Φ `C′′
2 : ∆′′,Σ′′)

ν(∆′
2).n〈returnv〉!

→ (Θ′′,Φ ` ν(∆′′
2) . (n〈let y : U = block in t ′2〉 ‖C′′′

2) : ∆′′,∆′
2,Σ′′)

where ∆2 = (∆′
2,∆′′

2) and moreover:

n〈t1 ! t2〉 ≡ n〈(let y : U = block in t ′2)! t1[v/x]〉↓b

so by inductive hypothesis:

(∆′′,Φ `C′′
1 : Θ′′,Σ′′)

ν(∆′
2).n〈returnv〉?

→ ==
s2
⇒ (∆′,Φ `C′

1 : Θ′,Σ′)

(Θ′′,Φ `C′′
2 : ∆′′,Σ′′)

ν(∆′
2).n〈returnv〉!

→ ==
s̄2
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′)

and either C′
1↓b or C′

2↓b, as required. 2

17

4.3 Proof of soundness

Theorem 4.5 (Soundness of traces for may testing) If Traces(∆ `C1 : Θ) ⊆ Traces(∆ `C2 : Θ)
then ∆ |= C1 <∼may C2 : Θ

Proof: Suppose that Traces(∆`C1 : Θ)⊆Traces(∆ `C2 : Θ) and that we have (Θ,b : barb `C0 : ∆)
such that (C1 ‖C0)⇓b; we must show that (C2 ‖C0)⇓b also.

Now, since (C1 ‖C0)⇓b, we can use Corollary 4.4 to get:

(∆,b : barb `C1 : Θ) ==
s
⇒ (∆′,b : barb `C′

1 : Θ′,Σ′)

(Θ,b : barb `C0 : ∆) ==
s̄
⇒ (Θ′,b : barb `C′

0 : ∆′,Σ′)

and one of the following cases holds:

• Case (C′
1↓b). Since C′

1↓b we can find a label ω! of the form:

ω! = ν(~n : ~T) .n〈callb.succ()〉!

such that:
(∆′,b : barb `C′

1 : Θ′,Σ′)
ω!
→

Since Traces(∆ `C1 : Θ) ⊆ Traces(∆ `C2 : Θ) we have:

(∆,b : barb `C2 : Θ) ==
s
⇒ (∆′,b : barb `C′

2 : Θ′,Σ′)
ω!
→

and hence C′
2↓b. By Lemma 4.1 we know that C2 ‖ C0 ≡ C2 !C0 and so by Proposition 4.3

we have: (C2 ‖C0) ⇒C′′ where:

ν(∆′,Θ′,Σ′ \∆,Θ) . (C′
2 !C′

0) ≡C′′

By Lemma 4.2, since C′
2↓b we have that C′′↓b, and so (C2 ‖C0)⇓b as required.

• Case (C′
0↓b). Similar to the above. 2

5 Completeness of traces for may testing

We now turn to the question of whether trace inclusion captures the may testing preorder exactly.
We have already shown that trace inclusion implies may testing inclusion, and so we must consider
the converse—completeness.

A key step in demonstrating completeness of traces for may testing is to find, for each trace, a
component which exhibits that trace; we call this problem definability. However, we only actually
require definability for traces which originated from well-typed components. To identify these we
present a type system for traces ∆ ` s : trace Θ which captures exactly those we require.

Due to asynchrony in the labelled transition system, to demonstrate definability, we found it
necessary to define an information order ∆ ` r v s : trace Θ for typed traces which incorporates
prefixing, input-enabling, and commutativity of certain actions.

In the next section we introduce the type system for traces and demonstrate that every trace
from a well-typed component is in fact well-typed. In the section which follows this we introduce
the information order on traces and prove the properties required of it.

18

∆ ` ε : trace Θ

n is input-enabled in ∆ ` s : trace Θ
dom (∆′) ⊆ fn (n〈call p.l(~v)〉)

;Θ,Θ(s) ` p : [. . . , l : (~T)→T, . . .]

;∆,Θ,∆(s),Θ(s),∆′ `~v : ~T
;∆,Θ,∆(s),Θ(s),∆′ ` n : thread

∆ ` sν(∆′) .n〈call p.l(~v)〉? : trace Θ

n is output-enabled in ∆ ` s : trace Θ
dom (Θ′) ⊆ fn (n〈call p.l(~v)〉)

;∆,∆(s) ` p : [. . . , l : (~T)→T, . . .]

;∆,Θ,∆(s),Θ(s),Θ′ `~v : ~T
;∆,Θ,∆(s),Θ(s),Θ′ ` n : thread

∆ ` sν(Θ′) .n〈call p.l(~v)〉! : trace Θ

∆ ` s : trace Θ
popn(s) = ν(∆′) .n〈call p.l(~v)〉?

dom (Θ′) ⊆ fn (v)
;Θ,Θ(s) ` p : [. . . , l : (~T)→T, . . .]

;∆,Θ,∆(s),Θ(s),Θ′ ` v : T
∆ ` sν(Θ′) .n〈returnv〉! : trace Θ

∆ ` s : trace Θ
popn(s) = ν(Θ′) .n〈call p.l(~v)〉!

dom (∆′) ⊆ fn (v)
;∆,∆(s) ` p : [. . . , l : (~T)→T, . . .]

;∆,Θ,∆(s),Θ(s),∆′ ` v : T
∆ ` sν(∆′) .n〈returnv〉? : trace Θ

Figure 15: Rules for judgement ∆ ` s : trace Θ

∆ ` s : trace Θ popn(s) = γ!
n is input-enabled in ∆ ` s : trace Θ

∆ ` s : trace Θ popn(s) = ∗ n 6∈ ∆,∆(s)
n is input-enabled in ∆ ` s : trace Θ

∆ ` s : trace Θ popn(s) = γ?
n is output-enabled in ∆ ` s : trace Θ

∆ ` s : trace Θ popn(s) = ∗ n 6∈ Θ,Θ(s)
n is output-enabled in ∆ ` s : trace Θ

Figure 16: Rules for judgement n is input/output-enabled in ∆ ` s : trace Θ

5.1 Types for traces

In this section we will define a judgement ∆ ` s : trace Θ which describes those traces s which may
be exhibited by well-typed components ∆ `C : Θ.

The type rules for traces make use of some auxiliary notions which we define below.

We write C ≡C[D] to mean
C ≡ ν(∆) . (D ‖C′)

for some ∆, C′.

Define the thread of an action as:

thread (ν(∆) .n〈· · ·〉?) = thread (ν(Θ) .n〈· · ·〉!) = n

Define the threads of a trace as:

threads (a1 · · · an) = {thread (a1), . . . , thread (an)}

19

Each thread in a well-typed trace maintains a stack discipline: each return action in the trace pops
a corresponding call action that appears earlier in the trace. In the single-threaded case this corre-
sponds to the well-bracketing condition of game semantics [3, 16]. To formalise this we first define
what it means for a thread to be balanced within a trace: each call action has been completed with
a corresponding return action. For a given thread n and trace s, define n is balanced in s as:

• If n 6∈ threads (s) then n is balanced in s.

• If n is balanced in s1 and s2 then n is balanced in s1 s2.

• If n is balanced in s then n is balanced in ν(∆) .n〈call p.l(~n)〉?sν(Θ) .n〈returnv〉!.

• If n is balanced in s then n is balanced in ν(Θ) .n〈call p.l(~n)〉!sν(∆) .n〈returnv〉?.

In any well-typed trace ending in a return action we need to find the corresponding call action earlier
in the trace, for which we define a pop function. To make this function total on well-typed traces
we define it to return a dummy value ∗ on balanced traces. Define popn(s) as:

• If n is balanced in s then popn(s) = ∗.

• If n is balanced in s and a = ν(∆) .n〈call p.l(~v)〉? then popn(r as) = a.

• If n is balanced in s and a = ν(Θ) .n〈call p.l(~v)〉! then popn(r as) = a.

A feature of our traces is that they model the creation of fresh object references. The following
two definitions allow us to identify those fresh references which were generated by the component
(Θ(s)) and those which were generated by the testing environment (∆(s)). Define ∆(s) to be the
bound input names of s:

∆(ε) = ε
∆(ν(~n : ~T) .a!s) = ∆(s)
∆(ν(~n : ~T) .a?s) = ~n : ~T ,∆(s)

and Θ(s) to be the bound output names of s:

Θ(ε) = ε
Θ(ν(~n : ~T) .a?s) = Θ(s)
Θ(ν(~n : ~T) .a!s) = ~n : ~T ,Θ(s)

The type system for traces is given in Figures 15 and 16. The type rules correspond to the typing
side-conditions of the rules in the labelled transition system itself, along with extra conditions to
enforce the stack discipline.

It will be useful to prove two technical lemmas before we can prove that Trace Subject Reduc-
tion (Proposition 5.3) holds.

Lemma 5.1

1. If n is balanced in s and:

(∆ `C : Θ) ==
s
⇒ (∆′ `C′[n〈let x : T = block in t〉] : Θ′)

then C ≡C[n〈let x : T = block in t〉].

20

2. If n is balanced in s and~e′ are block/return-free, and:

(∆ `C : Θ) ==
s
⇒ (∆′ `C′[n〈let~x′ : ~T ′ =~e′ in let y : U = return(v : T) in t〉] : Θ′)

then C ≡C[n〈let~x : ~T =~e in let y : U = return(v : T) in t〉] where~e is block/return free.

Proof: Easy induction on s. 2

Lemma 5.2

1. If C is block/return free and (∆`C : Θ) =
s
⇒ =========

ν(Θ′).n〈returnv〉!
⇒ then s = s1 ν(∆′).n〈call p.l(~v)〉? s2

where n is balanced in s2 .

2. If C is block/return free and (∆`C : Θ) =
s
⇒ =========

ν(∆′).n〈returnv〉?
⇒ then s = s1 ν(Θ′).n〈call p.l(~v)〉! s2

where n is balanced in s2 .

Proof: We prove these properties simultaneously by an induction on the length of s. We only show
the argument for Part 1 as Part 2 can be shown in a similar manner. By analysis of the rules of the
lts, we have:

(∆ `C : Θ) ==
s
⇒ (∆′′ `C′′[n〈let x : T = return(v : U) in t〉] : Θ′′)

ν(Θ′).n〈returnv〉!
→

Now, partition s into s3 s2 picking s2 to be the longest suffix of s in which n is balanced. We then
use Lemma 5.1 to get that:

(∆`C : Θ) =
s3
⇒ (∆′′ `C′′[n〈let~x :~T =~e in let x : T = return(v′ :U) in t〉] : Θ′′) =

s2
⇒

ν(Θ′).n〈returnv〉!
→

We now proceed by analysis of s3:

• s3 is not of the form ε since C is block/return free.

• s3 is not of the form s1 a with thread (a) 6= n, since s2 is required to be the longest suffix of s
in which n is balanced.

• s3 is not of the form s1 γ! since n〈let~x : ~T =~e in let x : T = return(v′ : U) in t〉 is not of the
form n〈let y : U = block in t ′〉.

• s3 is not of the form s1 ν(∆′′) .n〈returnv′〉? since otherwise, by applying Part 2 of the inductive
hypothesis we can partition s1 into s′1 ν(Θ′′) . n〈call p′.l′(~v′)〉! s′2 where n is balanced in s′2,
hence n is balanced in ν(Θ′′) . n〈call p′.l′(~v′)〉! s′2 ν(∆′′) . n〈returnv′〉? s2, contradicting the
requirement that s2 is the longest such suffix of s.

• So, by a process of elimination, s3 is of the form s1 ν(∆′) .n〈call p.l(~v)〉? as required. 2

Proposition 5.3 (Trace Subject Reduction) If ∆ `C : Θ is block/return free

and (∆ `C : Θ) ==
s
⇒ (∆′ `C′ : Θ′) then ∆ ` s : trace Θ and ∆′ `C′ : Θ′.

21

Proof: We proceed by induction on the derivation of (∆ `C : Θ) ==
s
⇒ (∆′ `C′ : Θ′).

It is relatively easy to check that ∆′ `C′ : Θ′ where ==
s
⇒ is given by a single axiom instance.

We use the inductive hypothesis and Proposition 2.1 to deal with the more general case. We now
show ∆ ` s : trace Θ. The base case in which s is empty is trivial. Suppose instead that s is non-
empty: we perform a case-analysis on the last action of s.

Case s = s′ ν(∆′) .n〈call p.l(~v)〉?. We know that

(∆ `C : Θ) ==
s′

⇒ (∆,∆(s′) `C′ : Θ,Θ(s′))
ν(∆′).n〈call p.l(~v)〉?

→

so we have that either

C′ ≡ ν(∆′) .ν(∆′′) .n〈let x : T = block in t〉 ‖C′′

or n ∈ ∆,∆(s′) and n is a fresh thread to s′. We can apply the inductive hypothesis to s′ to
see that ∆ ` s′ : trace Θ and we consider popn(s′): if n ∈ ∆,∆(s′) and n is a fresh thread to
s′ then popn(s′) is necessarily ∗. Otherwise we know that C′ ≡ ν(∆′) . ν(∆′′) . n〈let x : T =
block in t〉 ‖C′′ and therefore the last action which could have occurred at n must have been
an output, that is, popn(s′) = γ!. In both cases we see that

n is input enabled in ∆ ` s′ : trace Θ (1)

We know that (∆,∆(s′) `C′ : Θ,Θ(s′))
ν(∆′).n〈call p.l(~v)〉?

→ and we know that the side-conditions
on the transition rule for ν(∆′) . γ? actions guarantees that

dom (∆′) ⊆ fn (~v) (2)

We also know that the side-conditions on the rule for call-input actions guarantees that

;∆,∆(s′),Θ,Θ(s′),∆′ ` p.l(~v) : T and p ∈ Θ,Θ(s′)

We use this to see that

;Θ,Θ(s′),∆′ ` p : [. . . l : (~T)→T] (3)

and

;∆,∆(s′),Θ,Θ(s′),∆′ `~v : ~T (4)

Lastly, it is easy to see that

;∆,∆(s′),Θ,Θ(s′),∆′ ` n : thread (5)

We collect the statements (1)–(5) together to see that they form the hypotheses of the type
rule which allows us to conclude

∆ ` s′ ν(∆′) .n〈call p.l(~v)〉? : trace Θ

as required.

22

Case s = s′ ν(Θ′) .n〈call p.l(~v)〉!. Similar to previous case.

Case s = s′ ν(Θ′) .n〈returnv〉!. We know that

(∆ `C : Θ) ==
s′

⇒ (∆,∆(s′) `C′ : Θ,Θ(s′))
ν(Θ′).n〈returnv〉!

→

so we have that
C′ ≡C′[n〈let x : T = return(v : U) in t〉]

We can apply the inductive hypothesis to obtain

∆ ` s′ : trace Θ (1)

and we notice that because C is block/return free we can apply Lemma 5.2 to get:

s′ = s1 ν(∆′) .n〈call p.l(~v)〉? s2

where n is balanced in s2. Given this, we see that

popn(s1 ν(∆′) .n〈call p.l(~v)〉? s2) = ν(∆′) .n〈call p.l(~v)〉?

hence

popn(s′) = ν(∆′) .n〈call p.l(~v)〉? (2)

Again, the side-conditions on the transition rule for ν(Θ′) . γ! guarantee that

dom (Θ′) ⊆ fn (v) (3)

We also know, by (1) and the fact that prefixes of well-typed traces are also well-typed, that

∆ ` s1 ν(∆′) .n〈call p.l(~v)〉? : trace Θ

and we see that this must have been inferred using a hypothesis

;Θ,Θ(s1) ` p : [. . . l : (~U)→U ′ . . .]

which, by weakening, gives us

;Θ,Θ(s′) ` p : [. . . l : (~U)→U ′ . . .] (4)

Lastly, because
(∆,∆(s′) `C′ : Θ,Θ(s′))

and
C′ ≡C′[n〈let x : T = return(v : U) in t〉]

we see that
;∆,∆(s′),Θ,Θ(s′),Θ′ ` v : U

So, by Lemma 5.1 together with the typing side-conditions for call-input transitions, we have
that U = U ′, and so

23

;∆,∆(s),Θ,Θ(s),Θ′ ` v : U (5)

We collect the statements (1)–(5) together to see that they form the hypotheses of the type
rule which allows us to conclude

∆ ` s′ ν(Θ′) .n〈returnv〉! : trace Θ

as required.

Case s = s′ ν(∆′) .n〈returnv〉?. Similar to previous case. 2

5.2 Information order on traces

Information orders are an established technique for characterising observable behaviours of pro-
grams: behaviour B has less information than behaviour B′ if any program which exhibits be-
haviour B′ also exhibits behaviour B. They have been used extensively in denotational models for
higher-order languages, notably Scott’s treatment of information systems for the λ-calculus [28]
and Abramsky’s domain theory in logical form and its application to the lambda-calculus [1, 2].
They are also evident in much work on synchronous process languages, for example the informa-
tion order characterising may testing is simply prefix order on traces [12], and on must testing is
the order on failures–divergences pairs [5]. The first use of an information order to characterise
observable behaviour in an asynchronous language appears in [4].

In the current setting we use the information order to characterise three important properties of
the concurrent object calculus:

1. Prefix ordering: any component with trace sr also has trace s.

2. Input-enabling: any component with trace s also has trace sγ? whenever this latter trace
is well-typed. This property arises in our language because a component must always be
prepared to accept an incoming method call on any of its objects, and similarly a component
which has made an outgoing method call must be prepared to accept any incoming result.
This feature is similar to input-enabling for I/O automata [19] and input receptivity in the
asynchronous π-calculus of [15].

3. Commutativity of actions originating in different threads: under certain conditions, any com-
ponent with the trace saa′ r also has the trace sa′ ar. A good survey of such properties is
given, in an abstract setting, by Selinger [29]. In our setting these commutativity properties
are generated by the diamond properties shown in Figure 17. Note that these allow almost all
actions to be commuted with the exception of:

·
γ2?

→ ·

·

γ1!
↓

which cannot always be completed as

·
γ2?

→ ·

·

γ1!
↓ γ2?

→ ·

γ1!
↓

24

The information preorder on traces ∆ ` r v s : trace Θ is generated by axioms (where in each case
we require both sides of the inequation to be well-typed traces):

∆ ` s v sr : trace Θ
∆ ` sγ? v s : trace Θ

∆ ` sγ1?γ2!r v sγ2!γ1?r : trace Θ
∆ ` sν(∆) . γ1?γ2?r v sν(∆) . γ2?γ1?r : trace Θ
∆ ` sν(Θ) . γ1!γ2!r v sν(Θ) . γ2!γ1!r : trace Θ

One consequence of the requirement that related traces are well-typed is that in the latter three
axioms γ1 and γ2 are actions generated by different threads, and so correspond to the diamond
properties in Figure 17.

Proposition 5.4 (Information Order Closure) If (∆ `C : Θ) ==
s
⇒ and ∆ ` r v s : trace Θ

then (∆ `C : Θ) ==
r
⇒ .

Proof: Show that the diagrams in Figure 17 can be completed. The result follows by an induction
on the derivation of ∆ ` r v s : trace Θ. 2

We finish this section with a technical lemma used in the proof of completeness.

Lemma 5.5 (Information Order Duality) If ∆ ` r γ! v sγ! : trace Θ and fn (γ)∩Θ(r) = /0
and γ! 6∈ s,r then Θ ` s̄ v r̄ : trace ∆.

Proof: We write ∆ ` r vn s : trace Θ if ∆ ` r v s : trace Θ can be derived using n instances of
transitivity and no reflexivity. It is sufficient to show, by induction on n, that

∆ ` r1γ!r2 v
n sγ! : trace Θ implies Θ ` s̄ v r̄1 : trace ∆

whenever fn (γ)∩Θ(r1) = /0 and γ! 6∈ s,r1. The base case, n = 0, asks that ∆ ` r1γ!r2 v s1γ! : trace Θ
be derived from axioms alone. The argument is similar to that used in the inductive case so we omit
it here. Suppose then that ∆ ` r1γ!r2 v

n+1 sγ! : trace Θ, that is

∆ ` r1γ!r2 v
0 q vn sγ! : trace Θ

for some q. We examine each of the five axioms in turn (for brevity we will elide the type environ-
ments in the judgements ∆ ` r v s : trace Θ):

(i) Suppose q is r1γ!r2r so that
r1γ!r2 v

0 r1γ!r2r vn sγ!.

We apply the inductive hypothesis to q = r1γ!r2r to obtain s̄ v r̄1 as required.

(ii) Suppose r2 is r′2γ′? and q is r1γ!r′2 so that

r1γ!r′2γ′? v0 r1γ!r′2 v
n sγ!.

We apply the inductive hypothesis to finish.

25

The following diagrams can be completed (when thread (γ1) 6= thread (γ2)):

·
γ2!

→ ·

·
↓

as

·
γ2!

→ ·

·
↓ γ2!

→ ·
↓

· → ·

·

γ1?
↓

as

· → ·

·

γ1?
↓

→ ·

γ1?
↓

·
γ2!

→ ·

·

γ1?
↓

as

·
γ2!

→ ·

·

γ1?
↓ γ2!

→ ·

γ1?
↓

·
ν(∆) . γ2?

→ ·

·

γ1?
↓

as

·
ν(∆) . γ2?

→ ·

·

ν(∆) . γ1?
↓ γ2?

→ ·

γ1?
↓

·
ν(Θ) . γ2!

→ ·

·

γ1!
↓

as

·
ν(Θ) . γ2!

→ ·

·

ν(Θ) . γ1!
↓ γ2!

→ ·

γ1!
↓

Figure 17: Diamond properties of the labelled transition system

26

(iii) (a) Suppose r1 is r′1γ1?γ2!r′′1 and q is r′1γ2!γ1?r′′1γ!r2 so that

r′1γ1?γ2!r′′1γ!r2 v
0 r′1γ2!γ1?r′′1γ!r2 v

n sγ!.

We apply the inductive hypothesis to see that

s̄ v r̄′1γ2?γ1!r̄′′1 v r̄′1γ1!γ2?r̄′′1 = r̄1

as required.

(b) Suppose r2 is r′2γ1?γ2!r′′2 and q is r1γ!r′2γ2!γ1?r′′2 so that

r1γ!r′2γ1?γ2!r′′2 v0 r1γ!r′2γ2!γ1?r′′2 vn sγ!.

We apply the inductive hypothesis to see s̄ v r̄1 as required.

(c) Suppose r1 is r′1γ′? and q is r′1γ!γ′?r2 so that

r′1γ′?γ!r2 v
0 r′1γ!γ′?r2 v

n sγ!.

We apply the inductive hypothesis to obtain s̄v r̄′1 and use the first axiom and transitivity
to see s̄ v r̄′1 v r̄′1γ′! = r̄1.

(iv) (a) Suppose r1 is r′1ν(∆) . γ1?γ2?r′′1 and q is r′1ν(∆) . γ2?γ1?r′′1γ!r2 so that

r′1ν(∆) . γ1?γ2?r′′1γ!r2 v
0 r′1ν(∆) . γ2?γ1?r′′1γ!r2 v

n sγ!.

We apply the inductive hypothesis to obtain s̄ v r̄′1ν(∆) . γ2!γ1!r̄′′1 and we note that

r̄′1ν(∆) . γ2!γ1!r̄′′1 v r̄′1ν(∆) . γ1!γ2!r̄′′1 = r̄1

as required.

(b) Suppose r2 is r′2ν(∆) . γ1?γ2?r′′2 and q is r1γ!r′2ν(∆) . γ2?γ1?r′′2 so that

r1γ!r′2ν(∆) . γ1?γ2?r′′2 v0 r1γ!r′2ν(∆) . γ2?γ1?r′′2 vn sγ!.

We apply the inductive hypothesis to obtain s̄ v r̄1 as required.

(v) (a) Suppose r1 is r′1ν(Θ) .γ1!γ2!r′′1 and q is r′1ν(Θ) .γ2!γ1!r′′1γ!r2, for which the proof follows
as for Case (iv)(a).

(b) Suppose r2 is r′2ν(Θ) .γ1!γ2!r′′2 and q is r1γ!r′2ν(Θ) .γ2!γ1!r′′2 , for which the proof follows
as for Case (iv)(b).

(c) Suppose r1 is r′1ν(Θ) . γ′! and q is r′1ν(Θ) . γ!γ′!r2 so that

r′1ν(Θ) . γ′!γ!r2 v
0 r′1ν(Θ) . γ!γ′!r2 v

n sγ!.

We know that fn (γ)∩Θ(r1) = /0. This implies that Θ must be empty. Therefore we can
apply the inductive hypothesis to obtain s̄ v r̄′1 and then note r̄′1 v r̄′1ν(Θ) . γ′? = r̄1 by
the first axiom.

(d) Suppose r2 is γ′′!r′2, γ is ν(Θ) . γ′ and q is r1ν(Θ) . γ′′!γ′!r′2 so that

r1ν(Θ) . γ′γ′′!r′2 v
0 r1ν(Θ) . γ′′!γ′!r′2 v

n sν(Θ) . γ′!.

We first show a subsidiary result (as an induction on the derivation of v), that:

if r3 ν(n : T) . γ3! r4 γ4! r5 v s3 ν(n : T) . γ5! s4 then s4 6= ε (1)

from which it follows that Θ is empty. The inductive hypothesis tells us that s̄ v r̄ν(Θ) .
γ′′? and we note that s̄ v r̄1ν(Θ) . γ′′? v r̄1 follows from the second axiom. 2

27

5.3 Definability of traces

For a well-typed trace ∆ ` s : trace Θ we give the definition of a component Comp (∆ ` s : trace Θ)
in Figure 18. It is this component that we will show to exhibit the trace s and only traces r such that
r v s.

The definition of Comp (∆ ` s : trace Θ) is rather lengthy so we offer an indication of how
it is constructed. Firstly, we construct two objects called Ref and State. The former contains a
field holding a pointer to the latter. The State object provides type-indexed families of methods
called out, inReturn, and inCall. These are all defined inductively over prefixes r of the trace s
and we write, for instance, State(∆ ` r ≤ s : trace Θ) to represent the state of the State object
after the component has performed the actions in r. The initial state of the State object is given by
State(∆ ` ε ≤ s : trace Θ).

We also provide object and thread definitions for all those references for which the type demands
it, i.e. those in Θ. The object definitions provide methods according to the object types, where
the method bodies simply indirectly re-route all calls to the appropriate State.inCall. The thread
definitions make indirect calls to State.out. It it through these that traces are begun.

The bodies for the out, inReturn, and inCall methods depend on the next action in the trace
we are providing a definition for. For instance, if the next action to be performed is an output
n〈call p.l(~v)〉! then all of the bodies will be a stopped thread save for out which will have a method
body which will check that the calling thread is n and, if so, update Ref to point to a new State object
which will perform the next action in the trace. It will then indirectly call State.inReturn with the
result of calling p.l(~v) (on dangling p) to listen for an input interaction (cf. the labelled transition
rule for output, any subsequent action at this thread must be an input). Having successfully observed
an input interaction, the line of interrogation in this thread is complete so it must reset itself by
returning to a state in which it makes an indirect call to State.out. Similar definitions are given for
each type of action.

We provide no synchronisation in the Comp (∆ ` s : trace Θ) component so that there is no
guarantee that the reductions will follow the precise sequence of calls needed to exhibit the trace.
However, with respect to may testing, this is irrelevant as we are only looking for one possible
successful sequence of execution. We do guarantee the existence of this in Proposition 5.8.

In Figure 21, we give an example of the definability component for a two-action trace, and show
how the trace is generated. Note that this component has many other traces, due to input-enabling,
but that all of these traces are below the given trace in the information order.

To be of use in the completeness proof we need to know that Comp (∆ ` s : trace Θ) is well-
typed. This is the subject of the next two lemmas.

Lemma 5.6 If Γ;∆ `~v : ~U and Γ;∆,∆′ ` ~p : ~U and Γ;∆,∆′ ` t : T then Γ;∆ ` (if ∆ ` (~v) =
ν(∆′) . (~p) then t) : T .

Proof: Straightforward induction on the definition of if ∆ ` (~v) = ν(∆′) . (~p) then t. 2

Lemma 5.7 If ∆ ` s : trace Θ then ∆ ` Comp (∆ ` s : trace Θ) : Θ.

Proof: By examining the definition of Comp (∆ ` s : trace Θ) we see that we are required to show
that

(i) ∆,Θ,Θ(s),stateε : State ` ref[val = stateε] : (ref : Ref)

28

Comp (∆ ` s : trace Θ) = ν(Θ(s), ref : Ref,stateε : State) . (
ref[val = stateε] ‖
stateε[State(∆ ` ε ≤ s : trace Θ)] ‖

∏{p[li = ref.val.inCallp.li:Li | i = 1 . . .n] | p : [li : Li | i = 1 . . .n] ∈ Θ,Θ(s)} ‖
∏{n〈ref.val.outnone()〉 | n : thread ∈ Θ,Θ(s)}

)

Ref = [val : State]

State = [outT : ()→T, inReturnT : (T)→T, inCallp.l:L : L]

State(∆ ` r ≤ s : trace Θ) = (
outT = OutT (∆ ` r ≤ s : trace Θ),
inReturnT = InReturnT (∆ ` r ≤ s : trace Θ),
inCallp.l:L = InCallp.l:L(∆ ` r ≤ s : trace Θ)

)

OutT (∆ ` r ≤ s : trace Θ) = λ() . (
when r a ≤ s and a = ν(Θ′) .n〈call p.l(~v)〉! and ;∆,Θ,∆(r),Θ(r),Θ′ ` p.l(~v) : U :

if currentthread = n then

ref.val := new[State(∆ ` r a ≤ s : trace Θ)];
ref.val.inReturnU(p.l(~v));
ref.val.outT ()

when r a ≤ s and a = ν(Θ′) .n〈returnv〉! and ;∆,Θ,∆(r),Θ(r),Θ′ ` v : T :
if currentthread = n then

ref.val := new[State(∆ ` r a ≤ s : trace Θ)];
v

otherwise :
stop

)

InReturnT (∆ ` r ≤ s : trace Θ) = λ(x : T) . (
when r a ≤ s and a = ν(∆′) .n〈returnv〉? and ;∆,Θ,∆(r),Θ(r),∆′ ` v : T :

if ∆,Θ,∆(r),Θ(r) ` (currentthread,x) = ν(∆′) . (n,v) then

ref.val := new[State(∆ ` r a ≤ s : trace Θ)];
v

otherwise :
stop

)

InCallp.l:(~T)→T (∆ ` r ≤ s : trace Θ) = λ(~x : ~T) . (

when r a ≤ s and a = ν(∆′) .n〈call p.l(~v)〉? and ;∆,Θ,∆(r),Θ(r),∆′ `~v : ~T :
if ∆,Θ,∆(r),Θ(r) ` (currentthread,~x) = ν(∆′) . (n,~v) then

ref.val := new[State(∆ ` r a ≤ s : trace Θ)];
ref.val.outT ()

otherwise :
stop

)

Figure 18: Definition of Comp (∆ ` s : trace Θ)

29

if ∆ ` () = ν() . () then t = t
if ∆ ` (v,~v) = ν(p : U,~n : ~T) . (p,~p) then t = if v 6∈ ∆−1(U) then

(if ∆, p : U ` (~v) = ν(~n : ~T) . (~p) then t)[v/p] else stop

if ∆ ` (v,~v) = ν(~n : ~T) . (p,~p) then t = if v = p then (if ∆ ` (~v) = ν(~n : ~T) . (~p) then t) else stop

Figure 19: Definition of if ∆ ` (~v) = ν(~n :~T) . (~p) then t (when p 6∈~n).

if v 6∈ ()−1(U) then t else stop = t
if v 6∈ (n : U,∆)−1(U) then t else stop = if v = n then stop else (if v 6∈ ∆−1(U) then t else stop)
if v 6∈ (n : T,∆)−1(U) then t else stop = if v 6∈ ∆−1(U) then t else stop

Figure 20: Definition of if v 6∈ ∆−1(U) then t else stop (when T 6= U).

(ii) ∆,Θ,Θ(s), ref : Ref ` stateε[State(∆ ` ε ≤ s : trace Θ)] : (stateε : State)

(iii) ∆,Θ,Θ(s)\ p, ref : Ref,stateε : State ` p[li = ref.val.inCallp.li:Li | i = 1 . . .n] : (p : [li : Li | i =
1 . . .n]) for each p ∈ Θ,Θ(s)

(iv) ∆,Θ,Θ(s)\n, ref : Ref,stateε : State` n〈ref.val.outnone()〉 : (n : thread) for each n∈Θ,Θ(s).

It is easy to check that all but (ii) follow from the definitions of the types State and Ref. We show
(ii) by establishing

;∆,∆(r),Θ,Θ(s), ref : Ref ` [State(∆ ` r ≤ s : trace Θ)] : State

by induction on the length of s less the length of r. The base case (when s = r) follows as each
method body of State(∆ ` r ≤ s : trace Θ) is stop and hence can be given any type. The inductive
case relies on the following properties:

(a) ;∆,∆(r),Θ,Θ(s), ref : Ref ` OutT (∆ ` r ≤ s : trace Θ) : ()→T

(b) ;∆,∆(r),Θ,Θ(s), ref : Ref ` InReturnT (∆ ` r ≤ s : trace Θ) : (T)→T

(c) ;∆,∆(r),Θ,Θ(s), ref : Ref ` InCallp.l:L(∆ ` r ≤ s : trace Θ) : L

We only show how to establish (a) here as the remaining two cases can be dealt with similarly.
Suppose then that r a ≤ s with a = ν(Θ′) .n〈returnv〉! and ;∆,∆(r),Θ,Θ(r),Θ′ ` v : T It is easy to
see by the inductive hypothesis that

;∆,∆(r),Θ,Θ(s), ref : Ref ` ref.val := new[State(∆ ` r a ≤ s : trace Θ)];v : T

holds, and also that ;∆,∆(r),Θ,Θ(s), ref : Ref ` currentthread : thread and

;∆,∆(r),Θ,Θ(s), ref : Ref ` n : thread.

This latter fact follows from ∆ ` r a : trace Θ guaranteeing

;∆,∆(r),Θ,Θ(r), ref : Ref ` n : thread.

30

We show the component given by Comp (r : IntRef ` s : trace) where s is

ν(n) .n〈callr.get()〉?
n〈return5〉!

Let C0 be defined as

r[
contents = ref.val.inCallr.contents:()→Int,
get = ref.val.inCallr.get:()→Int,
set = ref.val.inCallr.set:(Int)→Int

] ‖ s0[
inCallr.get:()→Int = λ().〈ref.val := [

outInt = λ() . 〈ref.val := [. . .];5〉,
. . .

]; ref.val.outInt()〉,
. . .

]

where . . . is used to elide method definitions whose body is stop. Then we have

Comp (r : IntRef ` s : trace) = ν(s0) . (C0 ‖ ref[val = s0])

We now show how this component generates the trace s above. Let

C1 = C0 ‖ s1[outInt = λ() . 〈ref.val := [. . .];5〉, . . .]
C2 = C1 ‖ s2[. . .]

We have

ν(s0) . (C0 ‖ ref[val = s0])
ν(n).n〈callr.get()〉?

→ ν(s0) . (C0 ‖ ref[val = s0] ‖ n〈return(r.get() : Int)〉)
==⇒ ν(s0,s1) . (C1 ‖ ref[val = s1] ‖ n〈return(ref.val.outInt() : Int)〉)
==⇒ ν(s0,s1,s2) . (C2 ‖ ref[val = s2] ‖ n〈return(5 : Int)〉)

n〈return5〉!
→ ν(s0,s1,s2) . (C2 ‖ ref[val = s2] ‖ n〈block〉)

Figure 21: Example of definability component

31

We can now apply the previous Lemma to see that

;∆,∆(r),Θ,Θ(s), ref : Ref ` if ∆ ` (currentthread) = ν() . (n) then

ref.val := new[State(∆ ` r a ≤ s : trace Θ)];v : T

which gives us that ;∆,∆(r),Θ,Θ(s), ref : Ref ` OutT (∆ ` r ≤ s : trace Θ) : ()→T as required.

Alternatively, suppose that r a ≤ s with a = ν(Θ′) . n〈call p.l(~v)〉! and ;∆,∆(r),Θ,Θ(r),Θ′ `
p.l(~v) : U . Given that State.inReturnU : (U)→U , and that State.outT : ()→T we can apply the
inductive hypothesis and previous Lemma as above to see that

;∆,∆(r),Θ,Θ(s), ref : Ref ` if currentthread = n then

ref.val := new[State(∆ ` r a ≤ s : trace Θ)];
ref.val.inReturnU(p.l(~v));
ref.val.outT () : T

as required.

Otherwise the body of OutT (∆ ` r ≤ s : trace Θ) is stop and this can be given any type. 2

Proposition 5.8 (Definability) For any ∆ ` s : trace Θ
we have (∆ ` Comp (∆ ` s : trace Θ) : Θ) ==

r
⇒ if and only if ∆ ` r v s : trace Θ.

Proof: Given in Appendix B. 2

5.4 Proof of completeness

Theorem 5.9 (Completeness of traces for may testing) If ∆ |= C1 <∼may C2 : Θ
then Traces(∆ `C1 : Θ) ⊆ Traces(∆ `C2 : Θ).

Proof: Choose any trace s1 such that:

(∆ `C1 : Θ) ==
s1
⇒ (∆′ `C′

1 : Θ′)

By Proposition 5.3 we have that ∆ ` s1 : trace Θ, and it is easy to establish that Θ ` s̄1 : trace ∆.
Pick a fresh b : barb and let ω! be:

ω! = ν(n : thread) .n〈callb.succ()〉!

and let C0 be:
C0 = Comp (Θ,b : barb ` s̄1ω! : trace ∆)

Then by Proposition 5.8 we have:

(Θ,b : barb `C0 : ∆) ==
s̄1
⇒ (Θ′,b : barb `C′

0 : ∆′)
ω!
→

and so C′
0↓b. Thus, by Lemma 4.1, Proposition 4.3, and Lemma 4.2 we have (C1 ‖C0)⇓b. We know

that ∆ |=C1 <∼may C2 : Θ, that Θ,b : barb `C0 : ∆, and (C1 ‖C0)⇓b so this implies (C2 ‖C0)⇓b. Thus,
by Lemma 4.1 and Corollary 4.4 we can find s2 such that:

(∆,b : barb `C2 : Θ) ==
s2
⇒ (∆′′,Φ′′ `C′′

2 : Θ′′,Σ′′)

(Θ,b : barb `C0 : ∆) ==
s̄2
⇒ (Θ′′,Φ′′ `C′′

0 : ∆′′,Σ′′)

32

and either C′′
0↓b or C′′

2↓b. Since b was chosen to be fresh, we must have that C′′
0↓b and hence

(Θ,b : barb ` C0 : ∆) ===
s̄2ω!
⇒ so by Proposition 5.8: Θ,b : barb ` s̄2ω! v s̄1ω! : trace ∆ and so by

Lemma 5.5 and narrowing: ∆ ` s1 v s2 : trace Θ. Thus, by Proposition 5.4 we have: (∆ ` C2 :

Θ) ==
s1
⇒ (∆′ `C′

2 : Θ′) as required. 2

6 Restricted sub-languages
The proof techniques use to obtain full abstraction here are quite robust and can also be carried out
for two restricted sub-languages:

1. The single-threaded sub-language is given by only allowing one name of type thread, and re-
moving new thread creation from the expression language. The definability result for Propo-
sition 5.8 does not use thread creation, so the proof of full abstraction goes through with only
minor changes to the proof of Theorem 5.9.

2. The sub-language with only field update (and no method update) can be given the same trace
semantics. The definability result for Proposition 5.8 only uses field update, and so the proof
of full abstraction goes through unchanged.

Thus, not only do we have a full abstraction result for the concurrent object calculus, we can also
specialise the results to become full abstraction result for other related languages.

One change which cannot easily be made is to remove the restriction that components be write
closed, since method, and even field, updates are not generally externally observable. It is unlikely
that traces which represent write interactions will be definable in the current sense. However, we
do believe that the restriction to write closed components is a reasonable one, since it corresponds
to existing ‘best practice’ for component design.

7 Conclusions and future work
In this paper we have presented the first fully abstract semantics for concurrent objects. The se-
mantics is fairly simple, and corresponds loosely to some of the messages used in UML interaction
diagrams. We do need to road test the trace semantics with some reasonably sized examples to
demonstrate that the calculation of traces is tractable.

There are a number of issues left open:

• Our semantics has much of the flavour of game semantics [3, 16], and this connection should
be investigated.

• The trace semantics characterise may testing, rather than the more common must testing or
bisimulation equivalence.

• The object calculus presented here does not include subtyping. We believe that the techniques
of [14] should be applicable to the provision of a fully abstract semantics even in the presence
of subtyping.

33

A Proof of trace composition and decomposition

We have to prove that for any components (∆,Φ `C1 : Θ,Σ) and (Θ,Φ `C2 : ∆,Σ) such that C1 !

C2 ≡C, we have:

1. Composition: If (∆,Φ `C1 : Θ,Σ) ==
s
⇒ (∆′,Φ `C′

1 : Θ′,Σ′)

and (Θ,Φ `C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′) then C ⇒C′

where ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1 !C′

2) ≡C′.

2. Decomposition: If C ⇒C′ then there exists some trace s

such that (∆,Φ `C1 : Θ,Σ) ==
s
⇒ (∆′,Φ `C′

1 : Θ′,Σ′)

and (Θ,Φ `C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′) where ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1 !C′

2) ≡C′.

A.1 Composition

We show four lemmas, from which Composition follows by a simple induction.

Lemma A.1

1. If C1 !C2 ≡ D ‖ E then there exist components such that C1 ≡ D1 ‖ E1 and C2 ≡ D2 ‖ E2 with
D ≡ D1 !D2 and E ≡ E1 !E2.

2. If C1 !C2 ≡ ν(~n : ~T) .C then there exist components such that C1 ≡ ν(~n1 : ~T1) .C′
1 and C2 ≡

ν(~n2 : ~T2) .C′
2 with (~n : ~T) = (~n1 : ~T1,~n2 : ~T2) and C ≡C′

1 !C′
2.

Proof: Proved by induction on the derivation of C1 !C2. 2

Lemma A.2 If C1 !C2 ≡C and C1
β
→ C′

1 then C
β
→ C′ where C′

1 !C2 ≡C′.

Proof: An induction on the proof of C1
β
→ C′

1, making use of Lemma A.1. 2

Lemma A.3 If C1 !C2 ≡C and C1
τ
→ C′

1 then C
τ
→ C′ where C′

1 !C2 ≡C′.

Proof: An induction on the proof of C1
τ
→ C′

1, making use of Lemma A.1. 2

Lemma A.4 If C1 !C2 ≡C and (∆,Φ `C1 : Θ,Σ)
γ?
→ (∆′,Φ `C′

1 : Θ′,Σ′)

and (Θ,Φ `C2 : ∆,Σ)
γ!
→ (Θ′,Φ `C′

2 : ∆′,Σ′) then ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1 !C′

2) ≡C.

Proof: A case analysis on γ.

• Case (γ = ν(~n : ~T) .n〈call p.l(~v)〉 and n 6∈ Σ).

Since (∆,Φ `C1 : Θ,Σ)
γ?
→ (∆′,Φ `C′

1 : Θ′,Σ′) and n 6∈ Σ, we must have that:

C′
1 ≡C1 ‖ n〈let y : T = p.l(~x) in return(y : T)〉

∆′ = (∆,~n : ~T)\ (n : thread)
Θ′ = Θ
Σ′ = Σ,n : thread

34

Since (Θ,Φ `C2 : ∆,Σ)
γ!
→ (Θ′,Φ `C′

2 : ∆′,Σ′) we must have that:

C2 ≡ ν(~n : ~T) .ν(~p : ~U) . (C′′
2 ‖ n〈let x : T = p.l(~x) in t〉)

C′
2 ≡ ν(~p : ~U) . (C′′

2 ‖ n〈let x : T = block in t〉)

We can then show that:

C1 !C2 ≡ ν(~n : ~T) .ν(~p : ~U) . ((C1 !C′′
2) ‖ n〈let x : T = p.l(~x) in t〉)

and that:
C′

1 !C′
2 ≡ ν(~p : ~U) . ((C1 !C′′

2) ‖ n〈let x : U = p.l(~x) in t〉)

and so:
ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′

1 !C′
2) ≡C

as required.

• Case (γ = ν(~n : ~T) .n〈call p.l(~v)〉 and n ∈ Σ).

Similar to the previous case.

• Case (γ = ν(~n : ~T) .n〈returnv〉).

Since (∆,Φ `C1 : Θ,Σ)
γ?
→ (∆′,Φ `C′

1 : Θ′,Σ′) we must have that:

C1 ≡ ν(~p1 : ~U1) . (C′′
1 ‖ n〈let x : T = block in t1〉)

C′
1 ≡ ν(~p1 : ~U1) . (C′′

1 ‖ n〈t1[v/x]〉)

∆′ = ∆,~n : ~T

Θ′ = Θ
Σ′ = Σ

Since (Θ,Φ `C2 : ∆,Σ)
γ!
→ (Θ′,Φ `C′

2 : ∆′,Σ′) we must have that:

C2 ≡ ν(~n : ~T) .ν(~p2 : ~U2) . (C′′
2 ‖ n〈let y : U = return(v : T) in t2〉)

C′
2 ≡ ν(~p2 : ~U2) . (C′′

2 ‖ n〈let y : U = block in t2〉)

We then show that:

C1 !C2 ≡ ν(~n : ~T) .ν(~p1 : ~U1) .ν(~p2 : ~U2) . ((C′′
1 !C′′

2) ‖ n〈(let y : U = block in t2)! (t1[v/x])〉)

and that:

C′
1 !C′

2 ≡ ν(~p1 : ~U1) .ν(~p2 : ~U2) . ((C′′
1 !C′′

2) ‖ n〈(let y : U = block in t2)! (t1[v/x])〉)

and so:
ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′

1 !C′
2) ≡C

as required. 2

Composition follows, by induction on the derivation of (∆,Φ `C1 : Θ,Σ) ==
s
⇒ (∆′,Φ `C′

1 : Θ′,Σ′)

and (Θ,Φ `C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′), making use of Lemmas A.2, A.3 and A.4.

35

A.2 Decomposition

We show three lemmas, from which Decomposition follows.

Lemma A.5 For any ∆,Φ ` C1 : Θ,Σ and Θ,Φ ` C2 : ∆,Σ if (C1 !C2) ≡ ν(~n : ~T) . (C ‖ n〈let x :
T = e in t〉) then either we have:

(∆,Φ `C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ` ν(~n1 : ~T1) . (C′

1 ‖ n〈let x : T = e in t1〉) : Θ′,Σ′)

(Θ,Φ `C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′)

where:
ν(∆′,Θ′,Σ′ \∆,Θ,Σ) .ν(~n1 : ~T1) . (C′

1 ‖ n〈t1〉)!C′
2 ≡ ν(~n : ~T) . (C ‖ n〈t〉)

or symmetrically, swapping the roles of C1 and C2.

Proof: An induction on the derivation of:

(C1 !C2) ≡ ν(~n : ~T) . (C ‖ n〈let x : T = e in t〉)

The interesting case is when:

C1 ≡ n〈let x1 : T1 = block in t1〉

C2 ≡ n〈let x2 : T2 = return(v : T1) in t2〉

and:
n〈t1[v/x]〉!n〈let x2 : T2 = block in t2〉 ≡ ν(~n : ~T) . (C ‖ n〈let x : T = e in t〉)

so by definition of the lts, and by induction we have:

(∆,Φ `C1 : Θ,Σ)
n〈returnv〉?

→ (∆,Φ ` n〈t1[v/x]〉 : Θ,Σ)

(∆,Φ ` n〈t1[v/x]〉 : Θ,Σ) ==
s
⇒ (∆′,Φ ` ν(~n1 : ~T1) . (C′

1 ‖ n〈let x : T = e in t1〉) : Θ′,Σ′)

and
(∆,Φ `C2 : Θ,Σ)

n〈returnv〉!
→ (Θ,Φ ` n〈let x2 : T2 = block in t2〉 : ∆,Σ)

(Θ,Φ ` n〈let x2 : T2 = block in t2〉 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′)

where
ν(∆′,Θ′,Σ′ \∆,Θ,Σ) .ν(~n1 : ~T1) . (C′

1 ‖ n〈t1〉)!C′
2 ≡ ν(~n : ~T) . (C ‖ n〈t〉)

or symmetrically, as required. 2

Lemma A.6 If C1 !C2 ≡ C and C
β
→ C′ then there exists some trace s such that (∆,Φ ` C1 :

Θ,Σ) =
s
⇒ (∆′,Φ `C′

1 : Θ′,Σ′) and (Θ,Φ `C2 : ∆,Σ) =
s̄
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′) where ν(∆′,Θ′,Σ′ \
∆,Θ,Σ) . (C′

1 !C′
2) ≡C′.

36

Proof: We must have that C
β
→ C′ from:

C ≡ ν(~n : ~T) . (D ‖ n〈let x : T = e in t〉)

C′ ≡ ν(~n : ~T ,~n′ : ~T ′) . (D ‖ E ‖ n〈let~x : ~T =~e in t〉)

where we have an axiom:

n〈let x : T = e in t〉
β
→ ν(~n′ : ~T ′) . (E ‖ n〈let~x : ~T =~e in t〉

We then use Lemma A.5 to get (wlog):

(∆,Φ `C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ` ν(~n1 : ~T1) . (C′′

1 ‖ n〈let x : T = e in t1〉) : Θ′,Σ′)

(Θ,Φ `C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′)

where
ν(∆′,Θ′,Σ′ \∆,Θ,Σ) .ν(~n1 : ~T1) . (C′′

1 ‖ n〈t1〉)!C′
2 ≡ ν(~n : ~T) . (D ‖ n〈t〉)

and so we use the axiom to get:

(∆,Φ `C1 : Θ,Σ) ==
s
⇒ (∆′,Φ `C′

1 : Θ′,Σ′)

where we define:

C′
1 ≡ ν(~n1 : ~T1,~n

′ : ~T ′) . (C′′
1 ‖ E ‖ n〈let~x : ~T =~e in t1〉)

and then verify that:
ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′

1 !C′
2) ≡C′

as required. 2

Lemma A.7 If C1 !C2 ≡ C and C
τ
→ C′ then there exists some trace s such that (∆,Φ ` C1 :

Θ,Σ) =
s
⇒ (∆′,Φ `C′

1 : Θ′,Σ′) and (Θ,Φ `C2 : ∆,Σ) =
s̄
⇒ (Θ′,Φ `C′

2 : ∆′,Σ′) where ν(∆′,Θ′,Σ′ \
∆,Θ,Σ) . (C′

1 !C′
2) ≡C′.

Proof: We must have that:

C ≡ ν(~n : ~T) . (D ‖ p[O] ‖ n〈let x : T = e in t〉)

C′ ≡ ν(~n : ~T) . (D ‖ p[O′] ‖ n〈let x : T = e′ in t〉)

where we have an axiom:

p[O] ‖ n〈let x : T = e in t〉
τ
→ p[O′] ‖ n〈let x : T = e′ in t〉

We then use Lemma A.5 to get (wlog):

(∆,Φ `C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ` ν(~n1 : ~T1) . (C′′

1 ‖ n〈let x : T = e in t1〉) : Θ′,Σ′)

(Θ,Φ `C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ `C′′

2 : ∆′,Σ′)

where:

ν(∆′,Θ′,Σ′ \∆,Θ,Σ) .ν(~n1 : ~T1) . (C′′
1 ‖ n〈t1〉)!C′′

2 ≡ ν(~n : ~T) . (D ‖ p[O] ‖ n〈t〉)

We now have three cases:

37

• Case (p ∈ dom (C′′
1)).

We must have that:
C′′

1 ≡ ν(~p : ~U) . (C′′′
1 ‖ p[O])

and so we use the axiom to get:

(∆,Φ `C1 : Θ,Σ) ==
s
⇒ (∆′,Φ `C′

1 : Θ′,Σ′)

where we define:

C′
1 ≡ ν(~n1 : ~T1,~p : ~U) . (C′′′

1 ‖ p[O′] ‖ n〈let x : T = e′ in t1〉)

and then verify that:
ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′

1 !C′′
2) ≡C′

as required.

• Case (p 6∈ dom (C′′
1),n ∈ dom (C′′

2)).

We must have that:

C′′
2 ≡ ν(~p : ~U) . (C′′′

2 ‖ p[O] ‖ n〈let y : U = block in t2〉)

Moreover, since C1 is write-closed we must have that the axiom is:

p[O] ‖ n〈let x : T = p.l(~v) in t〉
τ
→ p[O] ‖ n〈let x : T = O.l(p)(~v) in t〉

in which case:

(∆,Φ `C1 : Θ,Σ) =============
s ν(~n′1:~T ′

1).n〈call p.l(~v)〉!
⇒ (∆,Φ `C′

1 : Θ′,~n′1 : ~T ′
1 ,Σ′)

where we define:

C′
1 ≡ ν(~n′′1 : ~T ′′

1) . (C′′
1 ‖ n〈let x : T = block in t1〉)

and we partition {~n1 : ~T1} into {~n′1 : ~T ′
1,~n

′′
1 : ~T ′′

1 } such that {~n′1} ⊆ fn (p.l(~v)) and {~n′′1} ∩
fn (p.l(~v)) = /0.

We also have:

(∆,Φ `C2 : Θ,Σ) ==============
s ν(~n′1:~T ′

1).n〈call p.l(~v)〉?
⇒ (∆,~n′1 : ~T ′

1,Φ `C′
2 : Θ′,Σ′)

where we define:

C′
2 ≡ ν(~p : ~U) . (C′′′

2 ‖ p[O] ‖ n〈let x : T = O.l(p)(~v) in let y : U = return(x : T) in t2〉)

and then verify that:

ν(∆′,~n′1 : ~T ′
1 ,Θ

′,Σ′ \∆,Θ,Σ) . (C′
1 !C′

2) ≡C′

as required.

• Case (p 6∈ dom (C′′
1),n 6∈ dom (C′′

2)).

Similar to the above. 2

Decomposition now follows by induction on the number of reductions in C1 !C2 ⇒C′ and makes
use of Lemmas A.6 and A.7.

38

B Proof of definability

We have to show that for any ∆ ` s : trace Θ we have (∆ ` Comp (∆ ` s : trace Θ) : Θ) ==
r
⇒

if and only if ∆ ` r v s : trace Θ.
There are two parts to this proof: ‘if’ and ‘only if’, which we will detail in the following

sections. First though, for technical reasons, we extend the notion of β-reduction.

B.1 Technical preliminaries

In a component ν(∆) . (p[O] ‖C), the object name p is immutable if:

• There are no occurrences of p.l ⇐M in O or C.

• In each method ς(n : T) .λ(~x : ~T) . 〈t〉 in O, there are no occurrences of n.l ⇐M in t.

Note that since method update is only allowed on names and not variables we do not need to
consider aliasing in this definition. We can now extend the notion of β-reduction to include method
calls on immutable objects:

p[O] ‖ n〈let x : T = p.l(~v) in t〉
β
→ p[O] ‖ n〈let x : T = O.l(p)(~v) in t〉 (when p is immutable)(†)

The important property of β-reductions is that they are confluent with all other transitions:

Proposition B.1 If

(∆ `C : Θ)
β
→ (∆ `C′ : Θ)

(∆′ `C′′ : Θ′)

α
↓

then either α = β and C′ ≡C′′ or

(∆ `C : Θ)
β
→ (∆ `C′ : Θ)

(∆′ `C′′ : Θ′)

α
↓

β
→ (∆′ `C′′′ : Θ′)

α
↓

Proof: A case analysis of the possible reductions of C. 2

Corollary B.2 If

(∆ `C : Θ)
β
→∗ (∆ `C′ : Θ)

(∆′ `C′′ : Θ′)

s
Ä

w

w

w then

(∆ `C : Θ)
β
→∗ (∆ `C′ : Θ)

(∆′ `C′′ : Θ′)

s
Ä

w

w

w

β
→∗ (∆′ `C′′′ : Θ′)

s
Ä

w

w

w

39

B.2 The ‘if’ direction

We suppose that ∆ ` r v s : trace Θ. We note that, due to Proposition 5.4, it suffices to show that:

(∆ ` Comp (∆ ` s : trace Θ) : Θ) ==
s
⇒ . We proceed by describing the different components which

may be reached from Comp (∆ ` s : trace Θ) after performing each visible action in s. We do this
by giving in Figure 22 a definition for a component for ∆ ` r ≤ s : trace Θ. The intended meaning
is that a component for ∆ ` r ≤ s : trace Θ has already performed the prefix r of s and is still able
to perform the remaining actions in s. Note that in any component for ∆ ` r ≤ s : trace Θ, the only
mutable object is ref: all other objects are immutable. This allows us to use the extended notion of
β-reduction given by (†) above.

Lemma B.3 For any ∆ ` s : trace Θ we have Comp (∆ ` s : trace Θ) is a component for ∆ ` ε ≤ s :
trace Θ.

Proof: An inspection of the definition of Comp (∆ ` s : trace Θ). 2

Lemma B.4 If ∆ ` r a ≤ s : trace Θ and ∆′ `C : Θ′ is a component for ∆ ` r ≤ s : trace Θ
then (∆′ `C : Θ′) ==

a
⇒ (∆′′ `C′ : Θ′′) where C′ is a component for ∆ ` r a ≤ s : trace Θ.

Proof: By considering the definition of ∆ ` r : trace Θ we see that the following cases are exhaus-
tive:

1. Case a = ν(Θ′′′).n〈returnv〉! and C ≡ ν(Θ′′′).C[ref[val= stater] ‖ n〈let y :U = ref.val.outU() in let x :
T = return(y : U) in t〉]

We have:

(∆′ `C : Θ′)
τ
→ (∆′ ` ν(Θ′′′) .C[ref[val = stater] ‖

n〈let y : U = stater.outU() in let x : T = return(y : U) in t〉] : Θ′)
β
→∗ (∆′ ` ν(Θ′′′) .C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ` r a ≤ s : trace Θ)]; let y : U = v in let x : T = return(y : U) in t〉] : Θ′)
τ
→ (∆′ ` ν(Θ′′′,stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ` r a ≤ s : trace Θ)] ‖

n〈let y : U = v in let x : T = return(y : U) in t〉] : Θ′)
β
→∗ (∆′ ` ν(Θ′′′,stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ` r a ≤ s : trace Θ)] ‖

n〈let x : T = return(v : U) in t〉] : Θ′)
a
→ (∆′ ` ν(stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ` r a ≤ s : trace Θ)] ‖

n〈let x : T = block in t〉] : Θ′,Θ′′′)

which is a component for ∆ ` r a ≤ s : trace Θ as required.

2. Case a = ν(Θ′′′).n〈call p.l(~v)〉! and C ≡ ν(Θ′′′).C[ref[val= stater] ‖ n〈let y :U = ref.val.outU() in t〉]

40

A component for ∆ ` r ≤ s : trace Θ (resp. for ∆ ` q v r ≤ s : trace Θ) is one of the
form:

ν(Θ(s)\Θ(q)) .ν(ref : Ref) .ν(stater′ : State | ∆ ` r′ ≤ r : trace Θ) . (
ref[val = stater] ‖

∏{stater′ [State(∆ ` r′ ≤ s : trace Θ)] | ∆ ` r′ ≤ r : trace Θ} ‖

∏{p[li = ref.val.inCallp.li:Li | i = 1 . . .n] | p : [li : Li | i = 1 . . .n] ∈ Θ,Θ(s)} ‖
∏{n〈tn〉 | n : thread ∈ Θ,Θ(s)} ‖
∏{n〈tn〉 | n : thread ∈ ∆,∆(s) and n ∈ threads (q)}

)

where tn is a thread at n for ∆ ` r ≤ s : trace Θ (resp. for ∆ ` q v r ≤ s : trace Θ).

A thread at n for ∆ ` r ≤ s : trace Θ is one of the following:

1. let x : T = ref.val.outT () in t
where n is output-enabled in ∆ ` r : trace Θ and t is a return(x : T) thread at n

for ∆ ` r ≤ s : trace Θ.

2. let x : T = block in t
where n is input-enabled in ∆ ` r : trace Θ and t is a return(x : T) thread at n

for ∆ ` r ≤ s : trace Θ.

A return(v : T) thread at n for ∆ ` r ≤ s : trace Θ is one of the following:

1. v
where n is balanced in r.

2. ref.val.inReturnT (v); t
where r = r1 ar2, a = ν(Θ′) .n〈call p.l(~v)〉!, n is balanced in r2,
and t is a thread at n for ∆ ` r1 ≤ s : trace Θ.

3. let y : U = return(v : T) in t
where r = r1 ar2, a = ν(Θ′) .n〈call p.l(~v)〉?, n is balanced in r2,
and t is a return(y : U) thread at n for ∆ ` r1 ≤ s : trace Θ.

Figure 22: Definition of a component for ∆ ` r ≤ s : trace Θ and for ∆ ` q v r ≤ s : trace Θ

41

A thread at n for ∆ ` q v r ≤ s : trace Θ is one of the following:

1. stop

2. a thread at n for ∆ ` r ≤ s : trace Θ
where projn (q) = projn (r).

3. let x : T = p.l(~v) in t
where projn (qa) = projn (r), a = ν(Θ′) .n〈call p.l(~v)〉!, and t is a return(x : T)

thread at n for ∆ ` r ≤ s : trace Θ.

4. let x : T = return(v : U) in t
where projn (qa) = projn (r), a = ν(Θ′) .n〈returnv〉!, and t is a return(x : T)

thread at n for ∆ ` r ≤ s : trace Θ.

5. let y : U = ref.val.inCallp.l:L(~v) in let x : T = return(y : U) in t
where projn (q) = projn (r a), a = ν(∆′) .n〈call p.l(~v)〉?, and t is a return(x : T)

thread at n for ∆ ` r ≤ s : trace Θ.

6. t
where projn (q) = projn (r a), a = ν(∆′) .n〈returnv〉?, and t is a return(v : T)

thread at n for ∆ ` r ≤ s : trace Θ for some T .

7. ref.val := new[State(∆ ` r a ≤ s : trace Θ)]; t
where projn (q) = projn (r a), and t is a thread at n for ∆ ` r a ≤ s : trace Θ.

8. t
where n〈t〉

β
→ n〈t ′〉 and t ′ is a thread at n for ∆ ` q v r ≤ s : trace Θ

Figure 23: Definition of a thread for ∆ ` q v r ≤ s : trace Θ

42

We have:

(∆′ `C : Θ′)
τ
→ (∆′ ` ν(Θ′′′) .C[ref[val = stater] ‖

n〈let y : U = stater.outU() in t〉] : Θ′)
β
→∗ (∆′ ` ν(Θ′′′) .C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ` r a ≤ s : trace Θ)];
let x : T = p.l(~v) in ref.val.inReturnT (x); let y : U = ref.val.outU() in t〉] : Θ′)

τ
→ (∆′ ` ν(Θ′′′,stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ` r a ≤ s : trace Θ)] ‖

n〈let x : T = p.l(~v) in ref.val.inReturnT (x); let y : U = ref.val.outU() in t〉] : Θ′)
a
→ (∆′ ` ν(stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ` r a ≤ s : trace Θ)] ‖

n〈let x : T = block in ref.val.inReturnT (x); let y : U = ref.val.outU() in t〉] : Θ′,Θ′′′)

which is a component for ∆ ` r a ≤ s : trace Θ as required.

3. Case a = ν(∆′′′).n〈returnv〉? and C ≡C[ref[val= stater] ‖ n〈let x : T = block in ref.val.inReturnT (x); t〉]

We have:

(∆′ `C : Θ′)
a
→ (∆′,∆′′′ `C[ref[val = stater] ‖

n〈let x : T = v in ref.val.inReturnT (x); t〉] : Θ′)
β
→∗ (∆′,∆′′′ `C[ref[val = stater] ‖

n〈ref.val.inReturnT (v); t〉] : Θ′)
τ
→ (∆′,∆′′′ `C[ref[val = stater] ‖

n〈stater.inReturnT (v); t〉] : Θ′)
β
→∗ (∆′,∆′′′ `C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ` r a ≤ s : trace Θ)]; t〉] : Θ′)
τ
→ (∆′,∆′′′ `C[ν(stater a : State) . ref[val = stater a] ‖ stater a[State(∆ ` r a ≤ s : trace Θ)] ‖

n〈t〉] : Θ′)

which is a component for ∆ ` r a ≤ s : trace Θ as required.

4. Case a = ν(∆′′′) .n〈call p.l(~v)〉? and C ≡C[ref[val = stater] ‖ n〈let x : T = block in t〉]

43

We have:

(∆′ `C : Θ′)
a
→ (∆′,∆′′′ `C[ref[val = stater] ‖

n〈let y : U = p.l(~v) in let x : T = return(y : U) in t〉] : Θ′)
β
→∗ (∆′,∆′′′ `C[ref[val = stater] ‖

n〈let y : U = ref.val.inCallp.l:L(~v) in let x : T = return(y : U) in t〉] : Θ′)
τ
→ (∆′,∆′′′ `C[ref[val = stater] ‖

n〈let y : U = stater.inCallp.l:L(~v) in let x : T = return(y : U) in t〉] : Θ′)
β
→∗ (∆′,∆′′′ `C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ` r a ≤ s : trace Θ)];
let y : U = ref.val.outU() in let x : T = return(y : U) in t〉] : Θ′)

τ
→ (∆′,∆′′′ `C[ν() . ref[val = stater a] ‖ stater a[State(∆ ` r a ≤ s : trace Θ)] ‖

n〈let y : U = ref.val.outU() in let x : T = return(y : U) in t〉] : Θ′)

which is a component for ∆ ` r a ≤ s : trace Θ as required.

5. Case a = ν(∆′′′) .n〈call p.l(~v)〉? and C ≡C[ref[val = stater]] where n 6∈ Θ′.

Similar to the previous case. 2

The ‘if’ half of definability now follows, by induction on Lemma B.4, with Lemma B.3 as the base
case.

B.3 The ‘only if’ direction

We suppose that ∆ ` s : trace Θ and that (∆ ` Comp (∆ ` s : trace Θ) : Θ) ===
r
⇒ so we must

demonstrate that ∆ ` r v s : trace Θ. As above we make an auxiliary definition of a component
for ∆ ` q v r ≤ s : trace Θ in Figures 22 and 23 with the intended meaning that a component for
∆ ` q v r ≤ s : trace Θ has performed the trace q and this is v related to some prefix of s. Note
that, as prefix ordering ≤ on traces is contained in v and v is transitive, then we also have q v s
for such components. Again, in any component for ∆ ` r ≤ s : trace Θ, the only mutable object is
ref: all other objects are immutable. This allows us to use the extended notion of β-reduction given
by (†) above.

Lemma B.5 For any ∆ ` s : trace Θ we have Comp (∆ ` s : trace Θ) is a component for ∆ ` ε v
ε ≤ s : trace Θ.

Proof: An inspection of the definition of Comp (∆ ` s : trace Θ). 2

Lemma B.6 If C is a component for ∆ ` q v r ≤ s : trace Θ and C
β
→ C′ then C′ is a component

for ∆ ` q v r ≤ s : trace Θ.

Proof: An inspection of the definition of a component for ∆ ` q v r ≤ s : trace Θ. 2

Lemma B.7 If C is a component for ∆ ` q v r ≤ s : trace Θ and C
τ
→ C′ then C′ β

→∗ C′′ where C′′

is a component for ∆ ` q v r′ ≤ s : trace Θ.

44

Proof: The following cases are exhaustive:

1. Case C ≡C[n〈let x : T = ref.val.inCallp.l:L(~v) in t〉]
τ
→ C[n〈let x : T = stater.inCallp.l:L(~v) in t〉]≡

C′

where projn (q) = projn (r a), a = ν(∆′) . n〈call p.l(~v)〉?, and t is a return(x : T) thread at n
for ∆ ` r ≤ s : trace Θ.

If (up to α-converting Θ′) ∆ ` r a ≤ s : trace Θ then we have:

C′ β
→∗ C[n〈ref.val := new[State(∆ ` r a ≤ s : trace Θ)]; let x : T = ref.val.outU() in t〉]

which is a component for ∆ ` q v r ≤ s : trace Θ as required.

If ∆ ` r a 6≤ s : trace Θ then we have:

C′ β
→∗ C[n〈stop〉]

which is a component for ∆ ` q v r ≤ s : trace Θ as required.

2. Case C ≡C[n〈ref.val.inReturnT (v); t〉]
τ
→ C[n〈stater.inReturnT (v); t〉] ≡C′

where projn (q) = projn (r a), a = ν(∆′) .n〈returnv〉?, and t is a thread at n for ∆ ` r a ≤ s :
trace Θ.

If (up to α-converting Θ′) ∆ ` r a ≤ s : trace Θ then we have:

C′ β
→∗ C[n〈ref.val := new[State(∆ ` r a ≤ s : trace Θ)]; t〉]

which is a component for ∆ ` q v r ≤ s : trace Θ as required.

If ∆ ` r a 6≤ s : trace Θ then we have:

C′ β
→∗ C[n〈stop〉]

which is a component for ∆ ` q v r ≤ s : trace Θ as required.

3. Case C ≡C[ref[val = stater] ‖ n〈ref.val := new[State(∆ ` r a ≤ s : trace Θ)]; t〉]
τ
→ ν(stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ` r a ≤ s : trace Θ)] ‖ n〈t〉] ≡C′

where t is a thread at n for ∆ ` r a ≤ s : trace Θ.

By definition, C′ is a component for ∆ ` q v r a ≤ s : trace Θ.

4. Case C ≡C[n〈let x : T = ref.val.outT () in t〉]
τ
→ C[n〈let x : T = stater.outT () in t〉] ≡C′

where projn (q) = projn (r), n is output-enabled in ∆ ` r : trace Θ and t is a return(x : T)
thread at n for ∆ ` r ≤ s : trace Θ.

If ∆ ` r a ≤ s : trace Θ and a = ν(Θ′) .n〈call p.l(~v)〉! then:

C′ β
→∗ C[n〈ref.val := new[State(∆ ` r a ≤ s : trace Θ)];

ref.val.inReturnU(p.l(~v)); let x : T = ref.val.outT () in t〉]

which is a component for ∆ ` q v r ≤ s : trace Θ as required.

45

If ∆ ` r a ≤ s : trace Θ and a = ν(Θ′) . n〈returnv〉! then we must have that r = r1 ν(Θ′) .
n〈call p.l(~v)〉?r2 where n is balanced in r2. Thus, since t is a return(x : T) thread at n for
∆ ` r ≤ s : trace Θ we must have that:

t = let y : U = return(x : T) in t ′

where t ′ is a return(y :U) thread at n for ∆` r1 ≤ s : trace Θ, so t ′ is also a return(y :U) thread
at n for ∆ ` r a ≤ s : trace Θ, so let x : T = v in t is a thread at n for ∆ ` q v r a ≤ s : trace Θ.
Then:

C′ β
→∗ C[n〈ref.val := new[State(∆ ` r a ≤ s : trace Θ)]; let x : T = v in t〉]

which is a component for ∆ ` q v r ≤ s : trace Θ as required.

Otherwise:
C′ β

→∗ C[n〈stop〉]

which is a component for ∆ ` q v r ≤ s : trace Θ as required. 2

Lemma B.8 If ∆′ ` C : Θ′ is a component for ∆ ` q v r ≤ s : trace Θ and (∆′ ` C : Θ′)
a
→ (∆′′ `

C′ : Θ′′) then C′ β
→∗ C′′ where C′′ is a component for ∆ ` qa v r ≤ s : trace Θ.

Proof: The following cases are exhaustive:

1. Case (∆′ `C : Θ′)
ν(∆′′′).n〈call p.l(~v)〉?

→ (∆′,∆′′′ `C ‖ n〈let x : T = p.l(~v) in return(x : T)〉 : Θ′)
where n 6∈ Θ′.

We have:
C′ β

→∗ C ‖ n〈let x : T = ref.val.inCallp.l:L(~v) in return(x : T)〉

which is a component for ∆ ` qa v r ≤ s : trace Θ as required.

2. Case (∆′ ` C[n〈let x : T = block in t〉] : Θ′)
ν(∆′′′).n〈call p.l(~v)〉?

→ (∆′,∆′′′ ` C[n〈let y : U =
p.l(~v) in let x : T = return(y : U) in t〉] : Θ′)
where projn (q) = projn (r), n is input-enabled in ∆ ` r : trace Θ and t is a return(x : T)
thread at n for ∆ ` r ≤ s : trace Θ.

We have:

C′ β
→∗ C[n〈let y : U = ref.val.inCallp.l:L(~v) in let x : T = return(y : U) in t〉]

which is a component for ∆ ` qa v r ≤ s : trace Θ as required.

3. Case (∆′ `C[n〈let x : T = block in t〉] : Θ′)
ν(∆′′′).n〈returnv〉?

→ (∆′,∆′′′ `C[n〈let x : T = v in t〉] :
Θ′)
where projn (q) = projn (r), n is input-enabled in ∆ ` r : trace Θ and t is a return(x : T)
thread at n for ∆ ` r ≤ s : trace Θ.

We have:
C′ β

→∗ C[n〈t[v/x]〉]

which is a component for ∆ ` qa v r ≤ s : trace Θ as required.

46

4. Case (∆′ ` ν(Θ′′′) .C[n〈let x : T = p.l(~v) in t〉] : Θ′)
ν(Θ′′′).n〈call p.l(~v)〉!

→ (∆′ ` C[n〈let x : T =
block in t〉] : Θ′,Θ′′′)
where projn (qa) = projn (r), and t is a return(x : T) thread at n for ∆ ` r ≤ s : trace Θ.

We have C′ is a component for ∆ ` qa v r ≤ s : trace Θ as required.

5. Case (∆′ ` ν(Θ′′′) .C[n〈let x : T = return(v : U) in t〉] : Θ′)
ν(Θ′′′).n〈returnv〉!

→ (∆′ `C[n〈let x :
T = block in t〉] : Θ′,Θ′′′)
where projn (qa) = projn (r), and t is a return(x : T) thread at n for ∆ ` r ≤ s : trace Θ.

We have C′ is a component for ∆ ` qa v r ≤ s : trace Θ as required. 2

The ‘only if’ half of definability now follows, by induction on Lemmas B.6, B.7, and B.8, with
Lemma B.5 as the base case, making appropriate use of Corollary B.2.

47

References

[1] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Declarative Programming. Addison-
Wesley, 1989.

[2] S. Abramsky. Domain theory in logical form. Ann. Pure Appl. Logic, 51:1–77, 1991.
[3] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Information and Computation,

163:409–470, 2000.
[4] M. Boreale, R. de Nicola, and R. Pugliese. Trace and testing equivalences on asynchronous processes.

Information and Computation, 172:139–164, 2002.
[5] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential processes. J.

Assoc. Comput. Mach., 31(3):560–599, 1984.
[6] L. Cardelli and M. Abadi. A Theory of Objects. Springer-Verlag, 1996.
[7] P. Di Blasio and K. Fisher. A calculus for concurrent objects. In Proc. CONCUR, pages 655–670,

1996.
[8] W. Ferreira, M. Hennessy, and A. S. A. Jeffrey. A theory of weak bisimulation for core CML. J.

Functional Programming, 8(5):447–491, 1998.
[9] M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the π-calculus. In Proc. IEEE Conf.

Logic in Computer Science, pages 43–54. IEEE Press, 1996.
[10] A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and typing. In Proc. Int. Work-

shop on High-Level Concurrent Languages, volume 16(3) of Electronic Notes in Theoretical Computer
Science. Elsevier, 1998.

[11] A. D. Gordon and G. D. Rees. Bisimilarity for a first-order calculus of objects with subtyping. In Proc.
ACM Symp. Principles of Programming Languages, pages 386–395. ACM Press, 1996.

[12] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
[13] M. Hennessy. A fully abstract denotational semantics for the π-calculus. Theoretical Computer Sci-

ence, 278(1):53–89, 2002.
[14] M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in the presence of subtyping.

In Proc. Computing: Australasian Theory Symposium, volume 61 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2002.

[15] K. Honda and M. Tokoro. On asynchronous communication semantics. In Proc. ECOOP Workshop
on Object-Based Concurrent Computing, volume 612 of Lecture Notes in Computer Science, pages
21–51. Springer-Verlag, 1992.

[16] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III. Information and
Computation, 163:285–408, 2000.

[17] A. S. A. Jeffrey and J. Rathke. Towards a theory of weak bisimulation for local names. In Proc. IEEE
Logic in Computer Science, pages 56–66. IEEE Press, 1999.

[18] A. S. A. Jeffrey and J. Rathke. A theory of bisimulation for a fragment of Concurrent ML with local
names. In Proc. IEEE Logic in Computer Science, pages 311–321. IEEE Press, 2000.

[19] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proc.
ACM Symp. Principles of Distributed Computing, pages 137–151. ACM Press, 1987.

[20] R. Milner. Fully abstract semantics of typed λ-calculi. Theoret. Comput. Sci., 4:1–22, 1977.
[21] R. Milner. Communicating and Mobile Systems. Cambridge University Press, 1999.
[22] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses. Inform. and Comput., 100(1):1–77,

1992.
[23] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. Int. Colloq. Automata, Languages and

Programming, volume 623 of Lecture Notes in Computer Science, pages 685–695. Springer-Verlag,
1992.

[24] J.-H. Morris. Lambda calculus models of programming languages. Dissertation, M.I.T., 1968.
[25] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that dynamically create

local names, or: What’s new? In Proc. Int. Symp. Mathematical Foundations of Computer Science,
volume 711 of Lecture Notes in Computer Science, pages 122–141. Springer-Verlag, 1993.

[26] G. Plotkin. LCF considered as a programming language. Theoret. Comput. Sci., 5:223–256, 1977.

48

[27] G. B. J. Rumbaugh and I. Jacobson. The Unified Modeling Language: User Guide. Addison Wesley,
1999.

[28] D. S. Scott. Domains for denotational semantics. In M. Neilsen and E. M. Schmidt, editors, Proc.
ICALP 82, pages 577–613. Springer-Verlag, 1982. LNCS 140.

[29] P. Selinger. First-order axioms for asynchrony. In Proc. CONCUR, volume 1243 of Lecture Notes in
Computer Science, pages 376–390. Springer-Verlag, 1997.

49

