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Abstract. Aspect-oriented programming is emerging as a powerful tool for sys-
tem design and development. In this paper, we study aspects as primitive compu-
tational entities on par with objects, functions and horn-clauses. To this end, we
introducepABC, a name-based calculus, that incorporates aspects as primitive. In
contrast to earlier work on aspects in the context of object-oriented and functional
programming, the only computational entitieqiBC are aspects. We establish

a compositional translations infABC from a functional language with aspects
and higher-order functions. Further, we delineate the features required to support
an aspect-oriented style by presenting a translatiopA&B8C into an extended
T-calculus.

1 Introduction

Aspects [7, 21, 28, 23, 22, 3] have emerged as a powerful tool in the design and develop-
ment of systems (e.g., see [4]). To explain the interest in aspects, we begin with a short
example inspired by tutorials of AspectJ [1]. Suppose dlas=slizes a useful library,

and that we want to obtain timing information about a methed() of L. With aspects

this can be done by writingdvicespecifying that, whenevefoo is called, the current

time should be logged,oo should be executed, and then the current time should again
be logged. It is indicative of the power of the aspect framework that:

— the profiling code is localized in the advice,

— the library source code is left untouched, and

— the responsibility for profiling alfoo () calls resides with the compiler and/or
runtime environment.

The second and third items ensure that, in developing the library, one need not worry
about advice that may be written in the future. In [13] this notion is calldiviousness
However, in writing the logging advice, one must identify the pieces of code that need
to be logged. In [13] this notion is callegLantification These ideas are quite general
and are independent of programming language paradigm.

The execution of such an aspect-program can intuitively be seen in a reactive frame-
work as follows. View method invocations (in this case the () invocations) as
events. View advice code (in this case the logging advice) as running in parallel with the
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other source code and responding to occurrences of events (corresponding to method
calls). This view of execution is general enough to accommodate dynamic arrival of
new advice by treating it as dynamically created parallel components. In the special
case that all advice is static, the implicit parallel composition of advice can be compiled
away — in aspect-based languages, this compile-time process wadkadng Infor-

mally, the weaving algorithm replaces each cal e () with a call to the advice code,

thus altering the client code and leaving the library untouched.

Aspect-oriented extensions have been developed for object-oriented [21, 28], im-
perative [20], and functional languages [30, 31]. Furthermore, a diverse collection of
examples show the utility of aspects. These range from the treatment of inheritance
anomalies in concurrent object-oriented programming (eg. see [25] for a survey of such
problems, and [24] for an aspect-based approach) to the design of flexible mechanisms
for access control in security applications [5]. Recent performance evaluations of as-
pect languages [12] suggest that a combination of programming and compiler efforts
suffices to manage any performance penalties.

Much recent work on aspects is aimed at improving aspect-oriented language design
and providing solutions to the challenge of reasoning about aspect-oriented programs.
For example, there is work on adding aspects to existing language paradigms [30, 31],
on finding a parametric way to describe a wide range of aspect languages [10], on find-
ing abstraction principles [11], on type systems [18], and on checking the correctness
of compiling techniques using operational models [19] or denotational models [32]. A
strategy in much of this work is to develop an calculus that provides a manageable set-
ting in which to study the issues. Similarly to the way that aspect languages have been
designed by adding aspects to an existing programming paradigm, these calculi gener-
ally extend a base calculus with a notion of aspect. For example, [19] is based on an
untyped class-based calculus, [10] is based on the object calculus [2], and [31] is based
on the simply-typed lambda calculus.

If one wishes to study aspects in the context of existing programming languages,
then calculi of this style are quite appropriate. However, another role for an aspect cal-
culus is to identify the essential nature of aspects and understand their relationship to
other basic computational primitives. We follow the approach of the theory of concur-
rency — concurrency is not built on top of sequentiality because that would certainly
make concurrency more complex rather than sequentiality. Rather, concurrency theory
studies interaction and concurrency as primitive concepts and sequentiality emerges as
a special case of concurrency.

Along these lines, we aim here to establish aspects as primitive computational en-
tities on par with objects, functions, and horn clauses; separate from their integration
into existing programming paradigms. To this end we have created a minimal aspect
calculus callequABC.

We presenplABC as a sequential deterministic calculus, with all concurrency being
implicit. The primitive entities oUABC are names, in the style of the pi-calculus [26]
and the join calculus [15]. It differs in the choice of the communication paradigm in
two ways: firstly, messages are broadcast (somewhat in the style of CSP [16]) to all
receivers; secondly, the joins of the join-calculus are generalized to permit receiver
code (ie. advice) to be conditional on second-order predicates over messages.
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We show that functions and objects can be realized yshi8(C, demonstrating that
aspects are an expressive primitive. InterestinghBC achieves expressiveness with-
out explicit use of concurrency, providing an analysis that differs from those familiar
to the concurrency community. This is not to say that aspects are incompatible with
concurrency. The addition of explicit concurrency does not alter the basic development
of JPABC — we eschew explicit concurrency ii\BC in this extended abstract to make
the presentation manageable to a reader unfamiliar with aspects.

Organization. The rest of the paper is organized as follows. We begin with an informal
introduction to the techniques and results of the paper. The key technical ideas are
developed in the rest of the paper. Section 2 describes the syntax and dynamic semantics
of HJABC. The two following sections describe encodings of the lambda-calculus, both
with and without aspects. Finally, we describe the translatiquA&C into a variant of

the polyadic pi-calculus. In this extended abstract, we elide all proofs.

2 Minimal aspect-based calculus

Aspect-oriented languages addviceand pointcutson top of events occurring in an
underlying model of computation. For example, in an imperative model, the events
might be procedure calls or expression evaluations. The pointcut language provides a
logic for describing events or event sequences. Here we restrict our attention to single
events, leaving the furtile ground of temporal pointcuts (such as Aspectiksy) for

future work.

Advice associates a pointcut with executable code. When an event specified by the
pointcut occurs, the advice “fires”, intercepting the underlying event. Execution of the
event itself is replaced with execution of the advice body. Advice may optiopadly
ceedto execute the underlying event at any point during execution of the advice body.
If many pieces of advice fire on the same event, thévice orderingndicates which
piece of advice will be executed; in this case, a proceed will cause execution of the next
piece of advice.

In JABC, computational events are messages sent from a source to a target. The
source, message, and target are specified as hames, represented as lower-case letters.
An example message command is the following:

letx=p—q:m

The four names in the command have different purposes, so we develop some distin-
guishing terminology. The source, and the targety, areroles mis amessagex is
avariable which binds the value returned by the message. Messages include both ad-
vicea,...,eand labelsf,...,/. Commands may specify a sequence of messages. This
is useful for modeling both traditional method calfs;> g: ¢, and advice sequences,
p-q:a,b. For compatibility with declaration order, we read message sequences right
to left; in the commang — g: m,n, messagea is processed beforma.

The only other computational commandsABC are return statements, which
terminate all command sequences; for exampleytn Vv’ returns name.
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Finally, the calculus includes commands for declaring roles and advice. An advice
declaration binds an advice name and specifies a pointcut and advice body. For example,
the following advicea causes any messagjesent fromp to q to be redirected as a
messagé, sent fromptor. This is an “extreme” form of delegation. Messages tre
delegated to beforeq even receives them.

advice a[p—q:kj=letx=p—r:/¢; returnx

The term between brackets ipaintcutindicating that messadeshould be intercepted
when sent fronp to g. The body of the advice is given after the first equality symbol.

The pointcut language allows for quantification over names. For example, the fol-
lowing variation captures evekymessage sent tf regardless of the sender. The advice
resends the messagegaenaming it to/; the sending role is unchanged.

advice a[3z.z—q:k]=ay.letx=y—q: {;returnx

Here,z binds the source of the message in the pointcut,yabithds the source of the
message in the body of the advice. The bindés mnemonic for “source”. One may
also quantify over the target of a message; the corresponding bindefois‘target”.
The following code converts evektmessage into &message with the same source
and target:

advice 8[3zs. 3z . Zs— z : K| =0Ys. Ty; . letX=Ys — i : £; return X

In all the examples given so far, the advice causes all other code associated with the
event to be ignored. If we wish to allow many pieces of advice to trigger on a single
event, then we must encode the ability to “proceed”. The proceed bindeaptures

the names of any other advice triggered by a pointcut. The following code captures
k-messages and executes other adsfter redirecting the message to4o

advice 8[3%. 3z . s~ z : K| =0Ys. Ty; . TD. let X=Ys =Vt : b, £; return x

Reversing the order df and/?, “ys—V; : ¢,b", causes other advice to execuiefore
redirecting the message. In this case,#tmeessage will only be sent if the other advice
uses its proceed binder. In genelalill be replaced with a sequence of messages when
the advice fires. If there is no other associated advice, theitl be replaced with the
empty sequence, in which casg = v; : £,b" and “ys—V; : b, £” execute identically.

MABC allows bounded quantification in pointcuts. As motivation, consider a class-
based language with advice, such as AspectJ. In such a language, one may specify
pointcuts based on class; all objects inhabiting the class will cause the pointcut to fire.
Both objects and classes are encodedABC as roles. In this case, a pointcut must
specify a subset of roles as the source or target of a message. We achieve this by asso-
ciating names with a partial order. The following declaration captureskangssage
sent tog from a sub-name df

advice a[3z<t.z—q:k]=0y.letx=y—Qq: ¢;returnX

The partial order is established through role declarations, such as the following, which
declares to be a sub-name af
role p<q
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In examples throughout the paper, the reserved namés the largest name with re-
spect to this ordering. We therefore abbreviatde'p<top” as “role p.”

The role hierarchy is used extensively in the encoding of the class-based language
given in the full version of the paper [9].

Dynamics. Consider the following sequence of declaratidds,

role p; roleq; roler;
advice a[p—q:K|=0Ys. Ty . Th. (letz=y; — 1 : b; returnys);

Consider the execution of the following program usihg
D; letx=p—q: j,k; returnx

Messages are processed using two rules which differentiate the type of the leading name
in the message list, in this cage To distinguish these two forms of reduction, we
impose a syntactic distinction between advice and other names. Advice is named only
to simplify the semantics. The syntactic distinction makes it so that advice cannot fire
based on the execution of other advice. Huvice lookuprule replaces the leading
label (or role) in a message list with the advice names that the label triggeksisSo
replaced witha.

D; letx=p—q: j,a; returnx

The advice invocatiorrule replaces a message command with the appropriately in-
stantiated body of the triggered advice. Further reducing the program by this rule, we
obtain:

D; letz=p—r:j; returnp

The return variable has changed as the result of a double substitution. In the process of
inserting the advice body, occurrences of the let variataee replaced with the return
value of the advice body. In this case, the return vajyeis itself replaced with the
name of the source of the message,

2.1 Syntax and semantics ofiABC

Syntax For any grammak, define the grammars of lists as:
X n=Xg,..., % Comma-separated lists
Xo o= Xeo . X Semicolon-terminated lists
Write € for the empty list.
We assume a set efames ranged over byn, n. We further assume that names
are partitioned into two disjoint and distinguishable sets. Advice names are associated
with pointcuts and advice. Roles are use to name objects in the system as well message

labels.
f,....,p,...,2 Role (or Label)
a e Advice name

g o eey
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Names may be roles or advice names.
mn:=/|a Name (or Message)

The grammar fopABC programs is as follows. We discuss point cgishelow.

PQ,R ::= Program
returnv Return
letx=p—q:mP Message Send
role p<q; P Role

advice a/@=0x.Ty.Th.Q;P  Advice

Let D andE range ovedeclarations which may be either role delcarationsle p<q”
or advice declarationstlvice a[q=0x.1y. . Q". Let B andC range ovecommands
which may be declarationd” or message sendsetx=p— q: m". Note that all pro-
grams have the forrB; returnv.

— The commandlétx=p—q:mM; P” bindsx in P. Execution causes messageto be
sent fromp to g, binding the return value of last executed message to

— The declarationrole p<g; P” binds p in P. It declaresp as a subrole od.

— The declaration ddvice aj@|=0x.ty. Th. Q; P" binds a in Q andP; in addition,x,
y andz are bound imQ. It declaresa to be an association between pointguand
advice bodyox.1y.Th. Q.

Omitted binders in an advice declaration are assumed to be fresh, for example:

advice [@|=Q;P £ advice ajg|=0x.Ty.Th. Q; P
where{a,x,y,b} Nfn(Q) = 0 anda ¢ fn(P)

Defineboundandfree names as usual. Writé for the equivalence generated by con-
sistent renaming of bound namé¥%y| for the capture-free substitution of namédor
free namex, and|[™a] for the capture-free substitution of the name fifstor free name

a. Denote simultaneous substitution[¥sg “y|.

Pointcuts The grammar for pointcuts is as follows.

o = Pointcut
true | false True, False
OAY | v And, Or

X< p.@| X<p.g@ Al Some
p-q:f |-p—q:¢{ Atom, Not Atom

The satisfaction relation,3;+ p— q: ¢ sat ¢, states that message— q: ¢ satisfiesp
assuming the role hierarchy given By Satisfaction is defined in the standard way,
building up from the atoms. We say that pointcgndy overlapin D; if for somep,
qand/, D; p—q:¢sat gandD; p—q: £ sat .
We write “p. ¢” for the pointcut which fires whep or one of its subroles receives
messagé:
p.f 2 Ix<top.Iy< p.x—y:/l
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Dynamic semanticsThe reduction relatior? — P, is defined by two rules. The first
definesadvice lookup The second definemdvice invocationAdvice lookup replaces

the message— q: /¢ with p—q: &, whered is the advice associated witi+-q: ¢. The

order in the sequence of advice is the same as the declaration order. The rule treats the
rightmost message in a sequence.

D;letz=p—q:M{;P — D;letz=p—q:m &P

_ (advicealq]---) € D
whereld] = [a andD;+ p—q:¢sat @

Advice invocation replaces the messageq: a with the body ofa. This requires a few
substitutions to work. Suppose the bodyad$ “ox.ty.Th. Q", whereQis “B; returnV”.
Suppose further that we wish to execulet z= p— q: M, a; P". The source of the mes-
sage isp, the target isq, the body to execute iB returningv, and the subsequent
messages anm@. This leads us to execuiPx, %, Mb] thenP[2). The substitution irP
accounts for the returned value Qf As a final detail, we must take care of collisions
between the bound names@fandP. We define the notationlétz= Q; P” to abstract
the details of the required renaming.

letz=Q;P £ B; P[V4
wherebn(B) Nfn(P) = 0 andQ < B; returnv

With this notation, the rule can be written as follows.

D;letz=p—q:Mma;P — D;letz=Q[Pkx, Yy, Mo];P
where(advice a[---]=0x.1y.Th. Q) € D

Note that in the reduction semantics, the ordering of advice is significant only for over-
lapping pointcuts.

Garbage collectionin the following sections, we present encodings that leave behind
useless declarations as the terms reduce. In order to state correctness of the translations,
we must provide a way to remove unused declarations from a term. For example, the
following rule allows for collection of unused roles:

B;rolep<q;P % D;P  wherep ¢ fn(P)

An adequate set of garbage collection rules is given in the full version of the paper [9].

3 Translation of other AOP languages intopABC

The small collection of basic orthogonal primitives gABC make it a viable candi-

date to serve a role analogous to that of object-calculi in the study of object-oriented
programming, provided that it is expressive enough. We establish the expressive power
of JABC by compositionakranslations from the following languages that add aspects
added on top of distinct underlying programming paradigms:
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— A lambda-calculus with aspects — core minAML [31].
— An imperative class-based language (in the spirit of Featherweight Java [17], Mid-
dleweight Java [8], and Classic Java [14]) enhanced with aspects [19].

On one hand, the translations support our hypothesiq#haC captures a significant
portion of the world of aspects. On the other hand, they establish that aspects, in isola-
tion, are indeed a full-fledged computational engine.

In this extended abstract, we discuss only minAML; the encoding of the class-based
language is given in the full version [9]. We start with a discussion of functions and
conditionals.

3.1 Functions and conditionals

The encodings in this section rely heavily on the following notation. In a context ex-
pecting a program, definex" as the program which returns and define p—q: M’ as
the program which returns the result of the message:

X £ returnX
p—q:M= letx=p—q: M returnX

Given this shorthand, we encode abstraction and application as follows, Where
andg are fresh roles and:4ll” and “arg” are reserved roles that are not used elsewhere.
The basic idea is to model an abstraction as a piece of advice that responal$’te-"
in response to this method, the advice body invokes the argument by emittgigd
initiate evaluation of the argument. An application is encoded in a manner consistent
with this protocol: in an application, the argument is bound to advice that triggers on

“arg”.
AX.P £ rolef;
advice [f.call|=1y.letx=y—y:arg;P;
return f
RQ%£ letf=R

roleg< f;

advice [g. arg|=Q;

g—g:call
Example 1.The encoding ofAx.P)Qis “D;g— g: call”, whereD; is as follows:

D;=role f;

advice a[f . call|=1y. letx=y—y:arg; P;

roleg< f;

advice b[g. arg]=Q;

This term reduces as:

(Ax.P)Q = D;g—g:call
- D;g—g:a
— Ij;letx=g—>g:arg;P
— D;letx=g—g:b;P
— D;letx=Q;P
£ letx=Q;P
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From hereQ is reduced to a valug then computation proceedsR/x].

This is the expected semantics of call-by-value application, except for the presence of
the declaration®, which we garbage collect.

Example 2.We now give a direct encoding of the conditional. The encoding shows one
use of advice ordering. Definéf“p < qthen P else Q" as the following program, where
r is a fresh role andif” is a reserved role.

if p< qthenPelse Q£ roler;
advice [Ix < top . X—r:if|=Q;
advice [Ix < q.x—r:if]=P;
p-r:if

Note thatP makes no use of its proceed variable, and d&fifes it effectively blocks
Q. We can verify the following.

L .e [PifDFp<q
. <
Djif p< gthen Pelse Q "~ {Qotherwise

3.2 Encoding core MinAML in pABC

We sketch an encoding int@ABC of the function-based aspect language MinAML
defined by Walker, Zdancewic and Ligatti [31]. We treat a subset of core MinAML
which retains the essential features of the language. Our goal, in this extended abstract,
is not to provide a complete translation, but rather to show that the essential features
of [31] are easily coded ipABC. In particular, in [31], advice is considered to be a
first-class citizen, where here we treat it as second-class.

Core MinAML extends the lambda calculus with:

— The expressionew p; P creates a new namievhich acts as a hook.

— The expressiod p. z— Q} » P attaches the advickz. Q to the hookp. The new
advice is executed after any advice that was previously attached to

— The expressioqd p.z— Q} «P is similar, except that the new advice is executed
beforeany previously attached advice.

— The expressiop(P) evaluate$® and then runs the advice hooked jan

The encoding intpABC directly follows these intuitions and is as follows, wheris a
fresh role and fiook” is a reserved role. The subtle difference between the encoding of
before and after previous advice is a paradigmatic use of the proceed bindé3h

new ;P £ role p;advice [p. hook] =Ax. x; P
{p.x—Q} «P £ advice [p.hook]=1z.Th. (AX.lety=Q; (z—z: b)(y)); P
{p.x— Q}>P £ advice [p. hook]=1z.Ti. (Ay. letx= (z— z: b)(y); Q); P
p(P) £ (p— p:hook) P
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Example 3.Walker, Zdancewic and Ligatti present the following example. We show
the reductions under our encoding. For the purpose of this example, we e48d4d
with integers and expressions in the obvious way.

new P;{p.x1 = X1+ 1} <{p. X - X% 2} > p(3)
This translates toD; (p— p: hook) 3", whereD; is:

role p;

advice a[p. hook]=AXg . Xo;

advice b[p. hook]=1z. . A1 . lety1 =x1 + 1;(z— z: b) (y1);
advice c[p. hook]=Tz.T. Ay, . letXp = (z— z: b) (Y2); X2 % 2;

and reduction proceeds as follows.

;(p— p:hook)3
i(p—p:ab,c)3
—D; (Ay2.letxo=(p— p:a,b)(y2); x2%2) 3
AD*EEDHSth:(p*) p:a,b)(3);x2*2
—D;letxp=(Axq . lety; =x1 4 1;(p— p:a)(y1))(3); %2 2
»*iﬁ;letx2=(lety1=3+ L(p-p:a)(yr));Xxe*2
—»*Eiﬁ;letx2=(p—> p:a)(4); X2 *2
—D;letxp = (AX0 . X0) (4); X2 % 2
B D letxp=4:%0% 2
—95,8

gc
-8

lv/Nwi

—>

4 Polyadict-calculus with pointcuts

We identify the features required to support an aspect-oriented style by presenting a
translation ofyABC into a variant of the polyadit-calculus [26]. The motivation for

this portion of the paper is the striking analogies between aspects and concurrency that
go beyond our use of concurrency techniques (eg. names, barbed congruences) to study
aspects.

Firstly, there are the superficial similarities. Both aspects and concurrency assign
equal status to callers/senders and callees/receivers. Both cause traditional atomicity
notions to break with the concomitant effects on reasoning — aspects do this by refining
atomic method calls into potentially multiple method calls, and concurrency does this
by the interleaving of code from parallel processes.

Secondly, there are deeper structural similarities. The idea of using parallel compo-
sition to modify existing programs without altering them is a well-understood modular-
ity principle in concurrent programming. Such an analysis is an essential component of
the design of synchronous programming languages [6]. Construed this way, the classical
parallel composition combinator of concurrency theory suffices for the “obliviousness”
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criterion on aspect-oriented languages [13] — the behavior of a piece of program text
must be amenable to being transformed by advice, without altering the program text.

If this informal reasoning is correct, one might expect that the only new feature that
an expressive concurrent paradigm needs to engdBE€ is a touch of “quantification”,
which has been identified as the other key ingredient of the aspect style [13].

Our translation into a polyadi-calculus is an attempt to formalize this reasoning.
Consider a variant of the-calculus with a hierarchy on names, so the new name process
now has the formmew x<y;P. We also consider a slight generalization of the match
combinator present in early versions of tlrealculus [27], which permits matching on
the hierarchy structure on names. The form of the match procg&sisp| P wheregis
a formula in a pointcut language that is essentially a boolean algebra built from atoms
of the formX. The generalized match construct can express traditional (mis)matching
via [x=y|P = [xsat y] P.

The dynamics oftis unchanged, apart from an extra rule to handle the generalized
matching construct that checks the hierarchy of names (written hele)der facts
relating to the names (here

DF [Zsat P — P whereD F Zsat @

We describe a compositional translation freieBC to the polyadicrcalculus with
these mild extensions.

4.1 Syntax and semantics oftwith pointcuts

Syntax The grammar for pointcuts is as fpABC, except for the atoms.

@,y ::= ... Pointcut (As for ABC)
X Atom
—X Not Atom

The grammar of processes is standard, except for a generalized match construct.

PQR = Process

z(X) | z(X)P  Output, Input

0 |P|Q Termination, Parallel
P Replication

new X<y;P  New Name

[Xsat @ P Match

The matching construct allows for both matching and mismatching. We can defiae “
y|P” as “[xsat y] P” and “[x # y]P" as “[x sat —y] P".

Dynamic semanticd.et X range over partially ordered finite sets of names, and write
X Fx <ywhenx <y can be derived fronX. The semantics of pointcuk6- X sat @is
as forpABC except for the atoms:

Xt2z,....znsatzy,...,2Z
XFEz,...,Zysat =Xq,...,Xm if N£ morz #£ x for somei
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The dynamic semantics - P — P’ is given by the usual-calculus rules, the only
difference being that the semantics of pointcuts requires the partial Xrifethe re-
duction:

XFZsat@

XF [Zsat )P — P

and so the structural rule for new must include the partial order:

X, X<yFP—P x¢gX
XF new x<y; P »— new x<y; P

The remainder of the dynamic semantics is as given in [26].

4.2 EncodingpABCin 1t

We now show thaplABC can be translated (via a spaghetti-coded CPS transform [29])
into our polyadicrecalculus.

In our translation, following the intuitions expressed in the introduction, advice is
simply placed in parallel with the advised code. However, we need to account for a cou-
ple of features that disallow the straightforward use of parallel composition and cause
the superficial complexity of the translation. First, we need to do some programming to
make a single message of interest activate potentially several pieces of advice. Second,
the order of invocation of the advice is fixed, so we are forced to program up explicitly
the order in which the message is passed down the advice chain.

We will, in fact, translate a sublanguage, but one which contains all programs we
consider interesting. A prograf= D;Q is user codevhenever, for any calp— q: m
contained inP, we have:

— mis arolet; or
— mis an advice namb bound as a proceed variable — that is, there is an enclosing
advice declarationdvice aj@|=0x.Ty. TD. - - .

Unfortunately, user code is not closed under reductioR:ii user code, ang — P/,
thenP’ is not necessarily user code. We defined user closed code, which is closed under
reduction.

Definition 4. A program P= D;Q is user closedvhenever, for any call p q: M con-
tained in P, we have either:

— mis arolet; or
— M is an advice name b bound as a proceed variable; or
— M is a sequenced” and for someb, r, s and/:

advicec[g]--- €D

3] = [C D;Fr—silsat@
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Table 1 Translation frompABC to Tt

[r;s,¢sat @] Q@
| [r,s,€sat —[@]] c(r,s,£,%,y,K ,C)
)
whereD = advice a[@|=0x.1y. Th. P/
andD; D; [P](k,a,p) = Q
andD; D;+ [P'](K,c,pU{b— (c,r,56)}) =Q
B;+ [D;P](k,c,p) = new p<q;Q
whereD = role p<q andD; D;+ [P] (k,c,p) = Q
Dt [letx=p—q:&P](k.c,p) = new K <k; (error(p,g, £, p,q,K',c) | K (x,¢') Q)
B;k [letx=p—-q: £;P](k.c,p) = new K <k; (c(p,q,¢, p, 4, K ,€) [ K'(x,¢) Q)
whereD;F [P](k,c,p) = Q
D;F [letx=p—q:b;P](k,c,p) = new K <k; (d(r,s,¢,p,q,K,c) | K'(x,c') Q)
wherep(b) = (d,r,s,¢) andD; - [P](k,c/,p) = Q
D;F [letx=p—q:& b;P](k,c,p) = new K <k; (b(r,s,£, p,q,K,c) | K(x,¢)Q)

advicealg---€ D

D:Fa<b }
Dibr—s:fsatg

andD;+ [P](k,c,p) =Q

D;F [returnv](k,c,p) = k(v,c)

where[d, b] = {a

Let p be a partial function from names to quadruples of names. We define the trans-
lation D;+ [P](k,c,p) = Q in Table 1. Write D; [P] = Q" as shorthand for B;-
[P](result,error,0) = Q".

The translation uses communication of seven-tuptes?, x,y,k, c). Herer is the
original caller,s is the original callee{ is the original method name,is the current
caller of a piece of advicej is the current calleg is a continuatiort is the name of
the most recently declared advice. Whenever a method is called, the translation goes
through the list, checking advice in order. This encodes advice lookup.

Note that the translation is partial: there exist progr&ssich that there is nQ for
which [P] = Q. However, on user closed programs, the translation is total: there always
exists such &. Moreover, on user code, the translation is a functi@ris uniquely
determined by.

Theorem 5. For any user code P, ffiP] = Q then P—* D;returnv
iff - Q —* new X<V, (Q’ | re5u|t<v>)‘

5 Conclusions and Future work.

MABC was deliberately designed to be a small calculus that embodies the essential fea-
tures of aspects. However, this criterion maid8C an inconvenient candidate to serve
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in the role of a meta-language that is the target of translations from “full-scale” aspect
languages. There is recent work on such meta-languages (eg. [10] builds on top of the
full object calculus), and the bridging of the gap betwpdBC and such work remains

open for future study. In this vein, we are exploring the addition of temporal connec-
tives to the pointcut logic oftABC. Such an approach provides a principled way to
understand and generalize features in existing aspect languages, e.g. cflow in AspectJ,
that quantify over sequences of events.

There is ample evidence that aspect-oriented programming is emerging as a power-
ful tool for system design and development. From the viewpoint of CONCUR, aspects
provide two intriguing opportunities. First, the techniques and approaches that have
been explored in concurrency theory provide the basis for a systematic foundational
analysis of aspects. Our descriptionu#BC and its expressiveness falls into this cat-
egory. In a more speculative vein, the large suite of tools and techniques studied in
concurrency theory are potentially relevant to manage the complexity of reasoning re-
quired by aspect-oriented programming. Our translatiopABC into the pi-calculus
is a step in understanding this connection.
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