
A Completeness proof: categories with finite products

The flow graphs we consider in this paper are finite directed edge-labelled, node-labelled
graphs where the incoming and outgoing edges to each node are ordered, and each edge
has exactly one start node, but multiple finish nodes. We impose a type discipline to
ensure that the edge and node labels match. These graphs are the same as Hasegawa’s
sharing graphs.

A single-coloured flow graph G over a signature ΣV is:

� A finite set of edges (ranged over by E, F).

� A finite set of nodes (ranged over by N).

� For each edge, a label sort, written E : X.

� For each node, a label constructor, written N : c.

� A list of incoming edges and a list of outgoing edges, written G : E � F.

� For each node, a list of incoming edges and a list of outgoing edges, written
N : E � F.

� If N : E � F, N : c and c : X � Y, then E : X and F : Y.

� Each edge occurs exactly once either as an incoming edge of the graph, or an
outgoing edge of a node.

Such graphs can be drawn with incoming edges on the left and outgoing edges on the
right:

G

Note that we insist that each edge has a unique source, but not a unique target. This
allows edges to fork or terminate (but not the mirror-image graphs):

We can define the following operations on graphs (and below we shall show that they
satisfy the equations necessary to be a category with finite products):

1

Identity:

Composition: G H

Tensor:
G

H

Symmetry:

Diagonal:

Terminal:

A morphism F between flow graphs G and G
�
is:

� A map from the edges of G to the edges of G
�
.

� A map from the nodes of G to the nodes of G
�
.

� The maps respect labels, incoming edges and outgoing edges.

Most of the axioms for a category with finite products are sound for flow graphs up to
graph isomorphism, but the naturality conditions are not graph isomorphisms:

Naturality of diagonal: G
��

G

G

Terminal is natural: G
��

To find a graph model of finite products, we cannot consider graphs up to graph isomor-
phism. This is a familiar problem from concurrency theory, where graph isomorphism
of labelled transition systems is too fine an equivalence, and so bisimulation, developed
by Milner is used. We can adapt bisimulation to flow graphs, and below we show that the
finite product axiomatization is sound and complete for flow graphs up to bisimulation.

A relation R between flow graphs G and G
�
is:

� A relation between the edges of G to the edges of G
�
.

� A relation between the nodes of G to the nodes of G
�
.

� The relations respect labels, incoming edges and outgoing edges:

– if E R E
�
and E : X then E

�
: X,

– if N R N
�
and N : c then N

�
: c,

2

– if G : E � F and G
�
: E

�
� F

�
then E R E

�
and F R F

�
, and

– if N : E � F in G, N
�
: E

�
� F

�
in G

�
and N R N

�
then E R E

�
and F R F

�
.

together with the symmetric conditions.

Note that (up to isomorphism) this definition is the same as requiring R to form a jointly
monic span G � R � G

�
in the category of flow graphs.

A relation R between flow graphs G and G
�
is a simulation iff:

� Whenever E is the nth outgoing edge of N in G and E R E
�

then E
�

is the nth
outgoing edge of N

�
in G

�
and N R N

�
.

� R is a function on incoming edges of G (that is for any incoming edge E of G
there is precisely one edge E

�
of G

�
such that E R E

�
).

A relation R between flow graphs G and G
�

is a bisimulation iff R and R-1 are simula-
tions.

G and G
�
are bisimilar (written G � G

�
) iff there is a bisimulation between them.

Note that any graph isomorphism is a simulation, and so isomorphic graphs are bisimi-
lar. The converse is not true, since:

G �
G

G

G �

We are going to construct a category of graphs viewed up to bisimulation: in order
for this definition to be valid, we require all of the categorical operations on graphs to
respect bisimulation. Note that this is the reason for the (otherwise somewhat unnatural)
second clause in the definition of simulation:

� R is a function on input edges (that is for any input edge E of G there is precisely
one edge E

�
of G

�
such that E R E

�
).

Without this clause, any relation between nodeless graphs would be a bisimulation, and
in particular we could construct a bisimulation:

R

but:

3

c

d �
�

c

d

Since we have included the second clause in the definition of simulation, we have that
nodeless graphs are bisimilar only when they are isomorphic, and so this counterexam-
ple fails.

Proposition (Bisimulation is a congruence). Bisimulation is a congruence wrt the
graph operations.

Proof. It is routine to show that bisimulation is an equivalence.

To show that it is a congruence, we have to show it is respected by composition and
tensor. Of these, tensor is simpler, so we shall show the case for composition.

If we have bisimulations R and S with:

G1 R G2

H1 S H2

we would like to find a bisimulation R;S with:

G1 H1 R;S G2 H2

Wlog, we shall assume the graphs have disjoint node and edge sets. Define union on
graphs with overlapping edge sets as G � G

�
with:

� Nodes and edges taken as the union of G and G
�
s.

� Incoming edges from G.

� Outgoing edges from G
�
.

Given graph G including vector of edges E, let G[F/E] be the graph given by renaming
edges E to F.

We have graphs:

G1 : E1 � E1
�

G2 : E2 � E2
�

H1 : F1 � F1
�

H2 : F2 � F2
�

and:

4

G1;H1 = G1 � H1[E1
�
/F1]

G2;H2 = G2 � H2[E2
�
/F2]

Then define relation:

R;S R � S[E1
�
/F1]

It is routine to show that this relation respects incoming and outgoing edges, labelling,
and is an isomorphism between incoming edges. To show that R;S is a bisimulation,
consider any node in G1;H1:

N1 E1

where E1 R;S E2. Then either:

� E1 � G1, so N1 � G1 and E1 R E2. Since R is a bisimulation, we can find a
N2 � G2 with N1 R N2.

� E1 � H1, so E1 is not an incoming edge of H1, so E2 is not an incoming edge of
H2, so N1 � H1 and E1 S E2. Since S is a bisimulation, we can find a N2 � H2
with N1 S N2.

In either case, we have found a node in G2;H2:

N2 E2

where N1 R;S N2. Thus composition respects bisimulation. �

A category with finite products is over a signature Σ iff:

� For each sort X there is an object [[X]].

� For each constructor c : X1...Xm
� Y1...Yn

there is a morphism [[c]] : [[X1]] ��������� [[Xm]] � [[Y1]] ��������� [[Yn]].

Acyclic flow graphs over a given signature ΣV form a category Graph(ΣV) over ΣV

where:

� Objects are vectors of sorts X.

5

� Morphisms from X to Y are acyclic graphs G : E � F such that E : X and F : Y,
viewed up to bisimulation.

Proposition (Flow graphs form a category with finite products). Graph(ΣV) is a
strict cartesian category over ΣV.

Proof. We have already defined the required operations, but we need to show they
satisfy the axioms for a cartesian category. For this, we construct a bisimulation for
each of the axioms. �

Since flow graphs over ΣV form a cartesian category over ΣV, there is a unique mor-
phism [[_]] from the free cartesian category over ΣV into Graph(ΣV). We can define
this syntactically as the term algebra (with the type system and axiomatization given for
cartesian categories) Term(ΣV):

f,g ::= idX
�

f ; g f g

�
f � g

f

g

�
symmX Y

�
copyX

�
discardX

�
c c

If terms can be proved equal using the axioms for a cartesian category we shall write
�

f = g.

We would like to show soundness and completeness for this axiomatization, that is
�

f = g iff [[f]] � [[g]]. As is usual for such results, soundness is immediate, but
completeness requires a normal form result. Most of the rest of this section is taken up
by showing the required normalization results.

Proposition (Soundness). If
�

f = g then [[f]] � [[g]].

Proof. Follows immediately from the fact that Graph(ΣV) is a cartesian category. �

Proposition (Expressivity). For any graph G, there is a term f such that [[f]] � G.

Proof. Proved by induction on the number of outgoing edges of G. �

A shuffle (ranged over by s) is any term not including constructors c. A permutation
(ranged over by p) is any shuffle not including copy or discard.

6

Proposition (Completeness for shuffles). If [[s1]] � [[s2]] then
�

s1 = s2.

Proof. First show by induction on s that:

�
s =

Then show by induction on s that:

�
s =

Then show by induction on s that we can find a shuffle t such that:

�
s =

t

(The previous result is needed in the case of composition).

Finally, iteratively use the first and last properties to show that if [[s1]] � [[s2]] then
�

s1 = s2. �

A term is in normal form (ranged over by n) iff it is of the form:

n ::= s
�

n p

�
n c

Proposition (Normalization). For any f we can find normal g such that
�

f = g.

Proof. First show by induction on syntax that for any normal f1 and f2, we can find
normal g such that

�
f1 � f2 = g.

Then show by induction on syntax that for any normal f and shuffle s, we can find normal
g such that

�
f;s = g.

Then show by induction on syntax that for any normal f1 and f2, we can find normal g
such that

�
f1;f2 = g.

7

Finally show by induction on syntax that for any f, we can find normal g such that
�

f = g.
�

Define p_inv to be the permutation:

id_inv = id
(p ; q)_inv = q_inv ; p_inv

(p � q)_inv = p_inv � q_inv
symm_inv = symm

Proposition (Permutations are isos). For any p,
�

p;p_inv = id and
�

p_inv;p = id.

Proof. An induction on p. �

Proposition (Cancellation of permutations). For any:

f � g p

we can find h such that:

�
f = h p

h � g

Proof. Let h be: f;p_inv. Then use soundness and p being an iso to show the required
properties. �

Proposition (Cancellation of nodes). For any:

f � g d

we can find h such that:

�
f = h d

h � g

8

Proof. First, show a result about bisimulation on graphs; if:

f c � g d

then either:

f � g

c � d

or we can find h such that:

f � h d

g � h c

We now proceed by induction on f, which (by normalization) we can assume is in normal
form. We have three cases:

� If f is:

s

then we have a contradiction, since f is bisimilar to a graph with a node connected
to an outgoing edge.

9

� If f is:

f1 p

then:

f1 � g d p_inv

then find permutation q such that:

�
q d = d p_inv

so we have:

f1 � g q d

By induction, we can find h1 such that:

�
f1 = h1 d

h1 � g q

so:

10

�
f = f1 p = h1 d p =

h1 q_inv q d p = h1 q_inv d p_inv p =

h1 q_inv d

and:

h1 q_inv � g q q_inv � g

� If f is:

f1 c

then by the above result about bisimulation either:

– we have:

f1 � g

c � d

11

and we are finished,

– or we can find g1 such that:

f1 � g1 d

g � g1 c

so by induction we can find h1 such that:

�
f1 = h1 d

h1 � g1

Then we have two cases depending on the relative positions of c and d, but
the proofs are identical:

�
f = f1 c = h1

d

c

=

12

h1

c

d

and:

h1 c � g1 c � g

�

Proposition (Completeness). If [[f]] � [[g]] then
�

f = g.

Proof. Find the normal form equal to g, and then cancel permutations and nodes itera-
tively, finishing with a use of completeness for shuffles, to prove

�
f = g. �

Proposition (Initiality). Graph(ΣV) is the initial cartesian category over ΣV.

Proof. By construction, Term(ΣV) is the initial cartesian category over ΣV. Since
Term(ΣV) is expressive, we have a map term : Graph(ΣV) � Term(ΣV) with the property
that [[term(G)]] � G. By soundness and completeness, this map is an isomorphism in
the category of categories with finite products over ΣV , and so Graph(ΣV) is the initial
cartesian category over ΣV. �

B Completeness proof: symmetric monoidal categories

A two-coloured flow graph over two signatures ΣV and ΣC with the same sorts is a
single-coloured flow graph over ΣV except that:

� Each node is either labelled N : c or N : c.

� If N : E � F, N : c and c : X � Y, then E : X and F : Y.

A simulation between two-coloured flow graphs is the same as for single-coloured flow
graphs except that:

13

� R is a function on nodes labelled by ΣC (that is for any node N : c of G there is
precisely one node N

�
of G

�
such that N R N

�
).

For example, there is no bisimulation:

c R
c

c

since if R is a function on central nodes, it must map the node labelled c to only one
of the nodes on the right, and so R-1 is not a total function on central nodes. Similarly,
there is no bisimulation:

c R

since R does not map c to any node.

We can now replay the same proof of soundness and completeness as in the finite prod-
ucts case. In each case, the proof of the theorems is so similar to that in the finite
products case that we elide it.

Let Graph(ΣV,ΣC) be the category of acyclic flow graphs over (ΣV,ΣC), viewed up to
bisimulation.

� For graphs only containing val nodes, bisimulation in Graph(ΣV ,ΣC) is the same
as bisimulation in Graph(ΣV).

� For graphs only containing central nodes, bisimulation in Graph(ΣV ,ΣC) is the
same as graph isomorphism.

Proposition (Bisimulation is a congruence). Bisimulation is a congruence wrt the
graph operations.

Proposition (Flow graphs form a strict symmetric monoidal category).

� Graph(ΣV,ΣC) is a strict symmetric monoidal category over ΣC.

� The inclusion Graph(ΣV) �
� Graph(ΣV,ΣC) is an identity on objects symmetric

monoidal functor.

Define Term(ΣV,ΣC) as the free strict symmetric monoidal category over ΣC which has
Term(ΣV) as a sub smc with the same objects.

14

f,g ::= f f
�

f ; g f g

�
f

�
g

f

g

�
c c

If terms can be proved equal using the axioms for an smc with a sub smc Term(ΣV), we
shall write

�
f = g.

Proposition (Soundness). If
�

f = g then [[f]] � [[g]].

Proposition (Expressivity). For any graph G, there is a term f such that [[f]] � G.

A term is in normal form (ranged over by n) iff it is of the form:

n ::= n
�

n p

�
n c

�
n c s

Proposition (Normalization). For any f we can find normal g such that
�

f = g.

Proposition (Cancellation of permutations). For any:

f � g p

we can find h such that:

�
f = h p

h � g

Proposition (Cancellation of val nodes). For any:

15

f � g d

we can find h such that:

�
f = h d

h � g

Proposition (Cancellation of central nodes). For any:

f � g c s

we can find h such that:

�
f = h c s

h � g

Proposition (Completeness). If [[f]] � [[g]] then
�

f = g.

Proposition (Initiality). Graph(ΣV,ΣC) is the initial strict symmetric monoidal category
over ΣC with Graph(ΣV) as a sub smc with the same objects.

C Completeness proof: premonoidal categories

A strict symmetric premonoidal category is a category P together with:

16

� A strict symmetric monoidal category C with the same objects as P (called the
centre of P).

� An identity on objects inclusion C �
� P.

� Two functors:

�
: C � P � P

�
: P � C � P

such that:

– the three functors
�

,
�

and
�

coincide on objects,

– the three ‘obvious’ functors from C � C to P coincide, and

– the symmetry in C is a natural isomorphism X
�

Y � Y
�

X in P.

This definition is based on Power’s presentation of Power and Robinson’s definition.

A three-coloured flow graph over three signatures ΣV , ΣC and ΣP with the same sorts is
a two-coloured flow graph over ΣV and ΣC except that:

� Each edge is either labelled E : X or E : S.

� Each node is either labelled N : c, N : c or N : c.

� If N : E � F, N : c and c : X � Y, then E : XS and F : YS.

� Each S-labelled edge occurs exactly once either as an outgoing edge of the graph,
or an incoming edge of a node.

A simulation between three-coloured flow graphs is the same as for two-coloured flow
graphs except that:

� R is a function on nodes labelled by ΣP (that is for any node N : c of G there is
precisely one node N

�
of G

�
such that N R N

�
).

We can define the following operations on graphs (and below we shall show that they
satisfy the equations necessary to be a premonoidal category):

17

Identity:

Composition: G H

Tensor left:
G

H

Tensor right:
G

H

Symmetry:

We can now replay the same proof of soundness and completeness as in the finite prod-
ucts case. In each case, the proof of the theorems is so similar to that in the finite
products case that we elide it.

Let Graph(ΣV,ΣC,ΣP) be the category of acyclic flow graphs over (ΣV,ΣC,ΣP) where the
morphisms from X to Y are graphs from XS to YS, viewed up to bisimulation.

Proposition (Bisimulation is a congruence). Bisimulation is a congruence wrt the
graph operations.

Proposition (Flow graphs form a premonoidal category). Graph(ΣV,ΣC,ΣP) is a
premonoidal category over ΣP with centre Graph(ΣV,ΣC).

Define Term(ΣV,ΣC,ΣP) as the free premonoidal category over ΣP with central category
Term(ΣV,ΣC).

f,g ::= f f

�
f ; g f g

�
f

�
g

f

g

�
f

�
g

f

g

�
c c

If terms can be proved equal using the axioms for a premonoidal category we shall write
�

f = g.

18

Proposition (Soundness). If
�

f = g then [[f]] � [[g]].

Proposition (Expressivity). For any graph G, there is a term f such that [[f]] � G.

A term is in normal form (ranged over by n) iff it is of the form:

n ::= n

�
n p

�
n c

�
n c s

�
n c s

Proposition (Normalization). For any f we can find normal g such that
�

f = g.

Proposition (Cancellation of permutations). For any:

f � g p

we can find h such that:

�
f = h p

h � g

Proposition (Cancellation of val nodes). For any:

19

f � g d

we can find h such that:

�
f = h d

h � g

Proposition (Cancellation of central nodes). For any:

f � g c s

we can find h such that:

�
f = h c s

h � g

Proposition (Cancellation of proc nodes). For any:

f � g c s

20

we can find h such that:

�
f = h c s

h � g

Proposition (Completeness). If [[f]] � [[g]] then
�

f = g.

Proposition (Initiality). Graph(ΣV,ΣC,ΣP) is the initial strict symmetric premonoidal
category over ΣP with Graph(ΣV,ΣC) as centre.

D Completeness proof: partial traced cartesian cate-
gories

Given a strict symmetric monoidal category C: with a full subcategory (not necessarily
symmetric monoidal) TC:

U : TC �
� C

a partial trace is a natural transformation:

TrX Y A : C[X
�

U(A), Y
�

U(A)] � C[X, Y]

satisfying certain axioms (given below, since they are much simpler to present graphi-
cally than equationally).

As an example, let TCpo be the full subcategory of Cpo where all of the objects have a
least element. Then TCpo �

� Cpo has a partial trace given by fixed points.

As another example, given a signature ΣV where a subset of the sorts are define a cyclic
single-coloured flow graph to be traceable iff any cyclic path goes through at least one
edge labelled with a traceable sort. Taking C to be the category of traceable graphs up
to bisimulation, and TC to be the full subcategory where the objects are traceable sorts,
we have a partial trace given by forming a feedback loop:

f

21

Note that in order to allow ‘black holes’:

we have to relax the condition that all edges have a unique source, and allow trace-
able edges to have at most one source. Then the above black hole is a graph with one
outgoing edge with no source.

We shall provide a different axiomatization of traces than that provided by Joyal, Street
and Verity, but we shall show below that in the case when C and TC are the same
category, we recover their definition. Note that these axioms are all graph isomorphisms,
and indeed are a complete axiomatization for graph isomorphism.

Naturality in X (for f : X
�

� X and g : X
�

U(A) � Y
�

U(A) in C):

f g =
f g

f; TrX Y A (g) = TrX � Y A (f
�

idU(A); g)

Naturality in Y (for f : Y � Y
�
and g : X

�
U(A) � Y

�
U(A) in C):

f g = f g

TrX Y A (g); f = TrX Y � A (g; f
�

idU(A))

Yanking:

=

TrU(A) U(A) A (symmU(A) U(A)) = idU(A)

Symmetry sliding (for f : X
�

U(A)
�

U(B) � Y
�

U(B)
�

U(A)):

f
=

f

TrX Y A (Tr(X
�

U(A)) (Y
�

U(A)) B

(f; (idY
�

symmU(B) U(A)))
=

TrX Y B (Tr(X
�

U(B)) (Y
�

U(B)) A

((idX
�

symmU(B) U(A)); f)

Strength (for f : V � W and g : X
�

U(A) � Y
�

U(A) in C):

f

g =
f

g

f
�

TrX Y A (g) = Tr(V
�

X) (W
�

Y) A (f
�

g)

22

For those readers familiar with Joyal, Street and Verity’s axiomatization of a trace, the
above axioms are obviously derivable from theirs. Moreover, the following lemmas
show that we can derive their axiomatization, so in the case where TC and C coincide,
our axiomatization is the same as theirs.

Proposition (Parameterized dinaturality) (for f : Z
�

U(B) � U(A) and g : X
�

U(A)
� Y

�
U(B) in C):

g

f = f

g

Tr(X
�

Z) Y A ((idX
�

symmZ U(A));
(g

�
idZ); (idY

�
(symmU(B) Z); f)))

= Tr(X
�

Z) Y B ((idX
�

f); g)

Proof.

23

g

f

=
g

f (Yanking)

=

g

f (Naturality of Tr)

=

g

f (Naturality of symm)

= f

g

(Functoriality of
�

)

= f

g

(Symmetry sliding)

= f
g

(Naturality of symm)

= f

g
(Naturality of Tr)

= f

g
(Yanking)

�

Corollary (Dinaturality) (for f : U(B) � U(A) and g : X
�

U(A) � Y
�

U(B) in C):

g
f = f

g

TrX Y A (g; (idY
�

f)) = TrX Y B ((idX
�

f); g)

24

Proof. Let Z be I in the above. �

Proposition (Trace respects unit) (for f : I � U(A) and g : X
�

U(A) � Y in C):

g

f
=

f
g

TrX Y A (g; idY
�

f) = (idX
�

f); g

Proof.

g

f

= f
g

(Acyclic graph iso)

=
f

g (Naturality of Tr)

=
f

g (Yanking)

�

Proposition (Trace respects tensor) (for f : U(B)
�

U(C) � U(A) and g : X
�

U(A)
� Y

�
U(B)

�
U(C) in C):

g
f = f

g

TrX Y A (g; idY
�

f) = TrX Y C (TrX Y B ((idX
�

f); g))

Proof.

25

g
f

=
g

f (Yanking)

=
g

f (Naturality of Tr)

=
g

f (Acyclic graph iso)

=
g

f (Symmetry sliding)

= f
g

(Parameterized dinaturality)

= f
g

(Symmetry sliding)

�

Proposition (Trace respects double symmetry) (for f : V � W and g : X
�

U(A) � Y
�

U(A) in C):

g

f

=
g

f

TrX Y A (g)
�

f = Tr(X
�

V) (Y
�

W) A ((idX
�

symmV U(A)); (g
�

f); (idY
�

symmU(A) W))

Proof.

26

g

f

=
f

g (Acyclic graph iso)

=
f

g (Strength of Tr)

=
f

g (Naturality of Tr)

=
g

f
(Acyclic graph iso)

�

We show below that the axioms for a partially traced monoidal category are complete
for graphs up to graph isomorphism. But as we discussed before, graph isomorphism is
not a sound model for categories with finite products, and we chose bisimulation as the
appropriate equivalence on graphs. In order to provide a complete axiomatization for
cyclic graphs up to bisimulation, we need an additional property. In a partially traced
monoidal category where the monoid is product, the trace is uniform wrt shuffles iff, for
any shuffle s:

If:
s

f = g
s

then:
f

=
g

A partially traced cartesian category is a partially traced monoidal category where the
monoid is product and the trace is uniform wrt shuffles. We shall show below that the
axioms for a partially traced cartesian category are sound and complete for traceable
cyclic graphs up to bisimulation.

We can now replay the same proof of soundness and completeness as in the finite prod-
ucts case. In some cases, the proof of the theorems is so similar to that in the finite
products case that we elide it.

27

Let CGraph(ΣV) be the category of traceable cyclic single-coloured flow graphs over ΣV

viewed up to bisimulation.

Proposition (Bisimulation is a congruence). Bisimulation is a congruence wrt the
graph operations.

Proposition (Flow graphs form a partially traced cartesian category). CGraph(ΣV)
is a partially traced cartesian category.

Define CTerm(ΣV) as the free partially traced cartesian category with finite products
over ΣV.

f,g ::= ...as for Term...
�

TrX(f) f

If terms can be proved equal using the axioms for a partially traced cartesian category,
we shall write

�
f = g.

Proposition (Soundness). If
�

f = g then [[f]] � [[g]].

Proposition (Expressivity). For any traceable graph G, there is a term f such that
[[f]] � G.

A term is in normal form (ranged over by n) iff it is of the form:

f

where f is acyclic, and the only traceable edges in f are the incoming and outgoing
edges.

Proposition (Normalization). For any term f there is a normal form g such that
�

f = g.

Proof. An induction on f. The only difficult case is composition. By induction we
have (drawing the one-cycle case for simplicity: the multiple-cycle case is dealt with
the same way):

f g

We can find permutations p and q such that:

p q =

and:

28

f p : X � Y,Z (Y a vector of traceable sorts)

Again, we shall only prove the case where Y is a singleton vector, the more general case
follows in the same way.

f g = f
g

=
f g

=
f p q g

=

f p q
g

=
f

p q g
=

f p q g

So we have normalized the composition. The other cases are simpler. �

We can then prove completeness, essentially by converting any bisimulation between
cyclic graphs into a shuffle, then using uniformity.

Proposition (Completeness). If [[f]] � [[g]] then
�

f = g.

Proof. Let R be the bisimulation between [[f]] and [[g]]. We can regard this as a graph
G:

� Nodes are pairs (N,N
�
) � R.

� Edges are pairs (E,E
�
) � R.

� Incoming edges, outgoing edges, and labellings inherited from [[f]] and [[g]]
(since R is a graph relation, this is consistent).

By expressivity, let h be the term such that [[h]] � G. Find normal forms for f, g and h:

f1
�

g1
�

h1

Let E1...Em be the outgoing edges of [[f1]] which form the cycles in [[f]], and F1...Fn be
the outgoing edges of [[h1]] which form the cycles in [[h]]. Construct a shuffle s with:

� Edges E1...Em.

� Incoming edges E1...Em.

29

� Outgoing edges E
�
1...E

�
n, where E

�
i = Ej whenever Fi = (Ej,_).

� Labelling inherited from [[f1]].

We can then show that:

f1
s

�
s

h1

and since we have completeness for acyclic graphs, this means:

�
f1

s
=

s
h1

Then since trace is uniform wrt shuffles:

�

f1
=

h1

and so
�

f = h. We can show
�

g = h similarly.

Proposition (Initiality). CGraph(ΣV) is the initial partially traced cartesian category
over ΣV.

We can extend this result to include embedding single-coloured cyclic graphs into two-
or three-coloured graphs. Let CGraph(ΣV,ΣC) and CGraph(ΣV,ΣV,ΣP) be the categories
of cyclic two- and three-coloured graphs such that:

� Any cyclic path goes through at least one edge labelled with a traceable sort.

� Any nodes on a cycle are labelled in ΣV.

Proposition (Initiality). CGraph(ΣV,ΣC) is the initial symmetric monoidal category
over ΣC with Graph(ΣV) as a sub smc with the same objects. CGraph(ΣV,ΣC,ΣP) is the
initial symmetric premonoidal category over ΣP with CGraph(ΣV,ΣC) as centre.

E Premonoidal categories and state transformers

The graphical presentation of symmetric premonoidal categories uses extra control arcs
to model control dependencies. This can be seen as a simple form of state transformer
where each graph has one extra incoming arc and one extra outgoing arc.

Given a strict symmetric monoidal category C with a chosen object S, the state trans-
former category of C, State(C) is given by:

30

� Objects are those of C.

� The homset State(C)[X, Y] is C[X
�

S, Y
�

S].

The identity-on-objects inclusion C �
� State(C) maps f to f

�
idS.

C �
� State(C) is a strict symmetric premonoidal category with premonoidal structure

given by:

� f
�

g is f
�

g.

� f
�

g is (id
�

symm) ; (f
�

g) ; (id
�

symm).

The state transformer construction is well-known, and is given by Power and Robinson
as one of the canonical examples of a symmetric premonoidal category. We shall now
show that state transformers are canonical strict symmetric premonoidal categories by
showing that for any strict symmetric premonoidal category C �

� P we can find a strict
symmetric monoidal category D such that:

C �
� P��

��
�� ��

��
��

D �
� State(D)

that is C �
� P is a full sub-strict-symmetric-premonoidal-category of D �

� State(D).

The rest of this section shows how to construct D, and show that it has the required
properties.

Let LGraph(ΣC) be the subcategory of Graph(ΣV,ΣC) category of linear flow graphs,
that is ones where:

� All nodes are labelled from ΣC.

� Each edge occurs exactly once either as an outgoing edge of the graph, or an
incoming edge of a node.

Note in particular that since we cannot duplicate or discard edges, this means this cate-
gory has no diagonal or terminal. In fact, we can adapt the previous proof to show that
this is the initial strict symmetric monoidal category over ΣC .

Similarly, let LGraph(ΣC,ΣP) be the subcategory of Graph(ΣV,ΣC,ΣP) where:

� All nodes are labelled from ΣC or ΣP.

� Each edge occurs exactly once either as an outgoing edge of the graph, or an
incoming edge of a node.

31

We can adapt the previous proof to show that this is the initial strict symmetric pre-
monoidal category over ΣP with centre LGraph(ΣC).

Given two signatures ΣC and ΣP with the same sorts, define Mix(ΣC,ΣP) to be the signa-
ture with:

� Sorts those of ΣC plus a new sort S.

� Constructors the disjoint union of those of ΣC and those of ΣP.

� c : X � Y in Mix(ΣC,ΣP) whenever c : X � Y in ΣC.

� c : XS � YS in Mix(ΣC,ΣP) whenever c : X � Y in ΣP.

We then have:

LGraph(ΣC) �
� LGraph(ΣC,ΣP)��

��
�� ��

��
��

LGraph(Mix(ΣC,ΣP)) �
� State(LGraph(Mix(ΣC,ΣP)))

where the full subcategories are taken by only including objects which do not include
the new sort S.

We can regard a monoidal category C as a signature with:

� Sorts are objects.

� Constructors f : X1,...,Xm
� Y1,...,Yn are morphisms f : X1

�
...

�
Xm

� Y1
�

...
�

Yn.

and similarly for premonoidal categories. Any category is trivially a category over itself,
and so we have a unique symmetric premonoidal functor:

[[_]]C : LGraph(C) � � C
[[_]]P : LGraph(C,P) � � P

such that:

[[c]]C = c [[d]]P = d

and so we can define D �
� Q as a pushout in the category of strict symmetric pre-

monoidal categories:

32

[[_]]C : LGraph(C) � � C
�� �

[[_]]D : LGraph(Mix(C,P)) � � D

[[_]]P : LGraph(C,P) � � P
�� �

[[_]]Q : State(LGraph(Mix(C,P))) � � Q

Proposition (Full sub-strict-symmetric-premonoidal-category). C �
� P is a full sub-

strict-symmetric-premonoidal category of D �
� Q.

Proof. Throughout this proof, we shall give the reasoning for the premonoidal category,
since the reasoning for the central category is identical.

We have a functor F : P � Q given by the pushout diagram. We will first show that this
functor is monic.

For any strict symmetric premonoidal category P let P � be the strict symmetric pre-
monoidal category given by adjoining a new object � and making the tensors strict. Let
lift be the functor P �

� P � .

We can find a strict symmetric premonoidal functor test such that:

lift : LGraph(C,P) � LGraph(C,P) �
�� �

test : State(LGraph(Mix(C,P))) � LGraph(C,P) �

such that test(S) = � .

Then:

LGraph(C,P) � � P
�� �

State(LGraph(Mix(C,P))) � LGraph(C,P) � � � P �

and since we defined Q as a pushout, this means we have a unique symmetric pre-
monoidal functor test

�
: Q � P � making the pushout diagram commute. In particular,

we have F ; test
�
= lift, and since lift is monic, so is F.

For fullness, for any f : F(X) � F(Y) in Q we can find (since [[_]]Q is epi) a graph G :
X � Y such that:

[[G : X � Y]]Q = f : F(X) � F(Y)

Since test
�
(F(X))

�� � we have S
�
� X, so X is in LGraph(C,P), and similarly for Y. Since

LGraph(C,P) �
� State(LGraph(Mix(C,P))) is a full subcategory, G is in LGraph(C,P)

33

and so [[G]]P is in P. By the pushout diagram, F[[G]]P = f, and so P is a full sub-strict-
symmetric-premonoidal-category of Q. �

Proposition (Q is State(D)). Q is isomorphic to State(D).

Proof. Since the pushout defining Q was taken in the category of strict symmetric
premonoidal categories, the following diagram commutes:

[[_]]D : LGraph(Mix(C,P)) � � D
�� ��

[[_]]Q : State(LGraph(Mix(C,P))) � � Q

We will now define an identity-on-objects isomorphism between Q and State(D):

� For any f : X � Y in Q we can find (since [[_]]Q is epi) a graph G : X � Y in
State(LGraph(Mix(C,P))) such that:

[[G : X � Y]]Q = f : X � Y

By definition, G : XS � YS in LGraph(Mix(C,P)) and so define:

st(f) = [[G : XS � YS]]D : X
�

S � Y
�

S in D

which gives us:

st(f) : X � Y in State(D)

� For any f : X � Y in State(D), we have f : X
�

S � Y
�

S in D. We can find
(since [[_]]D is epi) a graph G : XS � YS in LGraph(Mix(C,P)) such that:

[[G : XS � YS]]D = f : X
�

S � Y
�

S in D

By definition, G : X � Y in State(LGraph(Mix(C,P))) and so define:

ts(f) = [[G : X � Y]]Q : X � Y in Q

It is routine to show that st and ts are symmetric premonoidal functors, and that they
form an isomorphism. �

Thus for any strict symmetric premonoidal category C �
� P we can find an strict sym-

metric monoidal category D such that:

C �
� P��

��
�� ��

��
��

D �
� State(D)

34

F Bibliography

Benton, P.N. A mixed linear and non-linear logic: proofs, terms and models, Proc.
Computer Science Logic 1995, Springer LNCS 933 and Univ. Cambridge Technical
Report 352, 1994..

Gardner, P.A., A name-free account of action calculi, in Proc. MFPS ’95, Electronic
Notes in Comp. Sci. 1, Elsevier, 1995.

Hasegawa, M. Models of Sharing Graphs (A Categorical Semantics of Let and Letrec),
Ph.D thesis, Univ. Edinburgh, LFCS report ECS-LFCS-97-360, 1997.

Hasegawa, M. Recursion from cyclic sharing: traced monoidal categories and models of
cyclic lambda calculi, in Proc. 3rd International Conference on Typed Lambda Calculi
and Applications (TLCA’97), Springer LNCS 1210, pp. 196-213, 1997.

Joyal, A., Street, R.H. and Verity, D., Traced monoidal categories, in Math. Proc. Cam-
bridge Philosophical Soc. 119(3), pp. 425-446, 1996.

Milner, R., A complete inference system for a class of regular behaviours, J. Comput.
System Sci. 28, pp. 439-466, 1984.

Milner, R., Calculi for interaction, Acta Informatica 33(8), pp. 707-737, 1996.

de Paiva, V.C.V. and Ritter, E. On explicit substitutions and names, extended abstract in
Proc. ICALP ’97, Springer LNCS 1104, pp. 17-31, full version as Univ. Birmingham
technical report CSRP-97-5, 1997.

Power, A.J. Premonoidal categories as categories with algebraic structure, to appear in
Proc. MFPS ’96.

Power, A.J. and Robinson, E.P. Premonoidal categories and notions of computation, to
appear in Math. Struct. in Comput. Science, also available electronically.

Power, A.J. and Thielecke, H. Environments, continuation semantics and indexed cate-
gories, in Proc. TACS ’97, Springer LNCS 1281, pp. 391-414, 1997.

Selinger, P. Control Categories: an Axiomatic Approach to the Semantics of Control in
Functional Languages, Manuscript

35

